Organ-On-Chip Technology: The Future of Feto-Maternal Interface Research?

Lauren Richardson, Sungjin Kim, Ramkumar Menon, Arum Han, Lauren Richardson, Sungjin Kim, Ramkumar Menon, Arum Han

Abstract

The placenta and fetal membrane act as a protective barrier throughout pregnancy while maintaining communication and nutrient exchange between the baby and the mother. Disruption of this barrier leads to various pregnancy complications, including preterm birth, which can have lasting negative consequences. Thus, understanding the role of the feto-maternal interface during pregnancy and parturition is vital to advancing basic and clinical research in the field of obstetrics. However, human subject studies are inherently difficult, and appropriate animal models are lacking. Due to these challenges, in vitro cell culture-based studies are most commonly utilized. However, the structure and functions of conventionally used in vitro 2D and 3D models are vastly different from the in vivo environment, making it difficult to fully understand the various factors affecting pregnancy as well as pathways and mechanisms contributing to term and preterm births. This limitation also makes it difficult to develop new therapeutics. The emergence of in vivo-like in vitro models such as organ-on-chip (OOC) platforms can better recapitulate in vivo functions and responses and has the potential to move this field forward significantly. OOC technology brings together two distinct fields, microfluidic engineering and cell/tissue biology, through which diverse human organ structures and functionalities can be built into a laboratory model that better mimics functions and responses of in vivo tissues and organs. In this review, we first provide an overview of the OOC technology, highlight two major designs commonly used in achieving multi-layer co-cultivation of cells, and introduce recently developed OOC models of the feto-maternal interface. As a vital component of this review, we aim to outline progress on the practicality and effectiveness of feto-maternal interface OOC (FM-OOC) models currently used and the advances they have fostered in obstetrics research. Lastly, we provide a perspective on the future basic research and clinical applications of FM-OOC models, and even those that integrate multiple organ systems into a single OOC system that may recreate intrauterine architecture in its entirety, which will accelerate our understanding of feto-maternal communication, induction of preterm labor, drug or toxicant permeability at this vital interface, and development of new therapeutic strategies.

Keywords: amniochorion; extracellular matrix; fetal membrane; microfluidic lab-on-a-chip; organ-on-a-chip.

Copyright © 2020 Richardson, Kim, Menon and Han.

Figures

FIGURE 1
FIGURE 1
Intra-uterine tissue anatomy. An illustration of the anatomy of the intra-uterine tissue broken down into maternal and fetal components. Maternal tissues comprise of the uterus (i.e., Myometrium), cervix, and vagina, while the fetal tissues include the placenta, umbilical cord, fetus, and fetal membranes.
FIGURE 2
FIGURE 2
Illustration of both feto-maternal interfaces in utero. (A) The left side represents the placenta, the site of nutrients, oxygen, and waste exchange for the growing fetus. The placenta is attached to the maternal side by the decidua basalis next to myometrium (gray) and the fetal side through the fetal membranes (amnion in blue and chorion in yellow). This image highlights the tertiary chorionic villi and arteries (red) and veins (blue), respectively. (B) Overview of the two feto-maternal interfaces in relation to the fetus. The top box outlines the cross-section of the placenta and the bottom box outlines the cross-section of the fetal membrane. (C) The description starts from the innermost layer (amnion) and ends at the maternal decidua. Amnion epithelial cells (blue) are connected to the first layer of the ECM called the basement membrane/compact layer (green strips). The fibroblast (top), spongy (middle), and reticular layers (bottom) follow, containing amnion and chorion mesenchymal cells (purple). The chorion (yellow) is connected to the ECM through a basement membrane (green stripes and is made up of two types of cells: chorion laeve cells and chorion trophoblast cells. The chorion interfaces with the maternal decidua (green), connecting the fetal layers to the maternal compartments of the uterus.
FIGURE 3
FIGURE 3
Diagram of fetal membranes anatomical differences between species. (A) Illustration representing the human fetal membrane. The human fetal membrane, or feto-maternal interface, starts with the innermost layer (amnion) facing the amniotic cavity and ends with the maternal decidua. Within the intrauterine cavity, the amnion epithelial cells (AECs) connected to the basement membrane (green stripes) are bathed in amniotic fluid (yellow) and comprise the first layer. Below AECs, the ECM is comprised of compact, fibrous, spongy, and reticular layers, all containing mesenchymal cells derived from the amnion and chorion (purple). Chorion trophoblast cells (CT; yellow) are attached to the ECM via another layer of the basement membrane on its apical side and to the maternal decidua (green) on its basal side. (B) Schematic of non-human primate (NHP) fetal membranes, currently the best animal model used in the field. It is almost identical to human fetal membranes; however, specific to NHPs, the AEC layer interfaces with a thick, fibrous, collagen layer termed “microfibers” (Owiti et al., 1989) before the basement membrane/compact layer of the ECM. (C) The amniotic sac of a mouse is comprised of two epithelial layers; amnion epithelial monolayer (blue) and a multilayer of chorion trophoblast cells (yellow). Between these layers, loose collagen fibers support mesenchymal cells (purple) and maternal blood vessels in the ECM. This tissue does not contain a maternal interface (i.e., decidua) as other mammalian models.
FIGURE 4
FIGURE 4
Illustration highlighting the differences between vertical and planar co-culture OOC designs. (A) 3D view of two cell culture chambers, stacked on top of each other, to form a “vertical co-culture” OOC device. These two chambers are separated by a semipermeable synthetic membrane (tan structure; black arrow), which contains small pores for cell migration and signal propagation, but too small for cells to freely move between the layers. Blue ellipses are grown on top of the membrane, while red ellipses are grown on the bottom glass substrate. Red and blue ellipses represent two distinct cell populations. (B) 3D view of two cell culture chambers aligned next two each other and separated by a set of microchannel arrays to form a “planar co-culture” OOC device. These two chambers are separated by microchannels that can be filled with collagen (pink; black arrow), providing an actual cell–collagen interface. Both blue and red ellipses are grown the bottom glass substrate but in separate chambers. Red and blue ellipses represent two distinct cell populations. The sizes of the microchannels are small enough to prevent cells from freely moving between the culture compartments but large enough for actively migrating cells and biochemicals to move between the compartments. Alternatively, these microchannel arrays can be replaced with a porous gel barrier.
