Acute kidney injury associated with COVID-19: A retrospective cohort study

Nitin V Kolhe, Richard J Fluck, Nicholas M Selby, Maarten W Taal, Nitin V Kolhe, Richard J Fluck, Nicholas M Selby, Maarten W Taal

Abstract

Background: Initial reports indicate a high incidence of acute kidney injury (AKI) in Coronavirus Disease 2019 (COVID-19), but more data are required to clarify if COVID-19 is an independent risk factor for AKI and how COVID-19-associated AKI may differ from AKI due to other causes. We therefore sought to study the relationship between COVID-19, AKI, and outcomes in a retrospective cohort of patients admitted to 2 acute hospitals in Derby, United Kingdom.

Methods and findings: We extracted electronic data from 4,759 hospitalised patients who were tested for COVID-19 between 5 March 2020 and 12 May 2020. The data were linked to electronic patient records and laboratory information management systems. The primary outcome was AKI, and secondary outcomes included in-hospital mortality, need for ventilatory support, intensive care unit (ICU) admission, and length of stay. As compared to the COVID-19-negative group (n = 3,374), COVID-19 patients (n = 1,161) were older (72.1 ± 16.1 versus 65.3 ± 20.4 years, p < 0.001), had a greater proportion of men (56.6% versus 44.9%, p < 0.001), greater proportion of Asian ethnicity (8.3% versus 4.0%, p < 0.001), and lower proportion of white ethnicity (75.5% versus 82.5%, p < 0.001). AKI developed in 304 (26.2%) COVID-19-positive patients (COVID-19 AKI) and 420 (12.4%) COVID-19-negative patients (AKI controls). COVID-19 patients aged 65 to 84 years (odds ratio [OR] 1.67, 95% confidence interval [CI] 1.11 to 2.50), needing mechanical ventilation (OR 8.74, 95% CI 5.27 to 14.77), having congestive cardiac failure (OR 1.72, 95% CI 1.18 to 2.50), chronic liver disease (OR 3.43, 95% CI 1.17 to 10.00), and chronic kidney disease (CKD) (OR 2.81, 95% CI 1.97 to 4.01) had higher odds for developing AKI. Mortality was higher in COVID-19 AKI versus COVID-19 patients without AKI (60.5% versus 27.4%, p < 0.001), and AKI was an independent predictor of mortality (OR 3.27, 95% CI 2.39 to 4.48). Compared with AKI controls, COVID-19 AKI was observed in a higher proportion of men (58.9% versus 51%, p = 0.04) and lower proportion with white ethnicity (74.7% versus 86.9%, p = 0.003); was more frequently associated with cerebrovascular disease (11.8% versus 6.0%, p = 0.006), chronic lung disease (28.0% versus 19.3%, p = 0.007), diabetes (24.7% versus 17.9%, p = 0.03), and CKD (34.2% versus 20.0%, p < 0.001); and was more likely to be hospital acquired (61.2% versus 46.4%, p < 0.001). Mortality was higher in the COVID-19 AKI as compared to the control AKI group (60.5% versus 27.6%, p < 0.001). In multivariable analysis, AKI patients aged 65 to 84 years, (OR 3.08, 95% CI 1.77 to 5.35) and ≥85 years of age (OR 3.54, 95% CI 1.87 to 6.70), peak AKI stage 2 (OR 1.74, 95% CI 1.05 to 2.90), AKI stage 3 (OR 2.01, 95% CI 1.13 to 3.57), and COVID-19 (OR 3.80, 95% CI 2.62 to 5.51) had higher odds of death. Limitations of the study include retrospective design, lack of urinalysis data, and low ethnic diversity of the region.

Conclusions: We observed a high incidence of AKI in patients with COVID-19 that was associated with a 3-fold higher odds of death than COVID-19 without AKI and a 4-fold higher odds of death than AKI due to other causes. These data indicate that patients with COVID-19 should be monitored for the development of AKI and measures taken to prevent this.

Trial registration: ClinicalTrials.gov NCT04407156.

Conflict of interest statement

I have read the journal's policy and the authors of this manuscript have the following competing interests: MWT is a member of the Editorial Board of PLOS Medicine NVK, RJF & NMS have declared that no competing interests exist.

