Size of carotid artery intraplaque hemorrhage and acute ischemic stroke: a cardiovascular magnetic resonance Chinese atherosclerosis risk evaluation study

Yang Liu, Maoxue Wang, Bing Zhang, Wei Wang, Yun Xu, Yongjun Han, Chun Yuan, Xihai Zhao, Yang Liu, Maoxue Wang, Bing Zhang, Wei Wang, Yun Xu, Yongjun Han, Chun Yuan, Xihai Zhao

Abstract

Background: To determine the usefulness of the size of carotid artery intraplaque hemorrhage (IPH) in discriminating the risk of acute ischemic stroke using cardiovascular magnetic resonance (CMR) vessel wall imaging.

Methods: Symptomatic patients with carotid atherosclerotic plaque who participated in a cross-sectional, multicenter study of CARE-II (NCT02017756) were included. All patients underwent carotid and brain CMR imaging. Carotid plaque burden and the size of plaque compositions including calcification, lipid-rich necrotic core (LRNC), and IPH were measured. Presence of acute cerebral infarct (ACI) in ipsilateral hemisphere of carotid plaque was determined. The relationship between carotid plaque features and presence of ipsilateral ACI was then analyzed.

Results: Of 687 recruited patients (62.7 ± 10.1 years; 69.4% males) with carotid plaque, 28.5% had ACI in ipsilateral hemispheres. Logistic regression revealed that carotid plaque burden was significantly associated with the presence of ACI before and after adjusted for clinical confounding factors. The volume of LRNC, %LRNC volume, volume of IPH, and %IPH volume were significantly associated with ACI before (volume of LRNC: OR = 1.297, p = 0.005; %LRNC volume: OR = 1.119, p = 0.018; volume of IPH: OR = 2.514, p = 0.003; %IPH volume: OR = 2.202, p = 0.003) and after (volume of LRNC: OR = 1.312, p = 0.006; %LRNC volume: OR = 1.90, p = 0.034; volume of IPH: OR = 2.907, p = 0.007; % IPH volume: OR = 2.374, p = 0.004) adjusted for clinical confounding factors. The association between volume of IPH and ACI remained statistically significant after further adjusted for plaque volume (OR = 2.813, p = 0.016) or both plaque volume and volume of LRNC (OR = 4.044, p = 0.024).

Conclusions: In symptomatic patients with carotid atherosclerotic plaques, the size of IPH is independently associated with ipsilateral ACI, suggesting the size of IPH might be a useful indicator for the risk of ACI.

Trial registration: Clinical Trial Registration-URL: http://www.clinicaltrials.gov . Unique Identifier: NCT02017756.

Keywords: Acute cerebral infarct; Atherosclerosis; Cardiovascular magnetic resonance imaging; Carotid artery; Intraplaque hemorrhage.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flow chart of patient recruitment for final analysis
Fig. 2
Fig. 2
A bar graph of volume of carotid plaque components including calcification (CA), lipid-rich necrotic core (LRNC), and intraplaque hemorrhage (IPH). Volume of and IPH was significantly associated with the presence of acute cerebral infarct
Fig. 3
Fig. 3
An example of a patient with carotid intraplaque hemorrhage (IPH) and ipsilateral acute cerebral infarct (ACI). Multicontrast MR images show an atherosclerotic plaque with large IPH (hyperintensity within the vessel wall, white arrows) in the right internal carotid artery. On Brain images of the same patient, acute cerebral infarct which shows hypointensity on T1W image and hyperintensity on DWI image can be seen in the right hemisphere