FIGURE 5
FIGURE 5
Currently developed OOCs mimicking components of the fetal membranes and feto-maternal interface. (A) Device layout—schematic of the two-chamber fetal membrane-organ-on-chip (FM-OOC) developed to study fetal and maternal cell interactions at the fetal membrane interface adapted from Richardson et al. (2019a). The FM-OO-C is comprised of two stacked PDMS cell culture chambers that are coated with Matrigel (pink). Primary AECs (blue) are placed in the top chamber and grown on top of a polycarbonate semipermeable synthetic membrane, while primary decidual cells (green) are placed in the lower chamber and grown on the glass substrate. (B) Images of the fabricated FM-OO-C chips and cells being cultured within each compartment. Bright-field microscopy images of primary human AECs in the top chamber (purple) and primary decidual cells in the bottom chamber (red) are shown. The yellow outline visualizes the cellular morphology. (C) Endpoint assays—Left: Fluorescein isothiocyanate stain (yellow) is seen in the two horizontal columns feeding into the top AEC chamber. Media were collected from the bottom vertical columns to measure membrane permeability. Center: Bottom chamber showing representative senescence-associated β-galactosidase (SA-β-Gal) stained decidual cells and the semipermeable membrane containing blue staining representing SA-β-Gal + AECs. Right: Image of the FM-OO-C containing media from both amnion and decidual cells, which can be used to measure cytokine kinetics. (D) Device layout—the amnion membrane organ-on-chip (AM-OOC) is designed to recreate the amnion component of the fetal membrane by co-culturing AECs (blue) in an outer circular PDMS chamber and AMCs (purple) in the inner circular chamber. This planar two-chamber model is separated by a type IV collagen-filled (pink) microchannel array (mimicking the basement membrane). (E) The outer chamber of the AM-OOC was filled with red dye, and the inner chamber was filled with blue dye for visualization. Bright-field microscopy images of AEC morphology and AMC morphology inside an AM-OOC device. Microchannels filled with Type IV collagen Matrigel (stained with Masson trichrome), connecting the two culture chambers, are also shown. (F) Endpoint assay—confocal images showing native AECs (green) and AMCs (red), which have transitioned, migrated, and integrated into the opposite population. Middle right panel highlights (yellow) GFP-AECs that have migrated through the type IV collagen-filled microchannel, re-localized vimentin, and transitioned into a mesenchymal morphology indicative of EMT. Middle left panels highlight (yellow) RFP-AMCs that have migrated through the type IV collagen-filled microchannel, down-regulated vimentin, and transitioned into an epithelial morphology indicative of MET. The bottom panel is a schematic representing AECs (green) and AMCs (red) undergoing cellular transitions. Gray arrows highlight the migration direction. Pink, vimentin; green, histone 2B AEC; red, histone 2B AMCs. This figure is a rendition of Richardson et al. (2019b). All figures reused with permission.
FIGURE 6
FIGURE 6
Schematic of proposed OOCs better mimicking the full fetal membrane and feto-maternal interface. (A) A rendition of the proposed fetal membrane on a chip (IFMOC) by Gnecco et al. (2017) designed to create an infectious preterm birth model to study fetal membranes. This device contains four chambers culturing AECs (blue) on top, CTs (yellow) along with immune cells (orange) in the second chamber, decidua (green) and immune cells in the third chamber, and bacteria (red) in the bottom chamber. Each chamber is separated by a polycarbonate semipermeable synthetic membrane. (B) The proposed feto-maternal interface organ-on-chip (FMI-OOC) here is designed to mimic the feto-maternal interface, including the fetal membranes and maternal decidua. The FMI-OOC contains four co-centric circular cell culture chambers separated by arrays of microchannels. The cells are seeded following the in vivo structure; AECs (blue), AMCs (purple), CMCs/CTs (yellow), and decidua cells (green), respectively. Primary fetal membrane collagen and Matrigel (pink) can enable culturing AMCs and CMC/CTs in a 3D format. To recreate cell–collagen interfaces, microchannels can be filled with type IV collagen (pink) to mimic the basement membrane of the amnion and chorion layers, while the choriodecidua interface is left open (gray). All figures reused with permission. A comparison of both proposed OOC models can be found in Table 3.

References

    1. Abaci H. E., Shuler M. L. (2015). Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling. Integr. Biol. (Camb) 7 383–391. 10.1039/c4ib00292j
    1. An F., Qu Y., Liu X., Zhong R., Luo Y. (2015). Organ-on-a-chip: new platform for biological analysis. Anal. Chem. Insights 10 39–45. 10.4137/aci.s28905
    1. Artzy-Schnirman A., Hobi N., Schneider-Daum N., Guenat O. T., Lehr C. M., Sznitman J. (2019). Advanced in vitro lung-on-chip platforms for inhalation assays: From prospect to pipeline. Eur. J. Pharm. Biopharm. 144 11–17. 10.1016/j.ejpb.2019.09.006
    1. Ashammakhi N., Wesseling-Perry K., Hasan A., Elkhammas E., Zhang Y. S. (2018). Kidney-on-a-chip: untapped opportunities. Kidney Int. 94 1073–1086. 10.1016/j.kint.2018.06.034
    1. Avila C., Santorelli J., Mathai J., Ishkin S., Jabsky M., Willins J., et al. (2014). Anatomy of the fetal membranes using optical coherence tomography: part 1. Placenta 35 1065–1069. 10.1016/j.placenta.2014.09.011
