In-line filtration minimizes organ dysfunction: new aspects from a prospective, randomized, controlled trial

Martin Boehne, Thomas Jack, Harald Köditz, Kathrin Seidemann, Florian Schmidt, Michaela Abura, Harald Bertram, Michael Sasse, Martin Boehne, Thomas Jack, Harald Köditz, Kathrin Seidemann, Florian Schmidt, Michaela Abura, Harald Bertram, Michael Sasse

Abstract

Background: Infused particles induce thrombogenesis, impair microcirculation and modulate immune response. We have previously shown in critically ill children, that particle-retentive in-line filtration reduced the overall complication rate of severe events, length of stay and duration of mechanical ventilation. We now evaluated the influence of in-line filtration on different organ function and thereby elucidated the potential underlying pathophysiological effects of particle infusion.

Methods: In this single-centre, prospective, randomized controlled trial 807 critically ill children were assigned to either control (n = 406) or filter group (n = 401), the latter receiving in-line filtration for complete infusion therapy. Both groups were compared regarding the differences of incidence rates and its 95% confidence interval (CI) of different organ dysfunction as defined by the International Pediatric Sepsis Consensus Conference 2005.

Results: The incidence rates of respiratory (-5.06%; 95% CI, -9.52 to -0.59%), renal (-3.87%; 95% CI, -7.58 to -0.15%) and hematologic (-3.89%; 95% CI, -7.26 to -0.51%) dysfunction were decreased in the filter group. No difference was demonstrated for the occurrence rates of cardiovascular, hepatic, or neurologic dysfunction between both groups.

Conclusions: In-line filtration has beneficial effects on the preservation of hematologic, renal and respiratory function in critically ill patients. The presented clinical data further support our hypothesis regarding potential harmful effects of particles. In critically ill patients infused particles may lead to further deterioration of the microcirculation, induce a systemic hypercoagulability and inflammation with consecutive negative effects on organ function.

Trial registration: ClinicalTrials.gov number; NCT00209768.

Figures

Figure 1
Figure 1
Incidence of organ dysfunction in control (blue columns) and filter group (grey columns) (A) and corresponding differences in incidence rates with 95% confidence intervals (B). Respiratory, renal and hematologic dysfunction were significantly reduced in the filter group (Panel A). Filled rhombi: differences in incidence rates; horizontal lines: 95% confidence intervals. (Panel B).

