Serum biomarkers associated with baseline clinical severity in young steroid-naïve Duchenne muscular dystrophy boys

Utkarsh J Dang, Michael Ziemba, Paula R Clemens, Yetrib Hathout, Laurie S Conklin, CINRG Vamorolone 002/003 Investigators, Eric P Hoffman, Utkarsh J Dang, Michael Ziemba, Paula R Clemens, Yetrib Hathout, Laurie S Conklin, CINRG Vamorolone 002/003 Investigators, Eric P Hoffman

Abstract

Duchenne muscular dystrophy (DMD) is caused by loss of dystrophin in muscle, and while all patients share the primary gene and biochemical defect, there is considerable patient-patient variability in clinical symptoms. We sought to develop multivariate models of serum protein biomarkers that explained observed variation, using functional outcome measures as proxies for severity. Serum samples from 39 steroid-naïve DMD boys 4 to <7 years enrolled into a clinical trial of vamorolone were studied (NCT02760264). Four assessments of gross motor function were carried out for each participant over a 6-week interval, and their mean was used as response for biomarker models. Weighted correlation network analysis was used for unsupervised clustering of 1305 proteins quantified using SOMAscan® aptamer profiling to define highly representative and connected proteins. Multivariate models of biomarkers were obtained for time to stand performance (strength phenotype; 17 proteins) and 6 min walk performance (endurance phenotype; 17 proteins) including some shared proteins. Identified proteins were tested with associations of mRNA expression with histological severity of muscle from dystrophinopathy patients (n = 28) and normal controls (n = 6). Strong associations predictive of both clinical and histological severity were found for ERBB4 (reductions in both blood and muscle with increasing severity), SOD1 (reductions in muscle and increases in blood with increasing severity) and CNTF (decreased levels in blood and muscle with increasing severity). We show that performance of DMD boys was effectively modeled with serum proteins, proximal strength associated with growth and remodeling pathways and muscle endurance centered on TGFβ and fibrosis pathways in muscle.

© The Author(s) 2020. Published by Oxford University Press.

Figures

Figure 1
Figure 1
Scatterplot matrix of timed function tests, 6MWT, NSAA and age. Shown is mean of four measures over ~6-week time frame for 48 DMD subjects (4 to x-axis) versus time to climb (y-axis).
Figure 2
Figure 2
Overview of experimental design to define disease severity biomarkers in DMD. Sequential data reduction approaches were used for TTSTAND and 6MWT motor outcomes (WGCNA). The resulting regression model included 17 serum proteins associated with TTSTAND severity (proximal strength) and 17 proteins associated with 6MWT severity (endurance). The selected serum proteins were tested for gene expression associated with disease status and histopathological severity and were also validated in additional outcomes (TTRW and TTCLIMB from TTSTAND model). Finally, the resulting data were used to build hypothetical biological models for disease severity in DMD.
Figure 3
Figure 3
Screening step showing module trait relationships between motor outcomes and modules of serum proteins. Correlations of 11 MEs for clusters of proteins with clinical outcomes. Pearson correlations and associated P-values in parenthesis are provided. P-values were not adjusted for multiple testing in this screening step. The yellow-highlighted cells were those carried forward for statistical model building for TTSTAND and 6MWT.
Figure 4
Figure 4
Clustering of serum proteins identified as associated with more affected phenotypes as determined by the outcome measures TTSTAND (A) and 6MWT (B) using unsupervised clustering. Patient-level clinical severity data is shown on the x-axis and serum protein levels on the y-axis. TTSTAND shows a clustering of clinically milder patients (red) in the center of dendrogram, corresponding to lower levels of most serum proteins from the model. 6MWT shows a clustering of clinically milder patients to the right of the dendrogram, corresponding to higher levels of most serum proteins in the model. Proteins marked with an asterisk are shared between the two clinical outcome models and demonstrate similar behavior in both models.
Figure 5
Figure 5
Unsupervised heatmap of muscle biopsies of defined histological severity clustered by mRNA expression levels of corresponding serum proteins from the TTSTAND (A) and 6MWT (B) models. mRNA levels were scaled, log-transformed data from a muscle biopsy data set on BMD, DMD and healthy control samples (2). The serum proteins selected by the TTSTAND and 6MWT models showed discriminatory power in differentiating muscle biopsies of variable histological severity, with distinct dendrogram branches for normal (left), mild (right) and severe (center) pathologies.

