Timing for intracoronary administration of bone marrow mononuclear cells after acute ST-elevation myocardial infarction: a pilot study

Rongchong Huang, Kang Yao, Aijun Sun, Juying Qian, Lei Ge, Yiqi Zhang, Yuhong Niu, Keqiang Wang, Yunzeng Zou, Junbo Ge, Rongchong Huang, Kang Yao, Aijun Sun, Juying Qian, Lei Ge, Yiqi Zhang, Yuhong Niu, Keqiang Wang, Yunzeng Zou, Junbo Ge

Abstract

Introduction: Most studies on intracoronary bone marrow mononuclear cell transplantation for acute myocardial infarction involve treatment 3-7 days after primary percutaneous coronary intervention (PCI); however, the optimal timing is unknown. The present study assessed the therapeutic effect at different times after ST-elevation myocardial infarction.

Methods: The present trial was not blinded. A total of 104 patients with a first ST-elevation myocardial infarction and a left ventricular ejection fraction below 50 %, who had PCI of the infarct-related artery, were randomly assigned to receive intracoronary infusion of bone marrow mononuclear cells within 24 hours (group A, n = 27), 3 to 7 days after PCI (group B, n = 26), or 7 to 30 days after PCI (group C, n = 26), or to the control group (n = 25), which received saline infusion performed immediately after emergency PCI. All patients in groups A, B and C received an injection of 15 ml cell suspension containing approximately 4.9 × 10(8) bone marrow mononuclear cells into the infarct-related artery after successful PCI.

Results: Compared to control and group C patients, group A and B patients had a significantly higher absolute increase in left ventricular ejection fraction from baseline to 12 months (change: 3.4 ± 5.7 % in control, 7.9 ± 4.9 % in group A, 6.9 ± 3.9 % in group B, 4.7 ± 3.7 % in group C), a greater decrease in left ventricular end-systolic volumes (change: -6.4 ± 15.9 ml in control, -20.5 ± 13.3 ml in group A, -19.6 ± 11.1 ml in group B, -9.4 ± 16.3 ml in group C), and significantly greater myocardial perfusion (change from baseline: -4.7 ± 5.7 % in control, -7.8 ± 4.5 % in group A, -7.5 ± 2.9 % in group B, -5.0 ± 4.0 % in group C). Group A and B patients had similar beneficial effects on cardiac function (p = 0.163) and left ventricular geometry (left ventricular end-distolic volume: p = 0.685; left ventricular end-systolic volume: p = 0.622) assessed by echocardiography, whereas group C showed similar results to those of the control group. Group B showed more expensive care (p < 0.001) and longer hospital stays during the first month after emergency PCI (p < 0.001) than group A, with a similar improvement after repeat cardiac catheterization following emergency PCI.

Conclusion: Cell therapy in acute myocardial infarction patients that is given within 24 hours is similar to 3-7 days after the primary PCI.

Trial registration: NCT02425358 , registered 30 April 2015.

Figures

Fig. 1
Fig. 1
Flow chart outlining the study protocol. A total of 104 acute myocardial infarction (AMI) patients were enrolled and randomly assigned to four groups in this trial depending on bone marrow mononuclear cell (BMNC) transplantation after primary percutaneous coronary intervention (PCI). Before discharge, the patients underwent echocardiography and single photon emission computed tomography (SPECT) and the data were collected as baseline. At the 6-month follow-up, patients underwent angiography. The SPECT and echocardiography data were recorded at 6 and 12 months. Group A BMNC infusion within 24 hours after PCI; group B BMNC infusion at 3–7 days after PCI; group C BMNC infusion at 7–30 days after PCI; LV, left ventricular; LVEF left ventricular ejection fraction
Fig. 2
Fig. 2
Left ventricular ejection fraction at baseline and at 12 months after myocardial infarction. Left ventricular ejection fraction (LVEF) determined by echocardiography initially and at 12-month follow-up in the four groups. Compared with baseline, global LVEF in the four groups was significantly increased on echocardiography at 12 months. Compared with the control group (CON), the absolute change in LVEF from baseline to 12 months was significantly higher in groups A and B, but not in group C. group A bone marrow mononuclear cell (BMC) infusion within 1 day after percutaneous coronary intervention (PCI); group B BMC infusion at 3–7 days after PCI; group C BMC infusion at 7–30 days after PCI

