Effect of concomitant use of pitavastatin with neoadjuvant chemotherapy protocols in breast cancer patients: A randomized controlled clinical trial

Samar A Dewidar, Omar Hamdy, Ahmed Eltantawy, Mohamed El-Mesery, Amal M El Gayar, Moetaza M Soliman, Samar A Dewidar, Omar Hamdy, Ahmed Eltantawy, Mohamed El-Mesery, Amal M El Gayar, Moetaza M Soliman

Abstract

Introduction: Preclinical studies have demonstrated the possible anticancer effects of statins, but the synergistic effect of concomitant statin use with standard chemotherapy protocols in patients with breast cancer has not yet been investigated.

Aim: The current study aimed to evaluate the efficacy of concomitant pitavastatin use with neoadjuvant chemotherapy protocols in patients with breast cancer.

Methods: This study was a randomized controlled clinical trial. A total of 70 adult female patients with pathologically-proven invasive breast cancer were randomized to receive or not receive pitavastatin (2 mg) oral tablets once daily concomitantly with standard neoadjuvant chemotherapy protocols for 6 months. The primary outcomes of this study were changes in tumor size and changes to the Ki67 index. In addition, secondary outcomes were changes in cyclin D1 and cleaved caspase-3 serum levels. This study was registered at ClinicalTrials.gov (Identifier: NCT04705909).

Results: Patients in the pitavastatin group showed significantly higher median (IQR) reductions in tumor size [-19.8 (-41.5, 9.5)] compared to those in the control group [-5.0 (-15.5, 0.0), p = 0.0009]. The change in Ki67 from baseline to the end of therapy was similar between the two groups (p = 0.12). By the end of therapy, the cyclin D1 levels in the pitavastatin group were significantly decreased [median (IQR) change of - 10.0 (-20.2, -2.9) from baseline], whereas the control group showed an increase in cyclin D1 levels [14.8 (4.1, 56.4)]. The median (IQR) caspase-3 was elevated in the pitavastatin group 1.6 (0.2, 2.2), and decreased in the control group (-0.2 (-1.1, 0.0), p = 0.0002).Subgroup analysis of the pitavastatin group revealed that patients with positive human epidermal growth receptor 2 (HER2) had higher median (IQR) reductions in Ki67 [-35.0 (-70.0, -12.5)] than those with negative HER2 [2.5 (-15.0, 10.0), p = 0.04]. All patients who achieved a complete pathological response (n = 9) exhibited an HER2-neu positive receptor at baseline.

Conclusion: Concomitant use of pitavastatin with standard neoadjuvant chemotherapy protocols may improve neoadjuvant chemotherapy responses in patients with breast cancer.

Keywords: Caspase-3; Cyclin D1; Hormone receptor; Ki67; Statins; Synergistic action; Tumor response; Tumor size.

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

© 2022 The Author(s).

Figures

Graphical abstract
Graphical abstract
Fig. 1
Fig. 1
Flow diagram of patients screening, recruitment, and follow up. * The standard neoadjuvant chemotherapy protocol (doxorubicin hydrochloride and cyclophosphamide followed by paclitaxel).
Fig. 2
Fig. 2
Ki67 (A), tumor size (B), cyclin D1 levels (C), and caspase-3 levels (D) before and after therapy in pitavastatin and control groups. * Significant difference (p ≤ 0.05), and ns. non-significant.
Fig. 3
Fig. 3
Type of pathological response achieved in study patients according to baseline HER2 receptors (A) and the molecular tumor types (B).