    1. Ayad M. T., Taylor B. D., Menon R. (2018). Regulation of p38 mitogen-activated kinase-mediated fetal membrane senescence by statins. Am. J. Reprod. Immunol. 80:e12999. 10.1111/aji.12999
    1. Balijepalli A., Sivaramakrishan V. (2017). Organs-on-chips: research and commercial perspectives. Drug Discov. Today 22 397–403. 10.1016/j.drudis.2016.11.009
    1. Bal-Ozturk A., Miccoli B., Avci-Adali M., Mogtader F., Sharifi F., Cecen B., et al. (2018). Current strategies and future perspectives of skin-on-a-chip platforms: innovations, technical challenges and commercial outlook. Curr. Pharm. Des. 24 5437–5457. 10.2174/1381612825666190206195304
    1. Beck S., Wojdyla D., Say L., Betran A. P., Merialdi M., Requejo J. H., et al. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull. World Health Organ. 88 31–38. 10.2471/blt.08.062554
    1. Behnia F., Taylor B. D., Woodson M., Kacerovsky M., Hawkins H., Fortunato S. J., et al. (2015). Chorioamniotic membrane senescence: a signal for parturition? Am. J. Obstet. Gynecol. 213 .e1–.e16. 10.1016/j.ajog.2015.05.041
    1. Bein A., Shin W., Jalili-Firoozinezhad S., Park M. H., Sontheimer-Phelps A., Tovaglieri A., et al. (2018). Microfluidic organ-on-a-chip models of human intestine. Cell. Mol. Gastroenterol. Hepatol. 5 659–668. 10.1016/j.jcmgh.2017.12.010
    1. Bennet D., Estlack Z., Reid T., Kim J. (2018). A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation. Lab Chip 18 1539–1551. 10.1039/c8lc00158h
    1. Berthier E., Young E. W., Beebe D. (2012). Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12 1224–1237. 10.1039/c2lc20982a
    1. Bhatia S. N., Ingber D. E. (2014). Microfluidic organs-on-chips. Nat. Biotechnol. 32 760–772. 10.1038/nbt.2989
    1. Blanco O., Leno-Duran E., Morales J. C., Olivares E. G., Ruiz-Ruiz C. (2009). Human decidual stromal cells protect lymphocytes from apoptosis. Placenta 30 677–685. 10.1016/j.placenta.2009.05.011
    1. Blencowe H., Cousens S., Chou D., Oestergaard M., Say L., Moller A. B., et al. (2013). Born too soon: the global epidemiology of 15 million preterm births. Reprod. Health 10(Suppl. 1):S2. 10.1186/1742-4755-10-s1-s2
    1. Blundell C., Tess E. R., Schanzer A. S., Coutifaris C., Su E. J., Parry S., et al. (2016). A microphysiological model of the human placental barrier. Lab Chip 16 3065–3073. 10.1039/c6lc00259e
    1. Blundell C., Yi Y. S., Ma L., Tess E. R., Farrell M. J., Georgescu A., et al. (2018). Placental drug transport-on-a-chip: a microengineered in vitro model of transporter-mediated drug efflux in the human placental barrier. Adv. Healthc. Mater. 7:10.1002/adhm.201700786. 10.1002/adhm.201700786
    1. Boldenow E., Jones S., Lieberman R. W., Chames M. C., Aronoff D. M., Xi C., et al. (2013). Antimicrobial peptide response to group B Streptococcus in human extraplacental membranes in culture. Placenta 34 480–485. 10.1016/j.placenta.2013.02.010
    1. Bryant-Greenwood G. D. (1998). The extracellular matrix of the human fetal membranes: structure and function. Placenta 19 1–11. 10.1016/s0143-4004(98)90092-3
    1. Capulli A. K., Tian K., Mehandru N., Bukhta A., Choudhury S. F., Suchyta M., et al. (2014). Approaching the in vitro clinical trial: engineering organs on chips. Lab Chip 14 3181–3186. 10.1039/c4lc00276h
    1. Carvalho M. R., Barata D., Teixeira L. M., Giselbrecht S., Reis R. L., Oliveira J. M., et al. (2019). Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. Sci. Adv. 5:eaaw1317. 10.1126/sciadv.aaw1317
    1. Chung S., Sudo R., Mack P. J., Wan C. R., Vickerman V., Kamm R. D. (2009). Cell migration into scaffolds under co-culture conditions in a microfluidic platform. Lab Chip 9 269–275. 10.1039/b807585a
    1. Davydova D. A., Voroteliak E. A., Bragina E. E., Terskikh V. V., Vasil’ev A. V. (2011). [Culture of human amniotic fluid stem cells in 3D collagen matrix]. Tsitologiia 53 325–331.
    1. Deng J., Wei W., Chen Z., Lin B., Zhao W., Luo Y., et al. (2019). Engineered liver-on-a-chip platform to mimic liver functions and its biomedical applications: a review. Micromachines (Basel) 10:676. 10.3390/mi10100676
    1. Dixon C. L., Richardson L., Sheller-Miller S., Saade G., Menon R. (2017). A distinct mechanism of senescence activation in amnion epithelial cells by infection, inflammation, and oxidative stress. Am. J. Reprod. Immunol. 79:10.1111/aji.12790. 10.1111/aji.12790
    1. Dodson K. H., Echevarria F. D., Li D., Sappington R. M., Edd J. F. (2015). Retina-on-a-chip: a microfluidic platform for point access signaling studies. Biomed. Microdevices 17:114. 10.1007/s10544-015-0019-x
    1. Edey L. F., Georgiou H., O’Dea K. P., Mesiano S., Herbert B. R., Lei K., et al. (2018). Progesterone, the maternal immune system and the onset of parturition in the mouse. Biol. Reprod. 98 376–395. 10.1093/biolre/iox146
    1. Esch E. W., Bahinski A., Huh D. (2015). Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14 248–260. 10.1038/nrd4539
    1. Esch M. B., Ueno H., Applegate D. R., Shuler M. L. (2016). Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip 16 2719–2729. 10.1039/c6lc00461j
    1. Feng L., Allen T. K., Marinello W. P., Murtha A. P. (2018b). Roles of progesterone receptor membrane component 1 in oxidative stress-induced aging in chorion cells. Reprod. Sci. 26 394–403. 10.1177/1933719118776790