References

    1. Hoffman E.P., Brown R.H. and Kunkel L.M. (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell, 51, 919–928.
    1. Dadgar S., Wang Z., Johnston H., Kesari A., Nagaraju K., Chen Y.-W., Hill D.A., Partridge T.A., Giri M., Freishtat R.J. et al. (2014) Asynchronous remodeling is a driver of failed regeneration in Duchenne muscular dystrophy. J. Cell Biol., 207, 139–158.
    1. McDonald C.M., Henricson E.K., Abresch R.T., Duong T., Joyce N.C., Hu F., Clemens P.R., Hoffman E.P., Cnaan A., Gordish-Dressman H. et al. (2018) Long-term effects of glucocorticoids on function, quality of life, and survival in patients with Duchenne muscular dystrophy: a prospective cohort study. Lancet, 391, 451–461.
    1. Mercuri E., Signorovitch J.E., Swallow E., Song J., Ward S.J., Pane M., Mazzone E., Messina S., Vita G.L., Sormani M.P. et al. (2016) Categorizing natural history trajectories of ambulatory function measured by the 6-minute walk distance in patients with Duchenne muscular dystrophy. Neuromuscul. Disord., 26, 576–583.
    1. Pegoraro E., Hoffman E.P., Piva L., Gavassini B.F., Cagnin S., Ermani M., Bello L., Soraru G., Pacchioni B., Bonifati M.D. et al. (2011) SPP1 genotype is a determinant of disease severity in Duchenne muscular dystrophy. Neurology, 76, 219–226.
    1. Flanigan K.M., Ceco E., Lamar K.-M., Kaminoh Y., Dunn D.M., Mendell J.R., King W.M., Pestronk A., Florence J.M., Mathews K.D. et al. (2013) LTBP4 genotype predicts age of ambulatory loss in Duchenne muscular dystrophy. Ann. Neurol., 73, 481–488.
    1. Bello L., Punetha J., Gordish-Dressman H., Giri M., Hoffman E.P., Bello L., Barp A., Vianello S., Pegoraro E., Flanigan K.M. et al. (2016) Association study of exon variants in the NF-κB and TGFβ pathways identifies CD40 as a modifier of Duchenne muscular dystrophy. Am. J. Hum. Genet., 99, 1163–1171.
    1. Bergen J.C., Hiller M., Böhringer S., Vijfhuizen L., Ginjaar H.B., Chaouch A., Bushby K., Straub V., Scoto M., Cirak S. et al. (2015) Validation of genetic modifiers for Duchenne muscular dystrophy: a multicentre study assessing SPP1 and LTBP4 variants. J. Neurol. Neurosurg. Psychiatry, 86, 1060–1065.
    1. Hogarth M.W., Houweling P.J., Thomas K.C., Gordish-Dressman H., Bello L., Pegoraro E., Hoffman E.P., Head S.I. and North K.N. (2017) Evidence for ACTN3 as a genetic modifier of Duchenne muscular dystrophy. Nat. Commun., 8, 14143.
    1. Hathout Y., Liang C., Ogundele M., Xu G., Tawalbeh S.M., Dang U.J., Hoffman E.P., Gordish-Dressman H., Conklin L.S., Anker J.N. et al. (2019) Disease-specific and glucocorticoid-responsive serum biomarkers for Duchenne muscular dystrophy. Sci. Rep., 9, 12167.
    1. Spitali P., Hettne K., Tsonaka R., Charrout M., Bergen J., Koeks Z., Kan H.E., Hooijmans M.T., Roos A., Straub V. et al. (2018) Tracking disease progression non-invasively in Duchenne and Becker muscular dystrophies. J. Cachexia. Sarcopenia Muscle, 9, 715–726.
    1. Conklin L.S., Damsker J.M., Hoffman E.P., Jusko W.J., Mavroudis P.D., Schwartz B.D., Mengle-Gaw L.J., Smith E.C., Mah J.K., Guglieri M. et al. (2018) Phase IIa trial in Duchenne muscular dystrophy shows vamorolone is a first-in-class dissociative steroidal anti-inflammatory drug. Pharmacol. Res., 136, 140–150.