References

    1. Hellinger A, Piotrowski J, Konerding MA, Burchard WG, Doetsch N, Peitgen K. et al.Impact of particulate contamination in crystalloid cardioplegic solutions: studies by scanning and transmission electron microscopy. Thorac Cardiovasc Surg. 1997;45:20–26. doi: 10.1055/s-2007-1013678.
    1. Oie S, Kamiya A. Particulate and microbial contamination in in-use admixed parenteral nutrition solutions. Biol Pharm Bull. 2005;28:2268–2270. doi: 10.1248/bpb.28.2268.
    1. Yorioka K, Oie S, Oomaki M, Imamura A, Kamiya A. Particulate and microbial contamination in in-use admixed intravenous infusions. Biol Pharm Bull. 2006;29:2321–2323. doi: 10.1248/bpb.29.2321.
    1. Schroder F. Compatibility problems in intensive care medicine. Infusionsther Transfusionsmed. 1994;21:52–58.
    1. Jack T, Brent BE, Boehne M, Muller M, Sewald K, Braun A. et al.Analysis of particulate contaminations of infusion solutions in a pediatric intensive care unit. Intensive Care Med. 2010;36:707–711. doi: 10.1007/s00134-010-1775-y.
    1. Lehr HA, Brunner J, Rangoonwala R, Kirkpatrick CJ. Particulate matter contamination of intravenous antibiotics aggravates loss of functional capillary density in postischemic striated muscle. Am J Respir Crit Care Med. 2002;165:514–520.
    1. Walpot H, Franke RP, Burchard WG, Agternkamp C, Muller FG, Mittermayer C. et al.Particulate contamination of infusion solutions and drug additives in the framework of long-term intensive therapy. 2. An animal model. Anaesthesist. 1989;38:617–621.
    1. Puntis JW, Wilkins KM, Ball PA, Rushton DI, Booth IW. Hazards of parenteral treatment: do particles count? Arch Dis Child. 1992;67:1475–1477. doi: 10.1136/adc.67.12.1475.
    1. Ball PA. Intravenous in-line filters: filtering the evidence. Curr Opin Clin Nutr Metab Care. 2003;6:319–325.
    1. Schaefer SC, Bison PA, Rangoonwala R, Kirkpatrick CJ, Lehr HA. 0.2 μm in-line filters prevent capillary obstruction by particulate contaminants of generic antiobiotic preparations in postischemic muscle. Chemother J. 2008;17:172–178.
    1. Bethune K, Allwood M, Grainger C, Wormleighton C. Use of filters during the preparation and administration of parenteral nutrition: position paper and guidelines prepared by a British pharmaceutical nutrition group working party. Nutrition. 2001;17:403–408. doi: 10.1016/S0899-9007(01)00536-6.
    1. Bruning EJ. Pathogenesis and significance of intra-arterial foreign body embolisms of the lung in children. Virchows Arch. 1955;327:460–479. doi: 10.1007/BF00955940.
    1. Garvan JM, Gunner BW. The harmful effects of particles in intravenous fluids. Med J Aust. 1964;2:1–6.
    1. van Lingen RA, Baerts W, Marquering AC, Ruijs GJ. The use of in-line intravenous filters in sick newborn infants. Acta Paediatr. 2004;93:658–662. doi: 10.1111/j.1651-2227.2004.tb02993.x.
    1. Jack T, Boehne M, Brent BE, Hoy L, Koditz H, Wessel A. et -line filtration reduces severe complications and length of stay on pediatric intensive care unit: a prospective, randomized, controlled trial. Intensive Care Med. 2012;38:1008–1016. doi: 10.1007/s00134-012-2539-7.
    1. Goldstein B, Giroir B, Randolph A. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6:2–8. doi: 10.1097/01.PCC.0000149131.72248.E6.
    1. Kommission für Krankenhaushygiene und Infektionsprävention beim Robert Koch-Institut. Prävention Gefäßkatheter-assoziierter Infektionen. Bundesgesundheitsbl-Gesundheitsforsch-Gesundheitsschutz. 2002;45:907–924. doi: 10.1007/s00103-002-0499-8.
    1. Slater A, Shann F, Pearson G. PIM2: a revised version of the Paediatric Index of Mortality. Intensive Care Med. 2003;29:278–285.
    1. Walpot H, Franke RP, Burchard WG, Agternkamp C, Muller FG, Mittermayer C. et al.Particulate contamination of infusion solutions and drug additives within the scope of long-term intensive therapy. 1. Energy dispersion electron images in the scanning electron microscope-REM/EDX. Anaesthesist. 1989;38:544–548.
    1. Dewan PA, Ehall H, Edwards GA, Middleton DJ, Terlet J. Plastic particle migration during intravenous infusion assisted by a peristaltic finger pump in an animal model. Pediatr Surg Int. 2002;18:310–314. doi: 10.1007/s00383-002-0810-7.
    1. Pifarre P, Roca I, Irastorza I, Simo M, Hill S, Biassoni L. et al.Lung ventilation-perfusion scintigraphy in children on long-term parenteral nutrition. Eur J Nucl Med Mol Imaging. 2009;36:1005–1008. doi: 10.1007/s00259-008-1056-y.
    1. Elder A, Oberdorster G. Translocation and effects of ultrafine particles outside of the lung. Clin Occup Environ Med. 2006;5:785–796.
    1. Furuyama A, Kanno S, Kobayashi T, Hirano S. Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch Toxicol. 2009;83:429–437. doi: 10.1007/s00204-008-0371-1.
    1. Nurkiewicz TR, Porter DW, Barger M, Millecchia L, Rao KM, Marvar PJ. et al.Systemic microvascular dysfunction and inflammation after pulmonary particulate matter exposure. Environ Health Perspect. 2006;114:412–419. doi: 10.1289/ehp.114-a412.
    1. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29:1912–1919. doi: 10.1016/j.biomaterials.2007.12.037.
    1. Ince C. The microcirculation is the motor of sepsis. Crit Care. 2005;9(Suppl 4):S13–S19. doi: 10.1186/cc3753.
    1. Joannidis M, Druml W, Forni LG, Groeneveld AB, Honore P, Oudemans-van Straaten HM. et al.Prevention of acute kidney injury and protection of renal function in the intensive care unit. Expert opinion of the Working Group for Nephrology, ESICM. Intensive Care Med. 2010;36:392–411. doi: 10.1007/s00134-009-1678-y.
    1. Bougle A, Duranteau J. Pathophysiology of sepsis-induced acute kidney injury: the role of global renal blood flow and renal vascular resistance. Contrib Nephrol. 2011;174:89–97.
    1. Vanderschueren S, De WA, Malbrain M, Vankersschaever D, Frans E, Wilmer A. et al.Thrombocytopenia and prognosis in intensive care. Crit Care Med. 2000;28:1871–1876. doi: 10.1097/00003246-200006000-00031.
    1. Levi M, van der Poll T, Schultz M. Systemic versus localized coagulation activation contributing to organ failure in critically ill patients. Semin Immunopathol. 2012;34:167–179. doi: 10.1007/s00281-011-0283-7.
    1. Budinger GR, McKell JL, Urich D, Foiles N, Weiss I, Chiarella SE. et al.Particulate matter-induced lung inflammation increases systemic levels of PAI-1 and activates coagulation through distinct mechanisms. PLoS One. 2011;6:e18525. doi: 10.1371/journal.pone.0018525.
    1. Kilinc E, Schulz H, Kuiper GJ, Spronk HM, Ten CH, Upadhyay S. et al.The procoagulant effects of fine particulate matter in vivo. Part Fibre Toxicol. 2011;8:12. doi: 10.1186/1743-8977-8-12.
    1. Levi M, Keller TT, van Gorp E, Ten CH. Infection and inflammation and the coagulation system. Cardiovasc Res. 2003;60:26–39. doi: 10.1016/S0008-6363(02)00857-X.

Source: PubMed

3
Předplatit