    1. Feng L., Allen T. K., Marinello W. P., Murtha A. P. (2018a). Infection-induced thrombin production: a potential novel mechanism for preterm premature rupture of membranes (PPROM). Am. J. Obstet. Gynecol. 219:101.e1–e12. 10.1016/j.ajog.2018.04.014
    1. Fortunato S. J., Menon R., Lombardi S. J. (1998). The effect of transforming growth factor and interleukin-10 on interleukin-8 release by human amniochorion may regulate histologic chorioamnionitis. Am. J. Obstet. Gynecol. 179(3 Pt 1) 794–799. 10.1016/s0002-9378(98)70085-7
    1. Fortunato S. J., Menon R., Lombardi S. J., LaFleur B. (2001). Interleukin-10 inhibition of gelatinases in fetal membranes: therapeutic implications in preterm premature rupture of membranes. Obstet. Gynecol. 98 284–288. 10.1016/s0029-7844(01)01441-7
    1. Fortunato S. J., Menon R., Swan K. F., Lyden T. W. (1994). Organ culture of amniochorionic membrane in vitro. Am. J. Reprod. Immunol. 32 184–187. 10.1111/j.1600-0897.1994.tb01112.x
    1. Funamoto K., Zervantonakis I. K., Liu Y., Ochs C. J., Kim C., Kamm R. D. (2012). A novel microfluidic platform for high-resolution imaging of a three-dimensional cell culture under a controlled hypoxic environment. Lab Chip 12 4855–4863. 10.1039/c2lc40306d
    1. Gnecco J. S., Anders A. P., Cliffel D., Pensabene V., Rogers L. M., Osteen K., et al. (2017). Instrumenting a fetal membrane on a chip as emerging technology for preterm birth research. Curr. Pharm. Des. 23 6115–6124. 10.2174/1381612823666170825142649
    1. Goldenberg R. L., Culhane J. F., Iams J. D., Romero R. (2008). Epidemiology and causes of preterm birth. Lancet 371 75–84. 10.1016/s0140-6736(08)60074-4
    1. Gori M., Simonelli M. C., Giannitelli S. M., Businaro L., Trombetta M., Rainer A. (2016). Investigating nonalcoholic fatty liver disease in a liver-on-a-chip microfluidic device. PLoS One 11:e0159729. 10.1371/journal.pone.0159729
    1. Gude N. M., Roberts C. T., Kalionis B., King R. G. (2004). Growth and function of the normal human placenta. Thromb. Res. 114 397–407. 10.1016/j.thromres.2004.06.038
    1. Guller S., Kong L., Wozniak R., Lockwood C. J. (1995). Reduction of extracellular matrix protein expression in human amnion epithelial cells by glucocorticoids: a potential role in preterm rupture of the fetal membranes. J. Clin. Endocrinol. Metab. 80 2244–2250. 10.1210/jcem.80.7.7608287
    1. Gumuscu B., Albers H. J., van den Berg A., Eijkel J. C. T., van der Meer A. D. (2017). Compartmentalized 3D tissue culture arrays under controlled microfluidic delivery. Sci. Rep. 7:3381. 10.1038/s41598-017-01944-5
    1. Guo Y., Li Z., Su W., Wang L., Zhu Y., Qin J. A. (2018). Biomimetic human gut-on-a-chip for modeling drug metabolism in intestine. Artif. Organs 42 1196–1205. 10.1111/aor.13163
    1. Haderspeck J. C., Chuchuy J., Kustermann S., Liebau S., Loskill P. (2019). Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling. Expert. Opin. Drug Discov. 14 47–57. 10.1080/17460441.2019.1551873
    1. Hadley E. E., Sheller-Miller S., Saade G., Salomon C., Mesiano S., Taylor R. N., et al. (2018). Amnion epithelial cell-derived exosomes induce inflammatory changes in uterine cells. Am. J. Obstet. Gynecol. 219:478.e1–e21. 10.1016/j.ajog.2018.08.021
    1. Halfter W., Candiello J., Hu H., Zhang P., Schreiber E., Balasubramani M. (2013). Protein composition and biomechanical properties of in vivo-derived basement membranes. Cell Adh. Migr. 7 64–71. 10.4161/cam.22479
    1. Hao S., Ha L., Cheng G., Wan Y., Xia Y., Sosnoski D. M., et al. (2018). A Spontaneous 3D bone-on-a-chip for bone metastasis study of breast cancer cells. Small 14:e1702787. 10.1002/smll.201702787
    1. Huang G., Li F., Zhao X., Ma Y., Li Y., Lin M., et al. (2017). Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev. 117 12764–12850. 10.1021/acs.chemrev.7b00094
    1. Huh D., Hamilton G. A., Ingber D. E. (2011). From 3D cell culture to organs-on-chips. Trends Cell Biol. 21 745–754. 10.1016/j.tcb.2011.09.005
    1. Huh D. D. (2015). A human breathing lung-on-a-chip. Ann. Am. Thorac. Soc. 12(Suppl. 1) S42–S44. 10.1513/AnnalsATS.201410-442MG
    1. Hung T. H., Chen S. F., Wu C. H., Kao C. C., Wu C. P. (2019). Increased soluble epoxide hydrolase in human gestational tissues from pregnancies complicated by acute chorioamnionitis. Mediators Inflamm. 2019:8687120. 10.1155/2019/8687120
    1. Isaacson A., Swioklo S., Connon C. J. (2018). 3D bioprinting of a corneal stroma equivalent. Exp. Eye Res. 173 188–193. 10.1016/j.exer.2018.05.010
    1. Jabareen M., Mallik A. S., Bilic G., Zisch A. H., Mazza E. (2009). Relation between mechanical properties and microstructure of human fetal membranes: an attempt towards a quantitative analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 144(Suppl. 1) S134–S141. 10.1016/j.ejogrb.2009.02.032
    1. Jagadeesan S., Workman M. J., Herland A., Svendsen C. N., Vatine G. D. (2020). Generation of a human iPSC-Based blood-brain barrier chip. J. Vis. Exp. 157:e60925. 10.3791/60925
    1. Jalili-Firoozinezhad S., Gazzaniga F. S., Calamari E. L., Camacho D. M., Fadel C. W., Bein A., et al. (2019). A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip. Nat. Biomed. Eng. 3 520–531. 10.1038/s41551-019-0397-0
    1. Jastrzebska E., Tomecka E., Jesion I. (2016). Heart-on-a-chip based on stem cell biology. Biosens. Bioelectron. 75 67–81. 10.1016/j.bios.2015.08.012
    1. Jeong S., Kim S., Buonocore J., Park J., Welsh C. J., Li J., et al. (2018). A three-dimensional arrayed microfluidic blood-brain barrier model with integrated electrical sensor array. IEEE Trans. Biomed. Eng. 65 431–439. 10.1109/tbme.2017.2773463