References

    1. Altaf N, Daniels L, Morgan PS, Auer D, MacSweeney ST, Moody AR, et al. Detection of intraplaque hemorrhage by magnetic resonance imaging in symptomatic patients with mild to moderate carotid stenosis predicts recurrent neurological events. J Vasc Surg. 2008;47:337–342. doi: 10.1016/j.jvs.2007.09.064.
    1. McNally JS, McLaughlin MS, Hinckley PJ, Treiman SM, Stoddard GJ, Parker DL, et al. Intraluminal thrombus, intraplaque hemorrhage, plaque thickness, and current smoking optimally predict carotid stroke. Stroke. 2015;46:84–90. doi: 10.1161/STROKEAHA.114.006286.
    1. Teng Z, Sadat U, Brown AJ, Gillard JH. Plaque hemorrhage in carotid artery disease: pathogenesis, clinical and biomechanical considerations. J Biomech. 2014;47:847–858. doi: 10.1016/j.jbiomech.2014.01.013.
    1. Wang X, Sun J, Zhao X, Hippe DS, Hatsukami TS, Liu J, et al. Ipsilateral plaques display higher T1 signals than contralateral plaques in recently symptomatic patients with bilateral carotid intraplaque hemorrhage. Atherosclerosis. 2017;257:78–85. doi: 10.1016/j.atherosclerosis.2017.01.001.
    1. Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C. Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation. 2002;106:1368–1373. doi: 10.1161/01.CIR.0000028591.44554.F9.
    1. Ota H, Yarnykh VL, Ferguson MS, Underhill HR, Demarco JK, Zhu DC, et al. Carotid intraplaque hemorrhage imaging at 3.0-T MR imaging: comparison of the diagnostic performance of three T1-weighted sequences. Radiology. 2010;254:551–563. doi: 10.1148/radiol.09090535.
    1. Zhao X, Li R, Hippe DS, Hatsukami TS, Yuan C. CARE-II investigators. Chinese atherosclerosis risk evaluation (CARE II) study: a novel cross-sectional, multicentre study of the prevalence of high-risk atherosclerotic carotid plaque in Chinese patients with ischaemic cerebrovascular events-design and rationale. Stroke Vasc Neurol. 2017;2:15–20. doi: 10.1136/svn-2016-000053.
    1. Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, et al. Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol. 2005;25:234–239. doi: 10.1161/01.ATV.0000149867.61851.31.
    1. Chu B, Kampschulte A, Ferguson MS, Kerwin WS, Yarnykh VL, O'Brien KD, et al. Hemorrhage in the atherosclerotic carotid plaque: a high-resolution MRI study. Stroke. 2004;35:1079–1084. doi: 10.1161/01.STR.0000125856.25309.86.
    1. Barnett HJ, Taylor DW, Eliasziw M, Fox AJ, Ferguson GG, Haynes RB, et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. North American symptomatic carotid endarterectomy trial collaborators. N Engl J Med. 1998;339:1415–1425. doi: 10.1056/NEJM199811123392002.
    1. Gunduz Y, Akdemir R, Ayhan LT, Keser N. Can Doppler flow parameters of carotid stenosis predict the occurrence of new ischemic brain lesions detected by diffusion-weighted MR imaging after filter-protected internal carotid artery stenting? AJNR Am J Neuroradiol. 2014;35:760–765. doi: 10.3174/ajnr.A3904.
    1. Liu XS, Zhao HL, Cao Y, Lu Q, Xu JR. Comparison of carotid atherosclerotic plaque characteristics by high-resolution black-blood MR imaging between patients with first-time and recurrent acute ischemic stroke. AJNR Am J Neuroradiol. 2012;33:1257–1261. doi: 10.3174/ajnr.A2965.
    1. Zhao H, Zhao X, Liu X, Cao Y, Hippe DS, Sun J, et al. Association of carotid atherosclerotic plaque features with acute ischemic stroke: a magnetic resonance imaging study. Eur J Radiol. 2013;82:e465–e470. doi: 10.1016/j.ejrad.2013.04.014.