    1. Hoffman E.P., Schwartz B.D., Mengle-Gaw L.J., Smith E.C., Castro D., Mah J.K., Mcdonald C.M., Kuntz N.L., Finkel R.S., Guglieri M. et al. (2019) Vamorolone trial in Duchenne muscular dystrophy shows dose-related improvement of muscle function. Neurology, 93, e1312–e1323.
    1. Hathout Y., Conklin L.S., Seol H., Gordish-Dressman H., Brown K.J., Morgenroth L.P., Nagaraju K., Heier C.R., Damsker J.M., Anker J.N. et al. (2016) Serum pharmacodynamic biomarkers for chronic corticosteroid treatment of children. Sci. Rep., 6, 31727.
    1. Langfelder P. and Horvath S. (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559.
    1. Zou H. and Hastie T. (2005) Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B, 67, 301–320.
    1. Tibshirani R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58, 267–288.
    1. Langfelder P. and Horvath S. (2012) Fast R functions for robust correlations and hierarchical clustering. J. Stat. Softw., 46, 1–17.
    1. McDonald C.M., Campbell C., Torricelli R.E., Finkel R.S., Flanigan K.M., Goemans N., Heydemann P., Kaminska A., Kirschner J., Muntoni F. et al. (2017) Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 390, 1489–1498.
    1. Goemans N., Mercuri E., Belousova E., Komaki H., Dubrovsky A., McDonald C.M., Kraus J.E., Lourbakos A., Lin Z., Campion G. et al. (2018) A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul. Disord., 28, 4–15.
    1. Bergen J.C., Wokke B.H., Janson A.A., Duinen S.G., Hulsker M.A., Ginjaar H.B., Deutekom J.C., Aartsma-Rus A., Kan H.E. and Verschuuren J.J. (2014) Dystrophin levels and clinical severity in Becker muscular dystrophy patients. J. Neurol. Neurosurg. Psychiatry, 85, 747–753.
    1. Willcocks R.J., Arpan I.A., Forbes S.C., Lott D.J., Senesac C.R., Senesac E., Deol J., Triplett W.T., Baligand C., Daniels M.J. et al. (2014) Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: effects of age and disease progression. Neuromuscul. Disord., 24, 393–401.
    1. Bonati U., Hafner P., Schadelin S., Schmid M., Naduvilekoot Devasia A., Schroeder J., Zuesli S., Pohlman U., Neuhaus C., Klein A. et al. (2015) Quantitative muscle MRI: a powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscul. Disord., 25, 679–685.
    1. Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W. and Smyth G.K. (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47.
    1. Benjamini Y. and Hochberg Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B, 57, 289–300.
    1. Xiong H., Yan J., Cai S., He Q., Peng D., Liu Z. and Liu Y. (2019) Cancer protein biomarker discovery based on nucleic acid aptamers. Int. J. Biol. Macromol., 132, 190–202.
    1. Hathout Y., Brody E., Clemens P.R., Cripe L., DeLisle R.K., Furlong P., Gordish-Dressman H., Hache L., Henricson E., Hoffman E.P. et al. (2015) Large-scale serum protein biomarker discovery in Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. U. S. A., 112, 7153–7158.
    1. Joshi A. and Mayr M. (2018) In Aptamers they trust. Circulation, 138, 2482–2485.