    1. Jin J., Richardson L., Sheller-Miller S., Zhong N., Menon R. (2018). Oxidative stress induces p38MAPK-dependent senescence in the feto-maternal interface cells. Placenta 67 15–23. 10.1016/j.placenta.2018.05.008
    1. Jodat Y. A., Kang M. G., Kiaee K., Kim G. J., Martinez A. F. H., Rosenkranz A., et al. (2018). Human-derived organ-on-a-chip for personalized drug development. Curr. Pharm. Des. 24 5471–5486. 10.2174/1381612825666190308150055
    1. Jodat Y. A., Kiaee K., Vela Jarquin D., De la Garza Hernandez R. L., Wang T., Joshi S., et al. (2020). A 3D-printed hybrid nasal cartilage with functional electronic olfaction. Adv. Sci. (Weinh) 7:1901878. 10.1002/advs.201901878
    1. Kang H. W., Lee S. J., Ko I. K., Kengla C., Yoo J. J., Atala A. (2016). A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34 312–319. 10.1038/nbt.3413
    1. Katt M. E., Placone A. L., Wong A. D., Xu Z. S., Searson P. C. (2016). In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front. Bioeng. Biotechnol. 4:12. 10.3389/fbioe.2016.00012
    1. Kendal-Wright C. E. (2007). Stretching, mechanotransduction, and proinflammatory cytokines in the fetal membranes. Reprod. Sci. 14(8 Suppl) 35–41. 10.1177/1933719107310763
    1. Kim H. J., Huh D., Hamilton G., Ingber D. E. (2012). Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip 12 2165–2174. 10.1039/c2lc40074j
    1. Kimura H., Sakai Y., Fujii T. (2018). Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab. Pharmacokinet. 33 43–48. 10.1016/j.dmpk.2017.11.003
    1. Konar D., Devarasetty M., Yildiz D. V., Atala A., Murphy S. V. (2016). Lung-on-a-chip technologies for disease modeling and drug development. Biomed. Eng. Comput. Biol. 7(Suppl. 1) 17–27. 10.4137/becb.s34252
    1. Kumar D., Moore R. M., Mercer B. M., Mansour J. M., Redline R. W., Moore J. J. (2016). The physiology of fetal membrane weakening and rupture: Insights gained from the determination of physical properties revisited. Placenta 42 59–73. 10.1016/j.placenta.2016.03.015
    1. Kuru I., Maier H., Muller M., Lenarz T., Lueth T. C. (2016). A 3D-printed functioning anatomical human middle ear model. Hear. Res. 340 204–213. 10.1016/j.heares.2015.12.025
    1. Lawn J. E., Kinney M. V., Belizan J. M., Mason E. M., McDougall L., Larson J., et al. (2013). Born too soon: accelerating actions for prevention and care of 15 million newborns born too soon. Reprod. Health 10(Suppl. 1):S6. 10.1186/1742-4755-10-s1-s6
    1. Lee H. J., Nam S. M., Choi S. K., Seo K. Y., Kim H. O., Chung S. H. (2018). Comparative study of substrate free and amniotic membrane scaffolds for cultivation of limbal epithelial sheet. Sci. Rep. 8:14628. 10.1038/s41598-018-32914-0
    1. Lee J. S., Romero R., Han Y. M., Kim H. C., Kim C. J., Hong J. S., et al. (2016). Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J. Matern. Fetal. Neonatal. Med. 29 1046–1054. 10.3109/14767058.2015.1038518
    1. Liew G., Wang J. J., Mitchell P. (2008). Preterm birth, long-term survival, and fertility. JAMA 300:167. 10.1001/jama.300.2.167-a
    1. Liu C., Oikonomopoulos A., Sayed N., Wu J. C. (2018). Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond. Development 145:dev156166. 10.1242/dev.156166
    1. Liu F., Qi H. B. (2010). [Utility of amniotic cells plus collagen I complex for fetal membrane healing]. Zhonghua Yi Xue Za Zhi 90 1933–1935.
    1. Low L. A., Tagle D. A. (2017). Organs-on-chips: progress, challenges, and future directions. Exp. Biol. Med. (Maywood) 242 1573–1578. 10.1177/1535370217700523
    1. Luni C., Serena E., Elvassore N. (2014). Human-on-chip for therapy development and fundamental science. Curr. Opin. Biotechnol. 25 45–50. 10.1016/j.copbio.2013.08.015
    1. Magatti M., Caruso M., De Munari S., Vertua E., De D., Manuelpillai U., et al. (2015). Human amniotic membrane-derived mesenchymal and epithelial cells exert different effects on monocyte-derived dendritic cell differentiation and function. Cell Transplant. 24 1733–1752. 10.3727/096368914x684033
    1. Martin L. F., Moco N. P., de Lima M. D., Polettini J., Miot H. A., Correa C. R., et al. (2017). Histologic chorioamnionitis does not modulate the oxidative stress and antioxidant status in pregnancies complicated by spontaneous preterm delivery. BMC Pregnancy Childbirth 17:376. 10.1186/s12884-017-1549-4
    1. Maschmeyer I., Lorenz A. K., Schimek K., Hasenberg T., Ramme A. P., Hubner J., et al. (2015). A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents. Lab Chip 15 2688–2699. 10.1039/c5lc00392j
    1. Materne E. M., Maschmeyer I., Lorenz A. K., Horland R., Schimek K. M., Busek M., et al. (2015). The multi-organ chip–a microfluidic platform for long-term multi-tissue coculture. J. Vis. Exp. 98:e52526. 10.3791/52526
    1. Mauri A., Perrini M., Ehret A. E., De Focatiis D. S., Mazza E. (2015). Time-dependent mechanical behavior of human amnion: macroscopic and microscopic characterization. Acta Biomater. 11 314–323. 10.1016/j.actbio.2014.09.012
    1. Mauri A., Perrini M., Mateos J. M., Maake C., Ochsenbein-Koelble N., Zimmermann R., et al. (2013). Second harmonic generation microscopy of fetal membranes under deformation: normal and altered morphology. Placenta 34 1020–1026. 10.1016/j.placenta.2013.09.002
    1. Meng Y., Murtha A. P., Feng L. (2016). Progesterone, inflammatory cytokine (TNF-alpha), and oxidative stress (H2O2) regulate progesterone receptor membrane component 1 expression in fetal membrane cells. Reprod. Sci. 23 1168–1178. 10.1177/1933719116630412