    1. Takaya N, Yuan C, Chu B, Saam T, Polissar NL, Jarvik GP, et al. Presence of intraplaque hemorrhage stimulates progression of carotid atherosclerotic plaques: a high-resolution magnetic resonance imaging study. Circulation. 2005;111:2768–2775. doi: 10.1161/CIRCULATIONAHA.104.504167.
    1. Underhill HR, Yuan C, Yarnykh VL, Chu B, Oikawa M, Dong L, et al. Predictors of surface disruption with MR imaging in asymptomatic carotid artery stenosis. AJNR Am J Neuroradiol. 2010;31:487–493. doi: 10.3174/ajnr.A1842.
    1. Lindsay AC, Biasiolli L, Lee JM, Kylintireas I, MacIntosh BJ, Watt H, et al. Plaque features associated with increased cerebral infarction after minor stroke and TIA: a prospective, case-control, 3-T carotid artery MR imaging study. JACC Cardiovasc Imaging. 2012;5:388–396. doi: 10.1016/j.jcmg.2011.10.007.
    1. Hellings WE, Peeters W, Moll FL, Piers SR, van Setten J, Van der Spek PJ, et al. Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study. Circulation. 2010;121:1941–1950. doi: 10.1161/CIRCULATIONAHA.109.887497.
    1. Yamada K, Kawasaki M, Yoshimura S, Enomoto Y, Asano T, Minatoguchi S, et al. Evaluation of symptomatic carotid plaques by tissue characterization using integrated backscatter ultrasound and magnetic resonance imaging. Cerebrovasc Dis. 2011;31:305–312. doi: 10.1159/000322559.
    1. Chu B, Yuan C, Takaya N, Shewchuk JR, Clowes AW, Hatsukami TS. Images in cardiovascular medicine. Serial high-spatial-resolution, multisequence magnetic resonance imaging studies identify fibrous cap rupture and penetrating ulcer into carotid atherosclerotic plaque. Circulation. 2006;113:e660–e661. doi: 10.1161/CIRCULATIONAHA.105.567255.
    1. Kawahara I, Nakamoto M, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I, et al. The detection of carotid plaque rupture caused by intraplaque hemorrhage by serial high-resolution magnetic resonance imaging: a case report. Surg Neurol. 2008;70:634–639. doi: 10.1016/j.surneu.2007.06.070.
    1. Cui Yuanyuan, Qiao Huiyu, Ma Lu, Lu Mingming, Yang Jiafei, Yao Guoen, Cai Jianming, Zhao Xihai. Association of Age and Size of Carotid Artery Intraplaque Hemorrhage and Minor Fibrous Cap Disruption: A High Resolution Magnetic Resonance Imaging Study. Journal of Atherosclerosis and Thrombosis. 2018;25(12):1222–1230. doi: 10.5551/jat.43679.
    1. Sadat U, Teng Z, Young VE, Zhu C, Tang TY, Graves MJ, et al. Impact of plaque haemorrhage and its age on structural stresses in atherosclerotic plaques of patients with carotid artery disease: an MR imaging-based finite element simulation study. Int J Cardiovasc Imaging. 2011;27:397–402. doi: 10.1007/s10554-010-9679-z.
    1. Chung GH, Jeong JY, Kwak HS, Hwang SB. Associations between cerebral embolism and carotid Intraplaque hemorrhage during protected carotid artery stenting. AJNR Am J Neuroradiol. 2016;37:686–691. doi: 10.3174/ajnr.A4576.
    1. Berliner JA, Navab M, Fogelman AM, Frank JS, Demer LL, Edwards PA, et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation. 1995;91:2488–2496. doi: 10.1161/01.CIR.91.9.2488.
    1. Fulcher J, O’Connell R, Voysey M, Emberson J, Blackwell L, Mihaylova B, et al. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet. 2015;385:1397e1405.
    1. Law MR, Wald NJ, Rudnicka AR. Quantifying effect of statins on low density lipoprotein cholesterol, ischaemic heart disease, and stroke: systematic review and meta-analysis. BMJ. 2003;326:1423. doi: 10.1136/bmj.326.7404.1423.
    1. Wang J, Börnert P, Zhao H, Hippe DS, Zhao X, Balu N, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation. Magn Reson Med. 2013;69:337–345. doi: 10.1002/mrm.24254.

Source: PubMed

3
Předplatit