References

    1. Abdullah M.I., de Wolf E., Jawad M.J., Richardson A. The poor design of clinical trials of statins in oncology may explain their failure - Lessons for drug repurposing. Cancer Treat. Rev. 2018;69:84–89. doi: 10.1016/j.ctrv.2018.06.010.
    1. Alonso D.F., Farina H.G., Skilton G., Gabri M.R., De Lorenzo M.S., Gomez D.E. Reduction of mouse mammary tumor formation and metastasis by lovastatin, an inhibitor of the mevalonate pathway of cholesterol synthesis. Breast Cancer Res. Treat. 1998;50(1):83–93. doi: 10.1023/a:1006058409974.
    1. Arnold A., Papanikolaou A. Cyclin D1 in breast cancer pathogenesis. J. Clin. Oncol. : Off. J. Am. Soc. Clin. Oncol. 2005;23:4215–4224. doi: 10.1200/jco.2005.05.064.
    1. Barbalata C.I., Tefas L.R., Achim M., Tomuta I., Porfire A.S. Statins in risk-reduction and treatment of cancer. World J. Clin. Oncol. 2020;11(8):573–588. doi: 10.5306/wjco.v11.i8.573.
    1. Bjarnadottir O., Romero Q., Bendahl P.-O., Jirström K., Rydén L., Loman N., Uhlén M., Johannesson H., Rose C., Grabau D., Borgquist S. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial. Breast Cancer Res. Treat. 2013;138(2):499–508. doi: 10.1007/s10549-013-2473-6.
    1. Catapano A.L. Pitavastatin – pharmacological profile from early phase studies. Atherosclerosis Supplements. 2010;11:3–7. doi: 10.1016/S1567-5688(10)71063-1.
    1. Chen Y.-H., Chen Y.-C., Lin C.-C., et al. Synergistic Anticancer Effects of Gemcitabine with Pitavastatin on Pancreatic Cancer Cell Line MIA PaCa-2 in vitro and in vivo. Cancer Manage. Res. 2020;12:4645–4665. doi: 10.2147/cmar.S247876.
    1. Cimino M., Gelosa P., Gianella A., Nobili E., Tremoli E., Sironi L. Statins: multiple mechanisms of action in the ischemic brain. Neuroscientist. 2007;13(3):208–213. doi: 10.1177/1073858406297121.
    1. Citron M.L., Berry D.A., Cirrincione C., Hudis C., Winer E.P., Gradishar W.J., Davidson N.E., Martino S., Livingston R., Ingle J.N., Perez E.A., Carpenter J., Hurd D., Holland J.F., Smith B.L., Sartor C.I., Leung E.H., Abrams J., Schilsky R.L., Muss H.B., Norton L. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J. Clin. Oncol. : Off. J. Am. Soc. Clin. Oncol. 2003;21(8):1431–1439. doi: 10.1200/jco.2003.09.081.
    1. Coleman M.L., Marshall C.J., Olson M.F. RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat. Rev. Mol. Cell Biol. 2004;5:355–366. doi: 10.1038/nrm1365.
    1. de Wolf E., Abdullah M.I., Jones S.M., Menezes K., Moss D.M., Drijfhout F.P., Hart S.R., Hoskins C., Stronach E.A., Richardson A. Dietary geranylgeraniol can limit the activity of pitavastatin as a potential treatment for drug-resistant ovarian cancer. Sci. Rep. 2017;7(1) doi: 10.1038/s41598-017-05595-4.
    1. , 2020. Pitavastatin Dosage. Retrieved 2, February, 2022. .
    1. Faul F., Erdfelder E., Lang A.-G., Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39(2):175–191. doi: 10.3758/bf03193146.
    1. Feldt M., Bjarnadottir O., Kimbung S., Jirström K., Bendahl P.-O., Veerla S., Grabau D., Hedenfalk I., Borgquist S. Statin-induced anti-proliferative effects via cyclin D1 and p27 in a window-of-opportunity breast cancer trial. J. Transl. Med. 2015;13(1) doi: 10.1186/s12967-015-0486-0.
    1. Garwood E.R., Kumar A.S., Baehner F.L., Moore D.H., Au A., Hylton N., Flowers C.I., Garber J., Lesnikoski B.-A., Hwang E.S., Olopade O., Port E.R., Campbell M., Esserman L.J. Fluvastatin reduces proliferation and increases apoptosis in women with high grade breast cancer. Breast Cancer Res. Treat. 2010;119(1):137–144. doi: 10.1007/s10549-009-0507-x.
    1. Goc A., Kochuparambil S.T., Al-Husein B., Al-Azayzih A., Mohammad S., Somanath P.R. Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis. BMC Cancer. 2012;12(1) doi: 10.1186/1471-2407-12-409.
    1. Goda A.E., Elsisi A.E., Sokkar S.S., et al. Enhanced in vivo targeting of estrogen receptor alpha signaling in murine mammary adenocarcinoma by nilotinib/rosuvastatin novel combination. Toxicol. Appl. Pharmacol. 2020;404:115185. doi: 10.1016/j.taap.2020.115185.