    1. Menon R. (2016). Human fetal membranes at term: dead tissue or signalers of parturition? Placenta 44 1–5. 10.1016/j.placenta.2016.05.013
    1. Menon R. (2019). Initiation of human parturition: signaling from senescent fetal tissues via extracellular vesicle mediated paracrine mechanism. Obstet. Gynecol. Sci. 62 199–211. 10.5468/ogs.2019.62.4.199
    1. Menon R., Boldogh I., Hawkins H. K., Woodson M., Polettini J., Syed T. A., et al. (2014). Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am. J. Pathol. 184 1740–1751. 10.1016/j.ajpath.2014.02.011
    1. Menon R., Boldogh I., Urrabaz-Garza R., Polettini J., Syed T. A., Saade G. R., et al. (2013). Senescence of primary amniotic cells via oxidative DNA damage. PLoS One 8:e83416. 10.1371/journal.pone.0083416
    1. Menon R., Bonney E. A., Condon J., Mesiano S., Taylor R. N. (2016). Novel concepts on pregnancy clocks and alarms: redundancy and synergy in human parturition. Hum. Reprod. Update 22 535–560. 10.1093/humupd/dmw022
    1. Menon R., Fortunato S. J., Yu J., Milne G. L., Sanchez S., Drobek C. O., et al. (2011). Cigarette smoke induces oxidative stress and apoptosis in normal term fetal membranes. Placenta 32 317–322. 10.1016/j.placenta.2011.01.015
    1. Menon R., Mesiano S., Taylor R. N. (2017). Programmed fetal membrane senescence and exosome-mediated signaling: a mechanism associated with timing of human parturition. Front. Endocrinol. (Lausanne) 8:196. 10.3389/fendo.2017.00196
    1. Menon R., Peltier M. R., Eckardt J., Fortunato S. J. (2009). Diversity in cytokine response to bacteria associated with preterm birth by fetal membranes. Am. J. Obstet. Gynecol. 201:306.e1–e6. 10.1016/j.ajog.2009.06.027
    1. Menon R., Richardson L. S., Lappas M. (2018). Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta 79 40–45. 10.1016/j.placenta.2018.11.003
    1. Mieremet A., Vazquez Garcia A., Boiten W., van Dijk R., Gooris G., Bouwstra J. A., et al. (2019). Human skin equivalents cultured under hypoxia display enhanced epidermal morphogenesis and lipid barrier formation. Sci. Rep. 9:7811. 10.1038/s41598-019-44204-4
    1. Miller M. F., Loch-Caruso R. (2010). Comparison of LPS-stimulated release of cytokines in punch versus transwell tissue culture systems of human gestational membranes. Reprod. Biol. Endocrinol. 8:121. 10.1186/1477-7827-8-121
    1. Miri A. K., Mostafavi E., Khorsandi D., Hu S. K., Malpica M., Khademhosseini A. (2019). Bioprinters for organs-on-chips. Biofabrication 11:042002. 10.1088/1758-5090/ab2798
    1. Mittal R., Woo F. W., Castro C. S., Cohen M. A., Karanxha J., Mittal J., et al. (2019). Organ-on-chip models: implications in drug discovery and clinical applications. J. Cell. Physiol. 234 8352–8380. 10.1002/jcp.27729
    1. Mondrinos M. J., Yi Y. S., Wu N. K., Ding X., Huh D. (2017). Native extracellular matrix-derived semipermeable, optically transparent, and inexpensive membrane inserts for microfluidic cell culture. Lab Chip 17 3146–3158. 10.1039/c7lc00317j
    1. Mori N., Morimoto Y., Takeuchi S. (2017). Skin integrated with perfusable vascular channels on a chip. Biomaterials 116 48–56. 10.1016/j.biomaterials.2016.11.031
    1. Myatt L., Sun K. (2010). Role of fetal membranes in signaling of fetal maturation and parturition. Int. J. Dev. Biol. 54 545–553. 10.1387/ijdb.082771lm
    1. Nagashima J. B., El Assal R., Songsasen N., Demirci U. (2018). Evaluation of an ovary-on-a-chip in large mammalian models: species specificity and influence of follicle isolation status. J. Tissue Eng. Regen. Med. 12 e1926–e1935. 10.1002/term.2623
    1. No Author, (2013). EU: final ban on animal experiments for cosmetic ingredients implemented. Altex 30 268–269.
    1. Noda-Nicolau N. M., Polettini J., Peltier M. R., da Silva M. G., Menon R. (2016). Combinations and loads of bacteria affect the cytokine production by fetal membranes: an in vitro study. Am. J. Reprod. Immunol. 76 504–511. 10.1111/aji.12596
    1. Okere B., Alviano F., Costa R., Quaglino D., Ricci F., Dominici M., et al. (2015). In vitro differentiation of human amniotic epithelial cells into insulin-producing 3D spheroids. Int. J. Immunopathol. Pharmacol. 28 390–402. 10.1177/0394632015588439
    1. Osaki T., Uzel S. G. M., Kamm R. D. (2020). On-chip 3D neuromuscular model for drug screening and precision medicine in neuromuscular disease. Nat. Protoc. 15 421–449. 10.1038/s41596-019-0248-1
    1. Ouchi R., Togo S., Kimura M., Shinozawa T., Koido M., Koike H., et al. (2019). Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 30:374–384.e6. 10.1016/j.cmet.2019.05.007
    1. Owiti G. E., Tarara R. P., Hendrickx A. G. (1989). Fetal membranes and placenta of the African green monkey (Cercopithecus aethiops). Anat. Embryol. (Berl) 179 591–604. 10.1007/bf00315701
    1. Paoli R., Samitier J. (2016). Mimicking the kidney: a key role in organ-on-chip development. Micromachines (Basel) 7:126. 10.3390/mi7070126
    1. Park S. J., Zhang D., Qi Y., Li Y., Lee K. Y., Bezzerides V. J., et al. (2019). Insights Into the pathogenesis of catecholaminergic polymorphic ventricular tachycardia from engineered human heart tissue. Circulation 140 390–404. 10.1161/circulationaha.119.039711
    1. Pasman T., Grijpma D., Stamatialis D., Poot A. (2018). Flat and microstructured polymeric membranes in organs-on-chips. J. R. Soc. Interface 15:20180351. 10.1098/rsif.2018.0351