References

    1. Angeli FS, Caramori PR, da Costa Escobar Piccoli J, Danzmann LC, Magedanz E, Bertaso A, et al. Autologus transplantation of mononuclear bone marrow cells after acute myocardial infarction: a PILOT study. Int J Cardiol. 2012;158:449–50. doi: 10.1016/j.ijcard.2012.04.136.
    1. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Ellis SG. One-year follow-up of intracoronary stem cell delivery on left ventricular function following ST-elevation myocardial infarction. JAMA. 2014;311:301–2. doi: 10.1001/jama.2013.282674.
    1. Delewi R, Hirsch A, Tijssen JG, Schächinger V, Wojakowski W, Roncalli J, et al. Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis. Eur Heart J. 2014;35:989–98. doi: 10.1093/eurheartj/eht372.
    1. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379:895–904. doi: 10.1016/S0140-6736(12)60195-0.
    1. Schächinger V, Erbs S, Elsässer A, Haberbosch W, Hambrecht R, Hölschermann H, et al. REPAIR-AMI Investigators. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. Eur Heart J. 2006;27:2775–83. doi: 10.1093/eurheartj/ehl388.
    1. Wöhrle J, von Scheidt F, Schauwecker P, Wiesneth M, Markovic S, Schrezenmeier H, et al. Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in patients with Acute Myocardial Infarction (SCAMI) trial. Clin Res Cardiol. 2013;102:765–70. doi: 10.1007/s00392-013-0595-9.
    1. Ge J, Li Y, Qian J, Shi J, Wang Q, Niu Y, et al. Efficacy of Emergent Transcatheter Transplantation of Stem Cells for Treatment of Acute Myocardial Infarction (TCT-STAMI) Heart. 2006;92:1764–7. doi: 10.1136/hrt.2005.085431.
    1. Gyöngyösi M, Lang I, Dettke M, Beran G, Graf S, Sochor H, et al. Combined delivery approach of bone marrow mononuclear stem cells early and late after myocardial infarction: the MYSTAR prospective, randomized study. Nat Clin Pract Cardiovasc Med. 2009;6:70–81. doi: 10.1038/ncpcardio1388.
    1. Sürder D, Schwitter J, Moccetti T, Astori G, Rufibach K, Plein S, et al. Cell-based therapy for myocardial repair in patients with acute myocardial infarction: rationale and study design of the SWiss multicenter Intracoronary Stem cells Study in Acute Myocardial Infarction (SWISS-AMI) Am Heart J. 2010;160:58–64. doi: 10.1016/j.ahj.2010.03.039.
    1. Otterstad JE. Measuring left ventricular volume and ejection fraction with the biplane Simpson’s method. Heart. 2002;88:559–60. doi: 10.1136/heart.88.6.559.
    1. Ho FM, Huang PJ, Liau CS, Lee FK, Chieng PU, Su CT, et al. Dobutamine stress echocardiography compared with dipyridamole thallium-201 single-photon emission computed tomography in detecting coronary artery disease. Eur Heart J. 1995;16:570–5. doi: 10.1093/eurheartj/16.1.81.
    1. Traverse JH, Henry TD, Pepine CJ, Willerson JT, Zhao DX, Ellis SG, et al. Cardiovascular Cell Therapy Research Network (CCTRN), effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: the TIME randomized trial. JAMA. 2012;308:2380–9. doi: 10.1001/jama.2012.28726.
    1. Plewka M, Krzemińska-Pakuła M, Lipiec P, Peruga JZ, Jezewski T, Kidawa M, et al. Effect of intracoronary injection of mononuclear bone marrow stem cells on left ventricular function in patients with acute myocardial infarction. Am J Cardiol. 2009;104:1336–42. doi: 10.1016/j.amjcard.2009.06.057.
    1. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet M, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomized controlled trial. Lancet. 2006;367:113–21. doi: 10.1016/S0140-6736(05)67861-0.
    1. Yao K, Huang R, Qian J, Cui J, Ge L, Li Y, et al. Administration of intracoronary bone marrow mononuclear cells on chronic myocardial infarction improves diastolic function. Heart. 2008;94:1147–53. doi: 10.1136/hrt.2007.137919.
