Effect of the S-nitrosoglutathione reductase inhibitor N6022 on bronchial hyperreactivity in asthma

Loretta G Que, Zhonghui Yang, Njira L Lugogo, Rohit K Katial, Steven A Shoemaker, Janice M Troha, David M Rodman, Robert M Tighe, Monica Kraft, Loretta G Que, Zhonghui Yang, Njira L Lugogo, Rohit K Katial, Steven A Shoemaker, Janice M Troha, David M Rodman, Robert M Tighe, Monica Kraft

Abstract

Rationale: Patients with asthma demonstrate depletion of the endogenous bronchodilator GSNO and upregulation of GSNOR.

Objectives: An exploratory proof of concept clinical study of N6022 in mild asthma to determine the potential bronchoprotective effects of GSNOR inhibition. Mechanistic studies aimed to provide translational evidence of effect.

Methods: Fourteen mild asthma patients were treated with intravenous N6022 (5 mg) or placebo and observed for 7 days, with repeated assessments of the provocative dose of methacholine causing a 20% fall in FEV1 (methacholine PC20 FEV1), followed by a washout period and crossover treatment and observation. In vitro studies in isolated eosinophils investigated the effect of GSNO and N6022 on apoptosis.

Measurements and main results: This was a negative trial as it failed to reach its primary endpoint, which was change from baseline in methacholine PC20 FEV1 at 24 h. However, our exploratory analysis demonstrated significantly more two dose-doubling increases in PC20 FEV1 for N6022 compared with placebo (21% vs 6%, P < 0.05) over the 7-day observation period. Furthermore, a significant treatment effect was observed in the change in PC20 FEV1 from baseline averaged over the 7-day observation period (mean change: +0.82 mg/ml [N6022] from 1.34 mg/ml [baseline] vs -0.18 mg/ml [placebo] from 1.16 mg/ml [baseline], P = 0.023). N6022 was well tolerated in mild asthmatics. In vitro studies demonstrated enhanced eosinophilic apoptosis with N6022.

Conclusions: In this early phase exploratory proof of concept trial in asthma, N6022 did not significantly alter methacholine PC20 FEV1 at 24 h, but did have a treatment effect at 7 days compared to baseline. Further investigation of the efficacy of S-nitrosoglutathione reductase inhibition in a patient population with eosinophilic asthma is warranted.

Trial registration: ClinicalTrials.gov NCT01316315.

Keywords: N6022; S-nitrosoglutathione; S-nitrosoglutathione reductase; mild asthma.

© 2018 The Authors. Immunity, Inflammation and Disease Published by John Wiley & Sons Ltd.

Figures

Figure 1
Figure 1
Study design and patient disposition.
Figure 2
Figure 2
Mean change from baseline in MCh PC20 FEV1 increased over the N6022 post‐treatment observation period compared with the placebo observation period. FEV1, forced expiratory volume in 1 sec; MCh PC20 FEV1, the provocative concentration of methacholine causing a 20% fall in FEV1; SEM, standard error of the mean.
Figure 3
Figure 3
The change from baseline at 24 h in log2‐transformed MCh PC20 FEV1 after N6022 and after placebo for each patient is shown (with the exception of one patient who did not receive placebo). An MCh PC20 FEV1 change of one in log2‐transformed data represents a dose doubling. At 24 h, 5 of 14 patients (36%) had a dose doubling after N6022 and 2 of 13 patients (15%) had a dose doubling after placebo. MCh PC20 FEV1, the provocative concentration of methacholine causing a 20% fall in FEV1.
Figure 4
Figure 4
Percentage of total observations (at 8, 24, and 48 h and Day 7 combined) showing a two dose‐doubling increase in MCh PC20 FEV1 compared with baseline. During the 7‐day post‐treatment observation period, N6022 produced a significant increase in the percentage of observations of two dose‐doubling increases in MCh PC20 FEV1 compared with placebo. FEV1, forced expiratory volume in 1 sec; MCh PC20 FEV1, the provocative concentration of methacholine causing a 20% fall in FEV1.
Figure 5
Figure 5
Investigation of baseline ECP levels and response. (A) Distribution of change from baseline at 24 h in log2‐transformed MCh PC20 FEV1 versus baseline ECP concentration. Each subject's response to N6022 (closed circle) and placebo (open circle) is provided per specific ECP level. For example, the patient with the lowest ECP level of 5 ng/ml (left side of figure) had a log2‐tranformed placebo change from baseline of 0.59 and an N6022 change from baseline of 0.02. The N6022 change from baseline of 2.12 marked with an asterix (*) is the patient with a baseline ECP of 35 ng/ml who withdrew from the study before placebo treatment. Individual patient responses with the same baseline ECP levels to 8 and 10 ng/ml are marked with brackets. An MCh PC20 FEV1 change of one in log2‐transformed data represents a dose doubling. (B) ECP Levels at baseline in responders vs non‐responders in the N6022 treatment period. Responders in this analysis were defined as those patients with a dose‐doubling increase in the MCh PC20 FEV1 compared with baseline at 24 h post‐treatment. ECP, eosinophilic cationic protein; FEV1, forced expiratory volume in 1 sec; MCh PC20 FEV1, the provocative concentration of methacholine causing a 20% fall in FEV1.
Figure 6
Figure 6
Increased eosinophil apoptosis observed in response to N6022 treatment. Flow cytometry analysis of eosinophil 7‐AAD to assess apoptosis in serum eosinophils extracted from IL‐5–transgenic mice. (A) The population with lower forward‐scattered light (FSC) was consistent with apoptotic eosinophils (P1) and the FSC‐high population was consistent with viable eosinophils (P2). (B) N6022 exhibited a dose‐dependent effect on the percentage of 7‐AAD‐positive cells. (C) Western blot analysis of cleaved caspase‐3 to determine apoptosis of serum eosinophils after treatment with N6022 or DMSO vehicle. β‐actin is shown as a loading control. (D) Densitometry performed on the western blot of the control and DMSO‐treated eosinophils vs N6022‐treated eosinophils. Caspase‐3 protein levels were normalized to actin and expressed as arbitrary densitometry units. * P <0.005. 7‐AAD, 7‐amino‐actinomycin D; DMSO, dimethyl sulfoxide; FSC, forward scatter; GSNO, S‐nitrosoglutathione; P, population; SSC, side scatter.

