PCSK9 inhibitor recaticimab for hypercholesterolemia on stable statin dose: a randomized, double-blind, placebo-controlled phase 1b/2 study

Mingtong Xu, Xiaoxue Zhu, Junyan Wu, Yuling Zhang, Dong Zhao, Xuhong Wang, Yanhua Ding, Yu Cao, Chengqian Li, Wei Hu, Jianlong Sheng, Zhu Luo, Zeqi Zheng, Jinfang Hu, Jianying Liu, Xiaoyang Zhou, Aizong Shen, Xiaomei Ding, Yongdong Zhang, Yonggang Zhao, Yijing Li, Sheng Zhong, Shimin An, Jianjun Zou, Li Yan, Mingtong Xu, Xiaoxue Zhu, Junyan Wu, Yuling Zhang, Dong Zhao, Xuhong Wang, Yanhua Ding, Yu Cao, Chengqian Li, Wei Hu, Jianlong Sheng, Zhu Luo, Zeqi Zheng, Jinfang Hu, Jianying Liu, Xiaoyang Zhou, Aizong Shen, Xiaomei Ding, Yongdong Zhang, Yonggang Zhao, Yijing Li, Sheng Zhong, Shimin An, Jianjun Zou, Li Yan

Abstract

Background: Recaticimab (SHR-1209, a humanized monoclonal antibody against PCSK9) showed robust LDL-C reduction in healthy volunteers. This study aimed to further assess the efficacy and safety of recaticimab in patients with hypercholesterolemia.

Methods: In this randomized, double-blind, placebo-controlled phase 1b/2 trial, patients receiving stable dose of atorvastatin with an LDL-C level of 2.6 mmol/L or higher were randomized in a ratio of 5:1 to subcutaneous injections of recaticimab or placebo at different doses and schedules. Patients were recruited in the order of 75 mg every 4 weeks (75Q4W), 150Q8W, 300Q12W, 150Q4W, 300Q8W, and 450Q12W. The primary endpoint was percentage change in LDL-C from the baseline to end of treatment (i.e., at week 16 for Q4W and Q8W schedule and at week 24 for Q12W schedule).

Results: A total of 91 patients were enrolled and received recaticimab and 19 received placebo. The dose of background atorvastatin in all 110 patients was 10 or 20 mg/day. The main baseline LDL-C ranged from 3.360 to 3.759 mmol/L. The least-squares mean percentage reductions in LDL-C from baseline to end of treatment relative to placebo for recaticimab groups at different doses and schedules ranged from -48.37 to -59.51%. No serious treatment-emergent adverse events (TEAEs) occurred. The most common TEAEs included upper respiratory tract infection, increased alanine aminotransferase, increased blood glucose, and increased gamma-glutamyltransferase.

Conclusion: Recaticimab as add-on to moderate-intensity statin therapy significantly and substantially reduced the LDL-C level with an infrequent administration schedule (even given once every 12 weeks), compared with placebo.

Trial registration: ClinicalTrials.gov , number NCT03944109.

Keywords: Hypercholesterolemia; Infrequent administration; PCSK9; Recaticimab.

Conflict of interest statement

YL, SZ, SA, and JZ reported being employed at Jiangsu Hengrui Pharmaceuticals. No other disclosures were reported.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Study flow. *2, 2, 2, 4, 4, and 4 patients were assigned to receive placebo at a dose and frequency of 75 mg Q4W, 150 mg Q4W, 150 mg Q8W, 300 mg Q8W, 300 mg Q12W, and 450 mg Q12W, respectively
Fig. 2
Fig. 2
Percentage change in LDL-C during treatment. Mean percentage changes (standard error) in LDL-C from baseline to end of treatment (i.e., at week 16 for patients receiving treatment Q4W and Q8W and at week 24 for patients receiving treatment Q12W) are shown. LDL-C low-density lipoprotein cholesterol