    1. Pemathilaka R. L., Caplin J. D., Aykar S. S., Montazami R., Hashemi N. N. (2019a). Placenta-on-a-chip: in vitro study of caffeine transport across placental barrier using liquid chromatography mass spectrometry. Glob. Chall. 3:1800112. 10.1002/gch2.201800112
    1. Pemathilaka R. L., Reynolds D. E., Hashemi N. N. (2019b). Drug transport across the human placenta: review of placenta-on-a-chip and previous approaches. Interface Focus 9:20190031. 10.1098/rsfs.2019.0031
    1. Perrini M., Mauri A., Ehret A. E., Ochsenbein-Kolble N., Zimmermann R., Ehrbar M., et al. (2015). Mechanical and microstructural investigation of the cyclic behavior of human amnion. J. Biomech. Eng. 137:061010 10.1115/1.4030054
    1. Polettini J., Behnia F., Taylor B. D., Saade G. R., Taylor R. N., Menon R. (2015). Telomere fragment induced amnion cell senescence: a contributor to parturition? PLoS One 10:e0137188. 10.1371/journal.pone.0137188
    1. Poussin C., Kramer B., Lanz H. L., Van den Heuvel A., Laurent A., Olivier T., et al. (2020). 3D human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow – application in systems toxicology. Altex 37 47–63. 10.14573/altex.1811301
    1. Qian F., Huang C., Lin Y. D., Ivanovskaya A. N., O’Hara T. J., Booth R. H., et al. (2017). Simultaneous electrical recording of cardiac electrophysiology and contraction on chip. Lab Chip 17 1732–1739. 10.1039/c7lc00210f
    1. Ramme A. P., Koenig L., Hasenberg T., Schwenk C., Magauer C., Faust D., et al. (2019). Autologous induced pluripotent stem cell-derived four-organ-chip. Future Sci. OA 5:Fso413. 10.2144/fsoa-2019-0065
    1. Ren X., Levin D., Lin F. (2017). Cell migration research based on organ-on-chip-related approaches. Micromachines (Basel) 8:324. 10.3390/mi8110324
    1. Ribas J., Sadeghi H., Manbachi A., Leijten J., Brinegar K., Zhang Y. S., et al. (2016). Cardiovascular organ-on-a-chip platforms for drug discovery and development. Appl. In Vitro Toxicol. 2 82–96. 10.1089/aivt.2016.0002
    1. Richardson L., Dixon C. L., Aguilera-Aguirre L., Menon R. (2018a). Oxidative Stress-Induced TGF-beta/TAB1-mediated p38MAPK activation in human amnion epithelial cells. Biol. Reprod. 99 1100–1112. 10.1093/biolre/ioy135
    1. Richardson L., Gnecco J., Ding T., Osteen K., Rogers L., Aronoff D., et al. (2019a). Fetal membrane organ-on-chip:an innovative approach to study cellular interactions. Reprod. Sci. [Epub ahead of print].
    1. Richardson L., Jeong S., Kim S., Han A., Menon R. (2019b). Amnion membrane organ-on-chip: an innovative approach to study cellular interactions. FASEB J. 33 8945–8960. 10.1096/fj.201900020RR
    1. Richardson L., Martin L., Menon R. (2018b). “Characteristics, properties, and functionality of fetal membranes: an overlooked area in the field of parturition,” in Proceedings of the 5th International Conference on Advances in Skin, Wound Care and Tissue Science & 14th International Conference on Clinical Dermatology. Encyclopedia of Reproduction 2017, 2nd Edn, Rome.
    1. Richardson L., Menon R. (2018). Proliferative, migratory, and transition properties reveal metastate of human amnion cells. Am. J. Pathol. 188 2004–2015. 10.1016/j.ajpath.2018.05.019
    1. Richardson L., Vargas G., Brown T., Ochoa L., Trivedi J., Kacerovskı M., et al. (2017b). Redefining 3Dimensional placental membrane microarchitecture using multiphoton microscopy and optical clearing. Placenta 53 66–75. 10.1016/j.placenta.2017.03.017
    1. Richardson L. S., Menon P. R., Menon R. (2020a). The effects of extracellular matrix rigidity on 3-dimensional cultures of amnion membrane cells. Placenta 90 82–89. 10.1016/j.placenta.2019.12.008
    1. Richardson L. S., Taylor R. N., Menon R. (2020b). Reversible EMT and MET mediate amnion remodeling during pregnancy and labor. Sci. Signal. 13:eaay1486. 10.1126/scisignal.aay1486
    1. Richardson L., Vargas G., Brown T., Ochoa L., Sheller-Miller S., Saade G. R., et al. (2017a). Discovery and characterization of human amniochorionic membrane microfractures. Am. J. Pathol. 187 2821–2830. 10.1016/j.ajpath.2017.08.019
    1. Ronaldson-Bouchard K., Vunjak-Novakovic G. (2018). Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22 310–324. 10.1016/j.stem.2018.02.011
    1. Sances S., Ho R., Vatine G., West D., Laperle A., Meyer A., et al. (2018). Human iPSC-derived endothelial cells and microengineered organ-chip enhance neuronal development. Stem Cell Rep. 10 1222–1236. 10.1016/j.stemcr.2018.02.012
    1. Sato B. L., Collier E. S., Vermudez S. A., Junker A. D., Kendal-Wright C. E. (2016). Human amnion mesenchymal cells are pro-inflammatory when activated by the Toll-like receptor 2/6 ligand, macrophage-activating lipoprotein-2. Placenta 44 69–79. 10.1016/j.placenta.2016.06.005
    1. Seo J., Byun W. Y., Alisafaei F., Georgescu A., Yi Y. S., Massaro-Giordano M., et al. (2019). Multiscale reverse engineering of the human ocular surface. Nat. Med. 25 1310–1318. 10.1038/s41591-019-0531-2
    1. Shah N. M., Lai P. F., Imami N., Johnson M. R. (2019). Progesterone-related immune modulation of pregnancy and labor. Front. Endocrinol. (Lausanne) 10:198. 10.3389/fendo.2019.00198
    1. Sheller S., Papaconstantinou J., Urrabaz-Garza R., Richardson L., Saade G., Salomon C., et al. (2016). Amnion-epithelial-cell-derived exosomes demonstrate physiologic state of cell under oxidative stress. PLoS One 11:e0157614. 10.1371/journal.pone.0157614