    1. Jiang P., Mukthavaram R., Chao Y., Nomura N., Bharati I.S., Fogal V., Pastorino S., Teng D., Cong X., Pingle S.C., Kapoor S., Shetty K., Aggrawal A., Vali S., Abbasi T., Chien S., Kesari S. In vitro and in vivo anticancer effects of mevalonate pathway modulation on human cancer cells. Br. J. Cancer. 2014;111(8):1562–1571. doi: 10.1038/bjc.2014.431.
    1. Klawitter J., Shokati T., Moll V., Christians U., Klawitter J. Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res. 2010;12(2) doi: 10.1186/bcr2485.
    1. Kumar, A.S., Benz, C.C., Shim, V., et al., 2008. Estrogen receptor-negative breast cancer is less likely to arise among lipophilic statin users. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 17, 1028–1033. 10.1158/1055-9965.Epi-07-0726.
    1. Kwan M.L., Habel L.A., Flick E.D., Quesenberry C.P., Caan B. Post-diagnosis statin use and breast cancer recurrence in a prospective cohort study of early stage breast cancer survivors. Breast Cancer Res. Treat. 2008;109(3):573–579. doi: 10.1007/s10549-007-9683-8.
    1. Lacerda L., Reddy J.P., Liu D., Larson R., Li L.i., Masuda H., Brewer T., Debeb B.G., Xu W., Hortobágyi G.N., Buchholz T.A., Ueno N.T., Woodward W.A. Simvastatin radiosensitizes differentiated and stem-like breast cancer cell lines and is associated with improved local control in inflammatory breast cancer patients treated with postmastectomy radiation. Stem Cells Transl Med. 2014;3(7):849–856. doi: 10.5966/sctm.2013-0204.
    1. Longo J., Hamilton R.J., Masoomian M., Khurram N., Branchard E., Mullen P.J., Elbaz M., Hersey K., Chadwick D., Ghai S., Andrews D.W., Chen E.X., van der Kwast T.H., Fleshner N.E., Penn L.Z. A pilot window-of-opportunity study of preoperative fluvastatin in localized prostate cancer. Prostate Cancer Prostatic Dis. 2020;23(4):630–637. doi: 10.1038/s41391-020-0221-7.
    1. Łukasiewicz S., Czeczelewski M., Forma A., Baj J., Sitarz R., Stanisławek A. Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers (Basel). 2021;13(17):4287. doi: 10.3390/cancers13174287.
    1. Malumbres M., Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 2005;30:630–641. doi: 10.1016/j.tibs.2005.09.005.
    1. Matthews H.K., Bertoli C., de Bruin R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022;23:74–88. doi: 10.1038/s41580-021-00404-3.
    1. Mehraj U., Mushtaq U., Mir M.A., Saleem A., Macha M.A., Lone M.N., Hamid A., Zargar M.A., Ahmad S.M., Wani N.A. Chemokines in triple-negative breast cancer heterogeneity: New challenges for clinical implications. Seminars Cancer Biol. 2022 doi: 10.1016/j.semcancer.2022.03.008.
    1. Mir M.A., Qayoom H., Mehraj U., Nisar S., Bhat B., Wani N.A. Targeting Different Pathways Using Novel Combination Therapy in Triple Negative Breast Cancer. Curr. Cancer Drug Targets. 2020;20(8):586–602. doi: 10.2174/1570163817666200518081955.
    1. Morgan D.O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 1997;13:261–291. doi: 10.1146/annurev.cellbio.13.1.261.
    1. Musgrove E.A., Lee C.S., Buckley M.F., Sutherland R.L. Cyclin D1 induction in breast cancer cells shortens G1 and is sufficient for cells arrested in G1 to complete the cell cycle. Proc. Natl. Acad. Sci. USA. 1994;91(17):8022–8026. doi: 10.1073/pnas.91.17.8022.
    1. Nagayama D., Saiki A., Shirai K. The Anti-Cancer Effect of Pitavastatin May Be a Drug-Specific Effect: Subgroup Analysis of the TOHO-LIP Study. Vasc Health Risk Manag. 2021;17:169–173. doi: 10.2147/VHRM.S306540.
    1. National Comprehensive Cancer Network, 2022. Breast Cancer (version 4.2022) NCCN guidelines. Accessed 14 April 2022.
    1. Nielsen T.O., Leung S.C.Y., Rimm D.L., Dodson A., Acs B., Badve S., Denkert C., Ellis M.J., Fineberg S., Flowers M., Kreipe H.H., Laenkholm A.-V., Pan H., Penault-Llorca F.M., Polley M.-Y., Salgado R., Smith I.E., Sugie T., Bartlett J.M.S., McShane L.M., Dowsett M., Hayes D.F. Assessment of Ki67 in Breast Cancer: Updated Recommendations From the International Ki67 in Breast Cancer Working Group. J. Natl Cancer Inst. 2021;113(7):808–819. doi: 10.1093/jnci/djaa201.
