Design and rationale of the ODYSSEY DM-DYSLIPIDEMIA trial: lipid-lowering efficacy and safety of alirocumab in individuals with type 2 diabetes and mixed dyslipidaemia at high cardiovascular risk

Dirk Müller-Wieland, Lawrence A Leiter, Bertrand Cariou, Alexia Letierce, Helen M Colhoun, Stefano Del Prato, Robert R Henry, Francisco J Tinahones, Lisa Aurand, Jaman Maroni, Kausik K Ray, Maja Bujas-Bobanovic, Dirk Müller-Wieland, Lawrence A Leiter, Bertrand Cariou, Alexia Letierce, Helen M Colhoun, Stefano Del Prato, Robert R Henry, Francisco J Tinahones, Lisa Aurand, Jaman Maroni, Kausik K Ray, Maja Bujas-Bobanovic

Abstract

Background: Type 2 diabetes mellitus (T2DM) is often associated with mixed dyslipidaemia, where non-high-density lipoprotein cholesterol (non-HDL-C) levels may more closely align with cardiovascular risk than low-density lipoprotein cholesterol (LDL-C). We describe the design and rationale of the ODYSSEY DM-DYSLIPIDEMIA study that assesses the efficacy and safety of alirocumab, a proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor, versus lipid-lowering usual care in individuals with T2DM and mixed dyslipidaemia at high cardiovascular risk with non-HDL-C inadequately controlled despite maximally tolerated statin therapy. For the first time, atherogenic cholesterol-lowering with a PCSK9 inhibitor will be assessed with non-HDL-C as the primary endpoint with usual care as the comparator.

Methods: DM-DYSLIPIDEMIA is a Phase 3b/4, randomised, open-label, parallel group, multinational study that planned to enrol 420 individuals. Main inclusion criteria were T2DM and mixed dyslipidaemia (non-HDL-C ≥100 mg/dl [≥2.59 mmol/l], and triglycerides ≥150 and <500 mg/dl [≥1.70 and <5.65 mmol/l]) with documented atherosclerotic cardiovascular disease or ≥1 additional cardiovascular risk factor. Participants were randomised (2:1) to alirocumab 75 mg every 2 weeks (Q2W) or lipid-lowering usual care on top of maximally tolerated statin (or no statin if intolerant). If randomised to usual care, investigators were able to add their pre-specified choice of one of the following to the patient's current statin regimen: ezetimibe, fenofibrate, omega-3 fatty acids or nicotinic acid, in accordance with local standard-of-care. Alirocumab-treated individuals with non-HDL-C ≥100 mg/dl at week 8 will undergo a blinded dose increase to 150 mg Q2W at week 12. The primary efficacy endpoint is non-HDL-C change from baseline to week 24 with alirocumab versus usual care; other lipid levels (including LDL-C), glycaemia-related measures, safety and tolerability will also be assessed. Alirocumab will be compared to fenofibrate in a secondary analysis.

Results: Recruitment completed with 413 individuals randomised in 14 countries worldwide. Results of this trial are expected in the second quarter of 2017.

Conclusions: ODYSSEY DM-DYSLIPIDEMIA will provide information on the efficacy and safety of alirocumab versus lipid-lowering usual care in individuals with T2DM and mixed dyslipidaemia at high cardiovascular risk using non-HDL-C as the primary efficacy endpoint. Trial registration NCT02642159 (registered December 24, 2015).

Keywords: Alirocumab; Diabetes; Mixed dyslipidaemia; Non-HDL-C; ODYSSEY; PCSK9.