    1. Signorelli M., Ayoglu B., Johansson C., Lochmüller H., Straub V., Muntoni F., Niks E., Tsonaka R., Persson A., Aartsma-Rus A. et al. (2020) Longitudinal serum biomarker screening identifies malate dehydrogenase 2 as candidate prognostic biomarker for Duchenne muscular dystrophy. J. Cachexia. Sarcopenia Muscle, 11, 505–517.
    1. Chen Y.-W., Nagaraju K., Bakay M., McIntyre O., Rawat R., Shi R. and Hoffman E.P. (2005) Early onset of inflammation and later involvement of TGFβ in Duchenne muscular dystrophy. Neurology, 65, 826–834.
    1. Capitanio D., Moriggi M., Torretta E., Barbacini P., De Palma S., Viganò A., Lochmüller H., Muntoni F., Ferlini A., Mora M. et al. (2020) Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J. Cachexia. Sarcopenia Muscle, 11, 547–563.
    1. Koenig M., Monaco A.P. and Kunkel L.M. (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell, 53, 219–228.
    1. Jin Q., Ding W. and Mulder K.M. (2012) The TGFβ receptor-interacting protein km23-1/DYNLRB1 plays an adaptor role in TGFβ1 autoinduction via its association with Ras. J. Biol. Chem., 287, 26453–26463.
    1. Chen Y.-W., Zhao P., Borup R. and Hoffman E.P. (2000) Expression profiling in the muscular dystrophies. Identification of novel aspects of molecular pathophysiology. J. Cell Biol., 151, 1321–1336.
    1. Jorgensen L.H., Petersson S.J., Sellathurai J., Andersen D.C., Thayssen S., Sant D.J., Jensen C.H. and Schroder H.D. (2009) Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J. Histochem. Cytochem., 57, 29–39.
    1. Sandri M., Coletto L., Grumati P. and Bonaldo P. (2013) Misregulation of autophagy and protein degradation systems in myopathies and muscular dystrophies. J. Cell Sci., 126, 5325–5333.
    1. Piñol-Jurado P., Suárez-Calvet X., Fernández-Simón E., Gallardo E., Oliva N., Martínez-Muriana A., Gómez-Gálvez P., Escudero L.M., Pérez-Peiró M., Wollin L. et al. (2018) Nintedanib decreases muscle fibrosis and improves muscle function in a murine model of dystrophinopathy. Cell Death Dis., 9, 776.
    1. Vermeulen Z., Hervent A.-S., Dugaucquier L., Vandekerckhove L., Rombouts M., Beyens M., Schrijvers D.M., De Meyer G.R.Y., Maudsley S., De Keulenaer G.W. et al. (2017) Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the heart, skin, and lung. Am. J. Physiol. Circ. Physiol., 313, H934–H945.
    1. Morano M., Ronchi G., Nicolò V., Fornasari B.E., Crosio A., Perroteau I., Geuna S., Gambarotta G. and Raimondo S. (2018) Modulation of the neuregulin 1/ErbB system after skeletal muscle denervation and reinnervation. Sci. Rep., 8, 5047.
    1. Ennequin G., Capel F., Caillaud K., Chavanelle V., Etienne M., Teixeira A., Li X., Boisseau N. and Sirvent P. (2017) Neuregulin 1 improves complex 2-mediated mitochondrial respiration in skeletal muscle of healthy and diabetic mice. Sci. Rep., 7, 1742.
    1. Hughes M.C., Ramos S.V., Turnbull P.C., Rebalka I.A., Cao A., Monaco C.M.F., Varah N.E., Edgett B.A., Huber J.S., Tadi P. et al. (2019) Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H2O2 emission during impaired oxidative phosphorylation. J. Cachexia. Sarcopenia Muscle, 10, 643–661.
    1. Dubinin M.V., Talanov E.Y., Tenkov K.S., Starinets V.S., Mikheeva I.B., Sharapov M.G. and Belosludtsev K.N. (2020) Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim. Biophys. Acta Mol. Basis Dis., 1866, 165674.