    1. Niraula S., Dowling R.J.O., Ennis M., Chang M.C., Done S.J., Hood N., Escallon J., Leong W.L., McCready D.R., Reedijk M., Stambolic V., Goodwin P.J. Metformin in early breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res. Treat. 2012;135(3):821–830. doi: 10.1007/s10549-012-2223-1.
    1. Nowakowska M.K., Lei X., Thompson M.T., Shaitelman S.F., Wehner M.R., Woodward W.A., Giordano S.H., Nead K.T. Association of statin use with clinical outcomes in patients with triple-negative breast cancer. Cancer. 2021;127(22):4142–4150. doi: 10.1002/cncr.33797.
    1. Otahal A., Aydemir D., Tomasich E., et al. Delineation of cell death mechanisms induced by synergistic effects of statins and erlotinib in non-small cell lung cancer cell (NSCLC) lines. Sci. Rep. 2020;10:959. doi: 10.1038/s41598-020-57707-2.
    1. Park I.H., Kim J.Y., Jung J.I., Han J.-Y. Lovastatin overcomes gefitinib resistance in human non-small cell lung cancer cells with K-Ras mutations. Invest. New Drugs. 2010;28(6):791–799. doi: 10.1007/s10637-009-9319-4.
    1. Qi X.-F., Zheng L., Lee K.-J., Kim D.-H., Kim C.-S., Cai D.-Q., Wu Z., Qin J.-W., Yu Y.-H., Kim S.-K. HMG-CoA reductase inhibitors induce apoptosis of lymphoma cells by promoting ROS generation and regulating Akt, Erk and p38 signals via suppression of mevalonate pathway. Cell Death Dis. 2013;4(2):e518–e. doi: 10.1038/cddis.2013.44.
    1. Rickham P.P. Human experimentation. Code of Ethics of the World Medical Association (Declaration of Helsinki) Br. Med. J. 1964;2:177. doi: 10.1136/bmj.2.5402.177.
    1. Sparano J.A., Wang M., Martino S., Jones V., Perez E.A., Saphner T., Wolff A.C., Sledge G.W., Wood W.C., Davidson N.E. Weekly paclitaxel in the adjuvant treatment of breast cancer. New Engl. J. Med. 2008;358(16):1663–1671. doi: 10.1056/NEJMoa0707056.
    1. Stryjkowska-Góra A., Karczmarek-Borowska B., Góra T., Krawczak K. Statins and cancers. Contemp Oncol (Pozn). 2015;3:167–175. doi: 10.5114/wo.2014.44294.
    1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660.
    1. Tilija Pun N., Jeong C.-H. Statin as a Potential Chemotherapeutic Agent: Current Updates as a Monotherapy, Combination Therapy, and Treatment for Anti-Cancer Drug Resistance. Pharmaceuticals (Basel). 2021;14(5):470. doi: 10.3390/ph14050470.
    1. Tsubaki M., Takeda T., Obata N., Kawashima K., Tabata M., Imano M., Satou T., Nishida S. Combination therapy with dacarbazine and statins improved the survival rate in mice with metastatic melanoma. J. Cell. Physiol. 2019;234(10):17975–17989. doi: 10.1002/jcp.28430.
    1. Undela K., Srikanth V., Bansal D. Statin use and risk of breast cancer: a meta-analysis of observational studies. Breast Cancer Res. Treat. 2012;135:261–269. doi: 10.1007/s10549-012-2154-x.
    1. Van Wyhe R.D., Rahal O.M., Woodward W.A. Effect of statins on breast cancer recurrence and mortality: a review. Breast Cancer (Dove Med Press). 2017;9:559–565. doi: 10.2147/BCTT.S148080.
    1. Wu Q.-J., Tu C., Li Y.-Y., Zhu J., Qian K.-Q., Li W.-J., Wu L. Statin use and breast cancer survival and risk: a systematic review and meta-analysis. Oncotarget. 2015;6(40):42988–43004. doi: 10.18632/oncotarget.5557.
    1. Yang T., Yao H., He G., Song L., Liu N., Wang Y., Yang Y., Keller E.T., Deng X. Effects of Lovastatin on MDA-MB-231 Breast Cancer Cells: An Antibody Microarray Analysis. J. Cancer. 2016;7(2):192–199. doi: 10.7150/jca.13414.
    1. Zhang F.L., Casey P.J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 1996;65:241–269. doi: 10.1146/annurev.bi.65.070196.001325.
    1. Zhou Q., Liao J.K. Pleiotropic effects of statins. - Basic research and clinical perspectives. Circ. J. 2010;74:818–826. doi: 10.1253/circj.cj-10-0110.

Source: PubMed

3
Předplatit