Figures

Fig 1. Study flowchart showing the number…
Fig 1. Study flowchart showing the number of participants involved at each stage of the study.
AKI, acute kidney injury; COVID-19, Coronavirus Disease 2019.

References

    1. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. Epub 2020 Feb 29. 10.1056/NEJMoa2002032
    1. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. Epub 2020 Feb 3. 10.1016/S0140-6736(20)30211-7
    1. Chu KH, Tsang WK, Tang CS, Lam MF, Lai FM, To KF, et al. Acute renal impairment in coronavirus-associated severe acute respiratory syndrome. Kidney Int. 2005;67(2):698–705. Epub 2005 Jan 28. 10.1111/j.1523-1755.2005.67130.x
    1. Fisher M, Prudhvi K, Brogan M, Golestaneh L. Providing care to patients with acute kidney injury and COVID-19 infection: experience of front line nephrologists in New York. Kidney360. 2020. 10.34067/kid.0002002020
    1. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–838. Epub 2020 Apr 6. 10.1016/j.kint.2020.03.005
    1. Mohamed MM, Lukitsch I, Torres-Ortiz AE, Walker JB, Varghese V, Hernandez-Arroyo CF, et al. Acute kidney injury associated with Coronavirus Disease 2019 in urban New Orleans. Kidney360. 2020. 10.34067/kid.0002652020
    1. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020. Epub 2020 Feb 8. 10.1001/jama.2020.1585
    1. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091 Epub 2020 Mar 29. 10.1136/bmj.m1091
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. Epub 2020 Mar 15. 10.1016/S0140-6736(20)30566-3 .
    1. Kissling S, Rotman S, Gerber C, Halfon M, Lamoth F, Comte D, et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int. 2020. 10.1016/j.kint.2020.04.006
    1. Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020. Epub 2020 Apr 25. 10.1016/j.kint.2020.04.003
    1. England NHS. 2015 [cited 2020 May 22]. Available from: .
    1. KDIGO. 2012 [cited 2020 Jul 16]. Available from: .
    1. Selby NM, Hill R, Fluck RJ, NHS England 'Think Kidneys' AKI Programme. Standardizing the early identification of acute kidney injury: The NHS England National Patient Safety Alert. Nephron. 2015;131(2):113–117. Epub 2015 Sep 10. 10.1159/000439146 .
    1. Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, et al. Acute kidney injury in patients hospitalized with Covid-19. Kidney Int. 2020. Epub 2020 May 18. 10.1016/j.kint.2020.05.006 .
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. Epub 2020 Jan 28. 10.1016/S0140-6736(20)30183-5
    1. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020. Epub 2020 Apr 23. 10.1001/jama.2020.6775
    1. ICNARC. 2020 [cited 2020 Jul 18]. Available from: .
    1. Williamson E, Walker AJ, Bhaskaran KJ, Bacon S, Bates C, Morton CE, et al. OpenSAFELY: factors associated with COVID-19-related hospital death in the linked electronic health records of 17 million adult NHS patients. medRxiv. 10.1101/2020.05.06.20092999
    1. Docherty AB, Harrison EM, Green CA, Hardwick HE, Pius R, Norman L, et al. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ. 2020;369:m1985 Epub 2020 May 24. 10.1136/bmj.m1985 .
    1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. Epub 2020 Feb 3. 10.1016/S0140-6736(20)30251-8
    1. Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with Covid-19. N Engl J Med. 2020;382(17):1653–1659. Epub 2020 Apr 1. 10.1056/NEJMsr2005760
    1. Pei G, Zhang Z, Peng J, Liu L, Zhang C, Yu C, et al. Renal involvement and early prognosis in patients with COVID-19 pneumonia. J Am Soc Nephrol. 2020. Epub 2020 Apr 30. 10.1681/ASN.2020030276 .
    1. Pacciarini F, Ghezzi S, Canducci F, Sims A, Sampaolo M, Ferioli E, et al. Persistent replication of severe acute respiratory syndrome coronavirus in human tubular kidney cells selects for adaptive mutations in the membrane protein. J Virol. 2008;82(11):5137–5144. Epub 2008 Mar 28. 10.1128/JVI.00096-08
    1. NICE. 2020 [cited 2020 Jun 3]. Available from: .

Source: PubMed

3
Předplatit