    1. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002;53:31–47. doi: 10.1016/S0008-6363(01)00434-5.
    1. Saparov A, Chen CW, Beckman SA, Wang Y, Huard J. The role of antioxidation and immunomodulation in postnatal multipotent stem cell-mediated cardiac repair. Int J Mol Sci. 2013;14:16258–79. doi: 10.3390/ijms140816258.
    1. Deten A, Volz HC, Briest W, Zimmer HG. Cardiac cytokine expression is upregulated in the acute phase after myocardial infarction. Experimental studies in rats. Cardiovasc Res. 2002;55:329–40. doi: 10.1016/S0008-6363(02)00413-3.
    1. Ma J, Ge J, Zhang S, Sun A, Shen J, Chen L, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardial. 2005;100:217–23. doi: 10.1007/s00395-005-0521-z.
    1. Zhang S, Sun A, Xu D, Yao K, Huang Z, Jin H, et al. Impact of timing on efficacy and safety of intracoronary autologous bone marrow stem cells transplantation in acute myocardial infarction: a pooled subgroup analysis of randomized controlled trials. Clin Cardiol. 2009;32:458–66. doi: 10.1002/clc.20575.
    1. Fernández-Aviles F, San Román JA, García-Frade J, Fernández ME, Peñarrubia MJ, de la Fuente L, et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res. 2004;95:742–8. doi: 10.1161/01.RES.0000144798.54040.ed.
    1. Schutt RC, Trachtenberg B, Cooke JP, Traverse JH, Henry TD, Pepine CJ, et al. Bone marrow characteristics associated with changes in infarct size after STEMI: a biorepository evaluation from the CCTRN TIME Trial. Circ Res. 2015;116(1):99–107.
    1. Traverse JH, Henry TD, Vaughan DE, Ellis SG, Pepine CJ, Willerson JT, et al. Cardiovascular Cell Therapy Research Network. LateTIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Tex Heart Inst J. 2010;37:412–20.
    1. Dill T, Schächinger V, Rolf A, Möllmann S, Thiele H, Tillmanns H, et al. Intracoronary administration of bone marrow-derived progenitor cells improves left ventricular function in patients at risk for adverse remodeling after acute ST-segment elevation myocardial infarction: results of the Reinfusion of Enriched Progenitor cells And Infarct Remodeling in Acute Myocardial Infarction study (REPAIR-AMI) cardiac magnetic resonance imaging substudy. Am Heart J. 2009;157:541–7. doi: 10.1016/j.ahj.2008.11.011.
    1. Gao LR, Pei XT, Ding QA, Chen Y, Zhang NK, Chen HY, et al. A critical challenge: dosage-related efficacy and acute complication intracoronary injection of autologous bone marrow mesenchymal stem cell in acute myocardial infarction. Int J Cardiol. 2013;168:3191–9. doi: 10.1016/j.ijcard.2013.04.112.
    1. Tambara K, Sakakibara Y, Sakaguchi G, Lu F, Premaratne GU, Lin X, et al. Transplanted skeletal myoblasts can fully replace the infracted myocardium when they survive in the host in large numbers. Circulation. 2003;108:259–63. doi: 10.1161/01.cir.0000087430.17543.b8.
    1. Yao K, Huang RC, Ge L, Qian JY, Li YL, Xu SK, et al. Observation on the safety: clinical trial on intracoronary autologous bone marrow mononuclear cells transplantation for acute myocardial infarction. Zhong Hua Xin Xue Guan Bing Za Zhi (Chin). 2006;34:577–81.
    1. Rongchong H. Stem cell therapy for the treatment of coronary heart disease: safety evaluation. Zhong Hua Xin Xue Guan Bing Za Zhi (Chin). 2012;40:1–2.
    1. Yao K, Huang R, Sun A, Qian J, Liu X, Ge L, et al. Repeated autologous bone marrow mononuclear cell therapy in patients with large myocardial infarction. Eur J Heart Fail. 2009;11:691–8. doi: 10.1093/eurjhf/hfp062.

Source: PubMed

3
Předplatit