    1. Lopez-Font I., Sogorb-Esteve A., Javier-Torrent M., Brinkmalm G., Herrando-Grabulosa M., Garcia-Lareu B., Turon-Sans J., Rojas-Garcia R., Lleo A., Saura C.A. et al. (2019) Decreased circulating ErbB4 ectodomain fragments as a read-out of impaired signaling function in amyotrophic lateral sclerosis. Neurobiol. Dis., 124, 428–438.
    1. Taylor J.M.G., Ankerst D.P. and Andridge R.R. (2008) Validation of biomarker-based risk prediction models. Clin. Cancer Res., 14, 5977–5983.
    1. Fiorillo A.A., Heier C.R., Novak J.S., Tully C.B., Brown K.J., Uaesoontrachoon K., Vila M.C., Ngheim P.P., Bello L., Kornegay J.N. et al. (2015) TNF-α-induced microRNAs control dystrophin expression in Becker muscular dystrophy. Cell Rep., 12, 1678–1690.
    1. Perovanovic J., Dell’Orso S., Gnochi V.F., Jaiswal J.K., Sartorelli V., Vigouroux C., Mamchaoui K., Mouly V., Bonne G. and Hoffman E.P. (2016) Laminopathies disrupt epigenomic developmental programs and cell fate. Sci. Transl. Med., 8, 335ra58.
    1. Khairallah R.J., Shi G., Sbrana F., Prosser B.L., Borroto C., Mazaitis M.J., Hoffman E.P., Mahurkar A., Sachs F., Sun Y. et al. (2012) Microtubules underlie dysfunction in duchenne muscular dystrophy. Sci. Signal., 5, ra56.
    1. Sattlecker M., Kiddle S.J., Newhouse S., Proitsi P., Nelson S., Williams S., Johnston C., Killick R., Simmons A., Westman E. et al. (2014) Alzheimer’s disease biomarker discovery using SOMAscan multiplexed protein technology. Alzheimers Dement., 10, 724–734.
    1. Webber J., Stone T.C., Katilius E., Smith B.C., Gordon B., Mason M.D., Tabi Z., Brewis I.A. and Clayton A. (2014) Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscanTM) platform. Mol. Cell. Proteomics, 13, 1050–1064.
    1. Emilsson V., Ilkov M., Lamb J.R., Finkel N., Gudmundsson E.F., Pitts R., Hoover H., Gudmundsdottir V., Horman S.R., Aspelund T. et al. (2018) Co-regulatory networks of human serum proteins link genetics to disease. Science, 361, 769–773.
    1. Conklin L.S., Merkel P.A., Pachman L.M., Parikh H., Tawalbeh S., Damsker J.M., Cuthbertson D.D., Morgan G.A., Monach P.A., Hathout Y. et al. (2018) Serum biomarkers of glucocorticoid response and safety in anti-neutrophil cytoplasmic antibody-associated vasculitis and juvenile dermatomyositis. Steroids, 140, 159–166.
    1. McDonald C.M., Henricson E.K., Abresch R.T., Florence J., Eagle M., Gappmaier E., Glanzman A.M., Spiegel R., Barth J., Elfring G. et al. (2013) The 6-minute walk test and other clinical endpoints in duchenne muscular dystrophy: reliability, concurrent validity, and minimal clinically important differences from a multicenter study. Muscle Nerve, 48, 357–368.
    1. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. .
    1. Yip A.M. and Horvath S. (2007) Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinformatics, 8, 22.
    1. Friedman J., Hastie T. and Tibshirani R. (2010) Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw., 33, 1–22.
    1. Mudunuri U., Che A., Yi M. and Stephens R.M. (2009) bioDBnet: the biological database network. Bioinformatics, 25, 555–556.

Source: PubMed

3
Předplatit