References

    1. National Asthma, E. and P. Prevention. 2007. Expert panel report 3 (EPR‐3): guidelines for the diagnosis and management of asthma‐summary report. J. Allergy Clin. Immunol. 120(5 Suppl):S94–138.
    1. Dweik, R. A. , Sorkness R. L., Wenzel S., Hammel J., Curran‐Everett D., Comhair S. A., Bleecker E., Busse W., Calhoun W. J., Castro M., et al. 2010. Use of exhaled nitric oxide measurement to identify a reactive, at‐risk phenotype among patients with asthma.. Am. J. Respir. Crit. Care Med. 181(10):1033–1041. PMC2874447.
    1. Robinson, D. , Humbert M., Buhl R., Cruz A. A., Inoue H., Korom S., Hanania N. A., and Nair P.. 2017. Revisiting Type 2‐high and Type 2‐low airway inflammation in asthma: current knowledge and therapeutic implications. Clin. Exp. Allergy 47(2):161–175.
    1. Broniowska, K. A. , Diers A. R., and Hogg N.. 2013. S‐nitrosoglutathione. Biochim. Biophys. Acta. 1830(5):3173–3181. PMC3679660.
    1. Que, L. G. , Liu L., Yan Y., Whitehead G. S., Gavett S. H., Schwartz D. A., and Stamler J. S.. 2005. Protection from experimental asthma by an endogenous bronchodilator. Science 308(5728):1618–1621. PMC2128762.
    1. Whalen, E. J. , Johnson A. K., and Lewis S. J.. 2000. Beta‐adrenoceptor dysfunction after inhibition of NO synthesis. Hypertension 36(3):376–382.
    1. Fortenberry, J. D. , Owens M. L., Chen N. X., and Brown L. A.. 2001. S‐nitrosoglutathione inhibits TNF‐alpha‐induced NFkappaB activation in neutrophils. Inflamm. Res. 50(2):89–95.
    1. Ricciardolo, F. L. , Sterk P. J., Gaston B., and Folkerts G.. 2004. Nitric oxide in health and disease of the respiratory system. Physiol. Rev. 84(3):731–765.
    1. Gaston, B. , Sears S., Woods J., Hunt J., Ponaman M., McMahon T., and Stamler J. S.. 1998. Bronchodilator S‐nitrosothiol deficiency in asthmatic respiratory failure. Lancet 351(9112):1317–1319.
    1. Gaston, B. , Singel D., Doctor A., and Stamler J. S.. 2006. S‐nitrosothiol signaling in respiratory biology. Am. J. Respir. Crit. Care. Med. 173(11):1186–1193. PMC2662966.
    1. Que, L. G. , Yang Z., Stamler J. S., Lugogo N. L., and Kraft M.. 2009. S‐nitrosoglutathione reductase: an important regulator in human asthma. Am. J. Respir. Crit. Care Med. 180(3):226–231. PMC2724715.
    1. Choudhry, S. , Que L. G., Yang Z., Liu L., Eng C., Kim S. O., Kumar G., Thyne S., Chapela R., Rodriguez‐Santana J. R., et al. 2010. GSNO reductase and beta2‐adrenergic receptor gene‐gene interaction: bronchodilator responsiveness to albuterol. Pharmacogenet. Genomics 20(6):351–358. PMC2883564.
    1. Wu, H. , Romieu I., Sienra‐Monge J. J., Estela Del Rio‐Navarro B., Anderson D. M., Jenchura C. A., Li H., Ramirez‐Aguilar M., Del Carmen Lara‐Sanchez I., and London S. J.. 2007. Genetic variation in S‐nitrosoglutathione reductase (GSNOR) and childhood asthma. J. Allergy Clin. Immunol. 120(2):322–328. PMC2094003.
    1. Moore, P. E. , Ryckman K. K., Williams S. M., Patel N., Summar M. L., and Sheller J. R.. 2009. Genetic variants of GSNOR and ADRB2 influence response to albuterol in African‐American children with severe asthma. Pediatr. Pulmonol. 44(7):649–654.
    1. Ferrini, M. E. , Simons B. J., Bassett D. J., Bradley M. O., Roberts K., and Jaffar Z.. 2013. S‐nitrosoglutathione reductase inhibition regulates allergen‐induced lung inflammation and airway hyperreactivity. PLoS ONE 8(7):e70351. PMC3723687.
    1. Green, L. S. , Chun L. E., Patton A. K., Sun X., Rosenthal G. J., and Richards J. P.. 2012. Mechanism of inhibition for N6022, a first‐in‐class drug targeting S‐nitrosoglutathione reductase. Biochemistry 51(10):2157–2168.