Figures

Fig. 1
Fig. 1
Study design. EOT end of treatment, LLT lipid-lowering therapy, MTD maximally tolerated dose, non-HDL-C non-high-density lipoprotein cholesterol, Q2W every 2 weeks, R randomisation, W week. aFirst study drug administration. As a principle, randomisation should occur after signature of the informed consent form and just before the first dosing of the study drug (i.e. alirocumab or usual care). The randomisation day is always day 1. Randomisation was stratified by the investigator’s selection of usual care therapy prior to randomisation. Phone call visits are indicated in italics

References

    1. Mooradian AD. Dyslipidemia in type 2 diabetes mellitus. Nat Clin Pract Endocrinol Metab. 2009;5:150–159. doi: 10.1038/ncpendmet1066.
    1. Verges B. Pathophysiology of diabetic dyslipidaemia: where are we? Diabetologia. 2015;58:886–899. doi: 10.1007/s00125-015-3525-8.
    1. Cannon CP. Mixed dyslipidemia, metabolic syndrome, diabetes mellitus, and cardiovascular disease: clinical implications. Am J Cardiol. 2008;102:5L–9L. doi: 10.1016/j.amjcard.2008.09.067.
    1. Catapano AL, Graham I, De Backer G, Wiklund O, Chapman MJ, Drexel H, Hoes AW, Jennings CS, Landmesser U, Pedersen TR, et al. 2016 ESC/EAS guidelines for the management of dyslipidaemias. Eur Heart J. 2016;37:2999–3058. doi: 10.1093/eurheartj/ehw272.
    1. de Vries M, Klop B, Castro Cabezas M. The use of the non-fasting lipid profile for lipid-lowering therapy in clinical practice—point of view. Atherosclerosis. 2014;234:473–475. doi: 10.1016/j.atherosclerosis.2014.03.024.
    1. Modi KD, Chandwani R, Ahmed I, Kumar KV. Discordance between lipid markers used for predicting cardiovascular risk in patients with type 2 diabetes. Diabetes Metab Syndr. 2016;10:S99–S102. doi: 10.1016/j.dsx.2015.10.002.
    1. Puri R, Nissen SE, Shao M, Elshazly MB, Kataoka Y, Kapadia SR, Tuzcu EM, Nicholls SJ. Non-HDL cholesterol and triglycerides: implications for coronary atheroma progression and clinical events. Arterioscler Thromb Vasc Biol. 2016;36:2220–2228. doi: 10.1161/ATVBAHA.116.307601.
    1. Verbeek R, Hovingh GK, Boekholdt SM. Non-high-density lipoprotein cholesterol: current status as cardiovascular marker. Curr Opin Lipidol. 2015;26:502–510. doi: 10.1097/MOL.0000000000000237.
    1. Bays HE, Jones PH, Orringer CE, Brown WV, Jacobson TA. National lipid association annual summary of clinical lipidology 2016. J Clin Lipidol. 2016;10:S1–S43. doi: 10.1016/j.jacl.2015.08.002.
    1. Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corra U, Cosyns B, Deaton C, et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the sixth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts). Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR) Eur Heart J. 2016;37:2315–2381. doi: 10.1093/eurheartj/ehw106.
    1. Garber AJ, Abrahamson MJ, Barzilay JI, Blonde L, Bloomgarden ZT, Bush MA, Dagogo-Jack S, DeFronzo RA, Einhorn D, Fonseca VA, et al. Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm—2017 executive summary. Endocr Pract. 2017;23:207–238. doi: 10.4158/EP161682.CS.
    1. Writing Committee. Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Daly DD, Jr, DePalma SM, Minissian MB, Orringer CE, Smith SC., Jr ACC expert consensus decision pathway on the role of non-statin therapies for LDL cholesterol lowering in the management of atherosclerotic cardiovascular disease risk: a report of the American College of Cardiology task force on clinical expert consensus documents. J Am Coll Cardiol. 2016;2016(68):92–125.