    1. Shieh H. F., Graham C. D., Brazzo J. A., III, Zurakowski D., Fauza D. O. (2017). Comparisons of human amniotic mesenchymal stem cell viability in FDA-approved collagen-based scaffolds: Implications for engineered diaphragmatic replacement. J. Pediatr. Surg. 52 1010–1013. 10.1016/j.jpedsurg.2017.03.024
    1. Shrestha J., Razavi Bazaz S., Aboulkheyr Es H, Yaghobian A. D., Thierry B., Ebrahimi W. M., et al. (2020). Lung-on-a-chip: the future of respiratory disease models and pharmacological studies. Crit. Rev. Biotechnol. 40 213–230. 10.1080/07388551.2019.1710458
    1. Sip C. G., Folch A. (2014). Stable chemical bonding of porous membranes and poly(dimethylsiloxane) devices for long-term cell culture. Biomicrofluidics 8:036504 10.1063/1.4883075
    1. Strauss J. F., III (2013). Extracellular matrix dynamics and fetal membrane rupture. Reprod. Sci. 20 140–153. 10.1177/1933719111424454
    1. Talayev V. Y., Matveichev A. V., Lomunova M. A., Talayeva M. V., Tsaturov M. E., Zaichenko I. Y., et al. (2010). The effect of human placenta cytotrophoblast cells on the maturation and T cell stimulating ability of dendritic cells in vitro. Clin. Exp. Immunol. 162 91–99. 10.1111/j.1365-2249.2010.04149.x
    1. Taylor D. L., Gough A., Schurdak M. E., Vernetti L., Chennubhotla C. S., Lefever D., et al. (2019). Harnessing human microphysiology systems as key experimental models for quantitative systems pharmacology. Handb. Exp. Pharmacol. 260 327–367. 10.1007/164_2019_239
    1. Truesdell S. L., George E. L., Saunders M. M. (2020). Cellular considerations for optimizing bone cell culture and remodeling in a lab-on-a-chip platform. Biotechniques 68 263–269. 10.2144/btn-2019-0115
    1. Uchide N., Ohyama K., Bessho T., Takeichi M., Toyoda H. (2012). Possible roles of proinflammatory and chemoattractive cytokines produced by human fetal membrane cells in the pathology of adverse pregnancy outcomes associated with influenza virus infection. Mediators Inflamm. 2012:270670. 10.1155/2012/270670
    1. Umscheid C. A., Margolis D. J., Grossman C. E. (2011). Key concepts of clinical trials: a narrative review. Postgrad. Med. 123 194–204. 10.3810/pgm.2011.09.2475
    1. van den Berg A., Mummery C. L., Passier R., van der Meer A. D. (2019). Personalised organs-on-chips: functional testing for precision medicine. Lab Chip 19 198–205. 10.1039/c8lc00827b
    1. van den Broek L. J., Bergers L., Reijnders C. M. A., Gibbs S. (2017). Progress and future prospectives in skin-on-chip development with emphasis on the use of different cell types and technical challenges. Stem Cell Rev. Rep. 13 418–429. 10.1007/s12015-017-9737-1
    1. van der Helm M. W., van der Meer A. D., Eijkel J. C., van den Berg A., Segerink L. I. (2016). Microfluidic organ-on-chip technology for blood-brain barrier research. Tissue Barriers 4:e1142493. 10.1080/21688370.2016.1142493
    1. van Herendael B. J., Oberti C., Brosens I. (1978). Microanatomy of the human amniotic membranes. A light microscopic, transmission, and scanning electron microscopic study. Am. J. Obstet. Gynecol. 131 872–880.
    1. Vatine G. D., Barrile R., Workman M. J., Sances S., Barriga B. K., Rahnama M., et al. (2019). Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24:995–1005.e6. 10.1016/j.stem.2019.05.011
    1. Vickerman V., Blundo J., Chung S., Kamm R. (2008). Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. Lab Chip 8 1468–1477. 10.1039/b802395f
    1. Wan H., Gu C., Gan Y., Wei X., Zhu K., Hu N., et al. (2018). Sensor-free and sensor-based heart-on-a-chip platform: a review of design and applications. Curr. Pharm. Des. 24 5375–5385. 10.2174/1381612825666190207170004
    1. Wang J., Khodabukus A., Rao L., Vandusen K., Abutaleb N., Bursac N. (2019). Engineered skeletal muscles for disease modeling and drug discovery. Biomaterials 221:119416. 10.1016/j.biomaterials.2019.119416
    1. Wang J. D., Douville N. J., Takayama S., ElSayed M. (2012). Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann. Biomed. Eng. 40 1862–1873. 10.1007/s10439-012-0562-z
    1. Weng L., Lee G. Y., Liu J., Kapur R., Toth T. L., Toner M. (2018). On-chip oocyte denudation from cumulus-oocyte complexes for assisted reproductive therapy. Lab Chip 18 3892–3902. 10.1039/c8lc01075g
    1. Wilmer M. J., Ng C. P., Lanz H. L., Vulto P., Suter-Dick L., Masereeuw R. (2016). Kidney-on-a-chip technology for drug-induced nephrotoxicity screening. Trends Biotechnol. 34 156–170. 10.1016/j.tibtech.2015.11.001
    1. Wu Q., Fang T., Lang H., Chen M., Shi P., Pang X., et al. (2017). Comparison of the proliferation, migration and angiogenic properties of human amniotic epithelial and mesenchymal stem cells and their effects on endothelial cells. Int. J. Mol. Med. 39 918–926. 10.3892/ijmm.2017.2897
    1. Yin F., Zhu Y., Zhang M., Yu H., Chen W., Qin J. (2019). A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicol. In Vitro 54 105–113. 10.1016/j.tiv.2018.08.014
    1. Zhang Y. S., Aleman J., Arneri A., Bersini S., Piraino F., Shin S. R., et al. (2015). From cardiac tissue engineering to heart-on-a-chip: beating challenges. Biomed. Mater. 10:034006 10.1088/1748-6041/10/3/034006
    1. Zhang Y. S., Arneri A., Bersini S., Shin S. R., Zhu K., Goli-Malekabadi Z., et al. (2016). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110 45–59. 10.1016/j.biomaterials.2016.09.003
    1. Zhao Y., Rafatian N., Feric N. T., Cox B. J., Aschar-Sobbi R., Wang E. Y., et al. (2019). A platform for generation of chamber-specific cardiac tissues and disease modeling. Cell 176 913–927.e18. 10.1016/j.cell.2018.11.042

Source: PubMed

3
Předplatit