    1. Blonder, J. P. , Mutka S. C., Sun X., Qiu J., Green L. H., Mehra N. K., Boyanapalli R., Suniga M., Look K., Delany C., et al. 2014. Pharmacologic inhibition of S‐nitrosoglutathione reductase protects against experimental asthma in BALB/c mice through attenuation of both bronchoconstriction and inflammation. BMC Pulm. Med. 14:3. PM C3893392.
    1. de Groot, J. C. , Ten Brinke A., and Bel E. H.. 2015. Management of the patient with eosinophilic asthma: a new era begins. ERJ Open Res. 1(1): PMC5005141.
    1. Nivalis. 2013. Data on file. Denver, Colorado: Nivalis Therapeutics.
    1. Beckett, W. S. , Marenberg M. E., and Pace P. E.. 1992. Repeated methacholine challenge produces tolerance in normal but not in asthmatic subjects. Chest 102(3):775–779.
    1. Marozkina, N. V. , Wang X. Q., Stsiapura V., Fitzpatrick A., Carraro S., Hawkins G. A., Bleecker E., Meyers D., Jarjour N., Fain S. B., et al. 2015. Phenotype of asthmatics with increased airway S‐nitrosoglutathione reductase activity. Eur. Respir. J. 45(1):87–97. PMC4283933.
    1. Topic, R. Z. , and Dodig S.. 2011. Eosinophil cationic protein‐current concepts and controversies. Biochem. Med. (Zagreb) 21(2):111–121.
    1. Mogensen, I. , Alving K., Bjerg A., Borres M. P., Hedlin G., Sommar J., Dahlen S. E., Janson C., and Malinovschi A.. 2016. Simultaneously elevated exhaled nitric oxide and serum‐eosinophil cationic protein relate to recent asthma events in asthmatics in a cross‐sectional population‐based study. Clin. Exp. Allergy 46(12):1540–1548.
    1. Jatakanon, A. , Lim S., Kharitonov S. A., Chung K. F., and Barnes P. J.. 1998. Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax 53(2):91–95. PMC1758706.
    1. Tomasiak‐Lozowska, M. M. , Zietkowski Z., Przeslaw K., Tomasiak M., Skiepko R., and Bodzenta‐Lukaszyk A.. 2012. Inflammatory markers and acid‐base equilibrium in exhaled breath condensate of stable and unstable asthma patients. Int. Arch. Allergy Immunol. 159(2):121–129.
    1. Dweik, R. A. , Boggs P. B., Erzurum S. C., Irvin C. G., Leigh M. W., Lundberg J. O., Olin A. C., Plummer A. L., Taylor D. R., and A. American Thoracic Society Committee on Interpretation of Exhaled Nitric Oxide Levels for Clinical 2011. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications.. Am. J. Respir. Crit. Care Med. 184(5):602–615. PMC4408724.
    1. Fajt, M. L. , and Wenzel S. E.. 2017. Development of new therapies for severe asthma. Allergy Asthma Immunol. Res. 9(1):3–14. PMC5102833.
    1. Que, L. G. , Lugogo N., Katial R., Shoemaker S., and Troha J.. 2015. A novel therapeutic target in asthma: translational evidence for inhibition of S‐nitrosoglutathione reductase (GSNOR). Am. J. Resp. Critical Care Med. 191: A5167
    1. Abu‐Ghazaleh, R. I. , Dunnette S. L., Loegering D. A., Checkel J. L., Kita H., Thomas L. L., and Gleich G. J.. 1992. Eosinophil granule proteins in peripheral blood granulocytes. J. Leukoc. Biol. 52(6):611–618.
    1. Koh, G. C. , Shek L. P., Goh D. Y., Van Bever H., and Koh D. S.. 2007. Eosinophil cationic protein: is it useful in asthma? A Systematic Review. Respir. Med. 101(4):696–705.
    1. Navarro, S. , Aleu J., Jimenez M., Boix E., Cuchillo C. M., and Nogues M. V.. 2008. The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell. Mol. Life Sci. 65(2):324–337.
    1. MacCallum, R. C. , Zhang S., Preacher K. J., and Rucker D. D.. 2002. On the practice of dichotomization of quantitative variables. Psychol. Methods 7(1):19–40.

Source: PubMed

3
Předplatit