    1. American Diabetes Association Standards of medical care in diabetes—2017. Diabetes Care. 2017;40(Suppl 1):S1–S2.
    1. Wong ND, Young D, Zhao Y, Nguyen H, Caballes J, Khan I, Sanchez RJ. Prevalence of the American College of Cardiology/American Heart Association statin eligibility groups, statin use, and low-density lipoprotein cholesterol control in US adults using the National Health and Nutrition Examination Survey 2011–2012. J Clin Lipidol. 2016;10:1109–1118. doi: 10.1016/j.jacl.2016.06.011.
    1. Teramoto T, Uno K, Miyoshi I, Khan I, Gorcyca K, Sanchez RJ, Yoshida S, Mawatari K, Masaki T, Arai H, et al. Low-density lipoprotein cholesterol levels and lipid-modifying therapy prescription patterns in the real world: an analysis of more than 33,000 high cardiovascular risk patients in Japan. Atherosclerosis. 2016;251:248–254. doi: 10.1016/j.atherosclerosis.2016.07.001.
    1. Jun M, Foote C, Lv J, Neal B, Patel A, Nicholls SJ, Grobbee DE, Cass A, Chalmers J, Perkovic V. Effects of fibrates on cardiovascular outcomes: a systematic review and meta-analysis. Lancet. 2010;375:1875–1884. doi: 10.1016/S0140-6736(10)60656-3.
    1. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–635. doi: 10.1016/S0140-6736(14)61177-6.
    1. Wong ND, Chuang J, Zhao Y, Rosenblit PD. Residual dyslipidemia according to low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B among statin-treated US adults: National Health and Nutrition Examination Survey 2009–2010. J Clin Lipidol. 2015;9:525–532. doi: 10.1016/j.jacl.2015.05.003.
    1. Leiter LA, Lundman P, da Silva PM, Drexel H, Junger C, Gitt AK. Persistent lipid abnormalities in statin-treated patients with diabetes mellitus in Europe and Canada: results of the Dyslipidemia International Study. Diabet Med. 2011;28:1343–1351. doi: 10.1111/j.1464-5491.2011.03360.x.
    1. Wong ND, Zhao Y, Patel R, Patao C, Malik S, Bertoni AG, Correa A, Folsom AR, Kachroo S, Mukherjee J, et al. Cardiovascular risk factor targets and cardiovascular disease event risk in diabetes: a pooling project of the atherosclerosis risk in communities study, multi-ethnic study of atherosclerosis, and Jackson Heart Study. Diabetes Care. 2016;39:668–676. doi: 10.2337/dc15-2439.
    1. Bramlage P, Lanzinger S, Rathmann W, Gillessen A, Scheper N, Schmid SM, Kaltheuner M, Seufert J, Danne T, Holl RW. Dyslipidemia and its treatment in patients with type 2 diabetes—a joint analysis of the German DIVE and DPV registries. Diabetes Obes Metab. 2016 (Epub ahead of print).
    1. Toth PP, Zarotsky V, Sullivan JM, Laitinen D. Dyslipidemia treatment of patients with diabetes mellitus in a US managed care plan: a retrospective database analysis. Cardiovasc Diabetol. 2009;8:26. doi: 10.1186/1475-2840-8-26.
    1. Khavandi M, Duarte F, Ginsberg HN, Reyes-Soffer G. Treatment of dyslipidemias to prevent cardiovascular disease in patients with type 2 diabetes. Curr Cardiol Rep. 2017;19:7. doi: 10.1007/s11886-017-0818-1.
    1. Roth EM. Alirocumab for hyperlipidemia: ODYSSEY Phase III clinical trial results and US FDA approval indications. Future Cardiol. 2016;12:115–128. doi: 10.2217/fca.15.78.
    1. Ridker PM, Tardif JC, Amarenco P, Duggan W, Glynn RJ, Jukema JW, Kastelein JJP, Kim AM, Koenig W, Nissen S, et al. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N Engl J Med. 2017;376:1517–1526. doi: 10.1056/NEJMoa1614062.
    1. Ferri N, Corsini A, Sirtori CR, Ruscica M. Bococizumab for the treatment of hypercholesterolaemia. Expert Opin Biol Ther. 2017;17:237–243. doi: 10.1080/14712598.2017.1279602.
    1. Roth EM, Goldberg AC, Catapano AL, Torri A, Yancopoulos GD, Stahl N, Brunet A, Lecorps G, Colhoun HM. Antidrug antibodies in patients treated with alirocumab. N Engl J Med. 2017;376:1589–1590. doi: 10.1056/NEJMc1616623.
    1. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, Stroes ES, Langslet G, Raal FJ, El Shahawy M, et al. Efficacy and safety of alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–1499. doi: 10.1056/NEJMoa1501031.
    1. Schwartz GG, Bessac L, Berdan LG, Bhatt DL, Bittner V, Diaz R, Goodman SG, Hanotin C, Harrington RA, Jukema JW, et al. Effect of alirocumab, a monoclonal antibody to PCSK9, on long-term cardiovascular outcomes following acute coronary syndromes: rationale and design of the ODYSSEY outcomes trial. Am Heart J. 2014;168:682–689. doi: 10.1016/j.ahj.2014.07.028.
    1. Ginsberg HN, Farnier M, Robinson JG, Cannon CP, Sattar N, Baccara-Dinet MT, Lorenzato C, Bujas-Bobanovic M, Louie MJ, Colhoun HM. Efficacy and safety of alirocumab: pooled analyses of 1048 individuals with diabetes mellitus from five placebo-controlled Phase 3 studies of at least 52 weeks duration. Circulation. 2015;132:A17070.
    1. Leiter LA, Zamorano JL, Bujas-Bobanovic M, Louie MJ, Lecorps G, Cannon CP, Handelsman Y. Lipid-lowering efficacy and safety of alirocumab in patients with or without diabetes: a sub-analysis of ODYSSEY COMBO II. Diabetes Obes Metab. 2017. doi:10.1111/dom.12909.
    1. Colhoun HM, Ginsberg HN, Robinson JG, Leiter LA, Muller-Wieland D, Henry RR, Cariou B, Baccara-Dinet MT, Pordy R, Merlet L, et al. No effect of PCSK9 inhibitor alirocumab on the incidence of diabetes in a pooled analysis from 10 ODYSSEY Phase 3 studies. Eur Heart J. 2016;37:2981–2989. doi: 10.1093/eurheartj/ehw292.
    1. Taskinen MR, Del Prato S, Bujas-Bobanovic M, Louie MJ, Lorenzato C, Colhoun HM. Alirocumab in individuals with diabetes and mixed dyslipidemia: pooled analyses of five phase 3 trials: presented at the International Diabetes Federation World Congress 2015, Abstract 0272-PD. .
    1. Tatlock S, Grant L, Spertus JA, Khan I, Arbuckle R, Manvelian G, Sanchez RJ. Development and content validity testing of a patient-reported treatment acceptance measure for use in patients receiving treatment via subcutaneous injection. Value Health. 2015;18:1000–1007. doi: 10.1016/j.jval.2015.09.2937.
    1. Kei A, Liberopoulos EN, Mikhailidis DP, Elisaf M. Comparison of switch to the highest dose of rosuvastatin vs. add-on nicotinic acid vs. add-on fenofibrate for mixed dyslipidaemia. Int J Clin Pract. 2013;67:412–419. doi: 10.1111/ijcp.12098.
    1. ACCORD Study Group. Ginsberg HN, Elam MB, Lovato LC, Crouse JR, Leiter LA, Linz P, Friedewald WT, Buse JB, Gerstein HC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–1574. doi: 10.1056/NEJMoa1001282.
    1. Koren MJ, Kereiakes D, Pourfarzib R, Winegar D, Banerjee P, Hamon S, Hanotin C, McKenney JM. Effect of PCSK9 inhibition by alirocumab on lipoprotein particle concentrations determined by nuclear magnetic resonance spectroscopy. J Am Heart Assoc. 2015;4:e002224.
    1. Lee SJ, Campos H, Moye LA, Sacks FM. LDL containing apolipoprotein CIII is an independent risk factor for coronary events in diabetic patients. Arterioscler Thromb Vasc Biol. 2003;23:853–858. doi: 10.1161/01.ATV.0000066131.01313.EB.
    1. TG and HDL Working Group of the Exome Sequencing Project, National Heart Lung and Blood Institute. Crosby J, Peloso GM, Auer PL, Crosslin DR, Stitziel NO, Lange LA, Lu Y, Tang ZZ, Zhang H, et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371:22–31. doi: 10.1056/NEJMoa1307095.
    1. Toth PP, Hamon SC, Jones SR, Martin SS, Joshi PH, Kulkarni KR, Banerjee P, Hanotin C, Roth EM, McKenney JM. Effect of alirocumab on specific lipoprotein non-high-density lipoprotein cholesterol and subfractions as measured by the vertical auto profile method: analysis of 3 randomized trials versus placebo. Lipids Health Dis. 2016;15:28. doi: 10.1186/s12944-016-0197-4.
    1. Gordts PL, Nock R, Son NH, Ramms B, Lew I, Gonzales JC, Thacker BE, Basu D, Lee RG, Mullick AE, et al. ApoC-III inhibits clearance of triglyceride-rich lipoproteins through LDL family receptors. J Clin Invest. 2016;126:2855–2866. doi: 10.1172/JCI86610.
    1. Costet P, Cariou B, Lambert G, Lalanne F, Lardeux B, Jarnoux AL, Grefhorst A, Staels B, Krempf M. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J Biol Chem. 2006;281:6211–6218. doi: 10.1074/jbc.M508582200.
    1. Miao J, Manthena PV, Haas ME, Ling AV, Shin DJ, Graham MJ, Crooke RM, Liu J, Biddinger SB. Role of insulin in the regulation of proprotein convertase subtilisin/kexin type 9. Arterioscler Thromb Vasc Biol. 2015;35:1589–1596. doi: 10.1161/ATVBAHA.115.305688.
    1. Cariou B, Langhi C, Le Bras M, Bortolotti M, Le KA, Theytaz F, Le May C, Guyomarc’h-Delasalle B, Zair Y, Kreis R, et al. Plasma PCSK9 concentrations during an oral fat load and after short term high-fat, high-fat high-protein and high-fructose diets. Nutr Metab. 2013;10:4. doi: 10.1186/1743-7075-10-4.
    1. Farnier M, Gaudet D, Valcheva V, Minini P, Miller K, Cariou B. Efficacy of alirocumab in high cardiovascular risk populations with or without heterozygous familial hypercholesterolemia: pooled analysis of eight ODYSSEY Phase 3 clinical program trials. Int J Cardiol. 2016;223:750–757. doi: 10.1016/j.ijcard.2016.08.273.
    1. Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, Voros S, Giugliano RP, Davey Smith G, Fazio S, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N Engl J Med. 2016;375:2144–2153. doi: 10.1056/NEJMoa1604304.
    1. Schmidt AF, Swerdlow DI, Holmes MV, Patel RS, Fairhurst-Hunter Z, Lyall DM, Hartwig FP, Horta BL, Hypponen E, Power C, et al. PCSK9 genetic variants and risk of type 2 diabetes: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2017;5:97–105. doi: 10.1016/S2213-8587(16)30396-5.
    1. Lotta LA, Sharp SJ, Burgess S, Perry JR, Stewart ID, Willems SM, Luan J, Ardanaz E, Arriola L, Balkau B, et al. Association between low-density lipoprotein cholesterol-lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA. 2016;316:1383–1391. doi: 10.1001/jama.2016.14568.
    1. Cariou B, Leiter LA, Muller-Wieland D, Bigot G, Colhoun HM, Del Prato S, Henry RR, Tinahones FJ, Letierce A, Aurand L, et al. Efficacy and safety of alirocumab in insulin-treated patients with type 1 or type 2 diabetes and high cardiovascular risk: rationale and design of the ODYSSEY DM-INSULIN trial. Diabetes Metab. 2017. doi:10.1016/j.diabet.2017.01.004.
    1. Roth EM, Bujas-Bobanovic M, Louie MJ, Cariou B. Patient and physician perspectives on mode of administration of the PCSK9 monoclonal antibody alirocumab, an injectable medication to lower LDL-C levels. Clin Ther. 2015;37(1945–1954):e1946.

Source: PubMed

3
Předplatit