References

    1. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–88. 10.1093/eurheartj/ehz455.
    1. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;73(24):e285–350. 10.1016/j.jacc.2018.11.003.
    1. Cholesterol Treatment Trialists C. Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–1681. doi: 10.1016/S0140-6736(10)61350-5.
    1. Karr S. Epidemiology and management of hyperlipidemia. Am J Manag Care. 2017;23(9 Suppl):S139–S148.
    1. Waters DD, Brotons C, Chiang CW, Ferrieres J, Foody J, Jukema JW, et al. Lipid treatment assessment project 2: a multinational survey to evaluate the proportion of patients achieving low-density lipoprotein cholesterol goals. Circulation. 2009;120(1):28–34. doi: 10.1161/CIRCULATIONAHA.108.838466.
    1. Ford ES, Li C, Pearson WS, Zhao G, Mokdad AH. Trends in hypercholesterolemia, treatment and control among United States adults. Int J Cardiol. 2010;140(2):226–235. doi: 10.1016/j.ijcard.2008.11.033.
    1. Toth PP, Patti AM, Giglio RV, Nikolic D, Castellino G, Rizzo M, et al. Management of statin intolerance in 2018: still more questions than answers. Am J Cardiovasc Drugs. 2018;18(3):157–73. 10.1007/s40256-017-0259-7.
    1. Saxon DR, Eckel RH. Statin intolerance: a literature review and management strategies. Prog Cardiovasc Dis. 2016;59(2):153–164. doi: 10.1016/j.pcad.2016.07.009.
    1. Group HTC HPS2-THRIVE randomized placebo-controlled trial in 25 673 high-risk patients of ER niacin/laropiprant: trial design, pre-specified muscle and liver outcomes, and reasons for stopping study treatment. Eur Heart J. 2013;34(17):1279–1291. doi: 10.1093/eurheartj/eht055.
    1. Leitersdorf E. Cholesterol absorption inhibition: filling an unmet need in lipid-lowering management. Eur Heart J Suppl 2001;3:E17–23. 10.1016/S1520-765X(01)90108-7.
    1. Cesaro A, Bianconi V, Gragnano F, Moscarella E, Fimiani F, Monda E, et al. Beyond cholesterol metabolism: the pleiotropic effects of proprotein convertase subtilisin/kexin type 9 (PCSK9). Genetics, mutations, expression, and perspective for long-term inhibition. Biofactors. 2020;46(3):367–80. 10.1002/biof.1619.
    1. Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade. J Lipid Res. 2012;53(12):2515–2524. doi: 10.1194/jlr.R026658.
    1. Stein EA, Swergold GD. Potential of proprotein convertase subtilisin/kexin type 9 based therapeutics. Curr Atheroscler Rep. 2013;15(3):310. doi: 10.1007/s11883-013-0310-3.
    1. Cohen JC, Boerwinkle E, Mosley TH, Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–1272. doi: 10.1056/NEJMoa054013.
    1. Zhang XL, Zhu QQ, Zhu L, Chen JZ, Chen QH, Li GN, et al. Safety and efficacy of anti-PCSK9 antibodies: a meta-analysis of 25 randomized, controlled trials. BMC Med. 2015;13(1):123. 10.1186/s12916-015-0358-8.
    1. Karatasakis A, Danek BA, Karacsonyi J, Rangan BV, Roesle MK, Knickelbine T, et al. Effect of PCSK9 inhibitors on clinical outcomes in patients with hypercholesterolemia: a meta-analysis of 35 randomized controlled trials. J Am Heart Assoc. 2017;6(12). 10.1161/JAHA.117.006910.
    1. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372(16):1500–9. 10.1056/NEJMoa1500858.
    1. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22. 10.1056/NEJMoa1615664.
    1. Szarek M, White HD, Schwartz GG, Alings M, Bhatt DL, Bittner VA, et al. Alirocumab reduces total nonfatal cardiovascular and fatal events: the Odyssey Outcomes Trial. J Am Coll Cardiol. 2019;73(4):387–96. 10.1016/j.jacc.2018.10.039.
    1. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107. 10.1056/NEJMoa1801174.
    1. Cesaro A, Gragnano F, Fimiani F, Moscarella E, Diana V, Pariggiano I, et al. Impact of PCSK9 inhibitors on the quality of life of patients at high cardiovascular risk. Eur J Prev Cardiol. 2020;27(5):556–8. 10.1177/2047487319839179.
    1. Careskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res. 2008;49(2):394–398. doi: 10.1194/jlr.M700437-JLR200.
    1. Welder G, Zineh I, Pacanowski MA, Troutt JS, Cao G, Konrad RJ. High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J Lipid Res. 2010;51(9):2714–2721. doi: 10.1194/jlr.M008144.
    1. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National Lipid Association recommendations for patient-centered management of dyslipidemia: part 1 - executive summary. J Clin Lipidol. 2014;8(5):473–88. 10.1016/j.jacl.2014.07.007.
    1. Giugliano RP, Desai NR, Kohli P, Rogers WJ, Somaratne R, Huang F, et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE-TIMI 57): a randomised, placebo-controlled, dose-ranging, phase 2 study. Lancet. 2012;380(9858):2007–17. 10.1016/S0140-6736(12)61770-X.
    1. Gragnano F, Natale F, Concilio C, Fimiani F, Cesaro A, Sperlongano S, et al. Adherence to proprotein convertase subtilisin/kexin 9 inhibitors in high cardiovascular risk patients: an Italian single-center experience. J Cardiovasc Med (Hagerstown). 2018;19(2):75–7. 10.2459/JCM.0000000000000611.
    1. Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020;382(16):1520–30. 10.1056/NEJMoa1913805.
    1. Ford ES, Ajani UA, Croft JB, Critchley JA, Labarthe DR, Kottke TE, et al. Explaining the decrease in U.S. deaths from coronary disease, 1980-2000. N Engl J Med. 2007;356(23):2388–98. 10.1056/NEJMsa053935.
    1. Boren J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 2016;27(5):473–483. doi: 10.1097/MOL.0000000000000330.
    1. Alonso R, Andres E, Mata N, Fuentes-Jimenez F, Badimon L, Lopez-Miranda J, et al. Lipoprotein(a) levels in familial hypercholesterolemia: an important predictor of cardiovascular disease independent of the type of LDL receptor mutation. J Am Coll Cardiol. 2014;63(19):1982–1989. doi: 10.1016/j.jacc.2014.01.063.
    1. Nordestgaard BG, Chapman MJ, Ray K, Boren J, Andreotti F, Watts GF, et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur Heart J. 2010;31(23):2844–2853. doi: 10.1093/eurheartj/ehq386.
    1. Emerging Risk Factors C. Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302:412–423. doi: 10.1001/jama.2009.1063.
    1. Cesaro A, Schiavo A, Moscarella E, Coletta S, Conte M, Gragnano F, et al. Lipoprotein(a): a genetic marker for cardiovascular disease and target for emerging therapies. J Cardiovasc Med (Hagerstown). 2021;22(3):151–61. 10.2459/JCM.0000000000001077.
    1. Prescribing Information for alirocumab 2021. . Accessed 19 May 2021.
    1. Prescribing Information for evolocumab 2021. . Accessed 19 May 2021.
    1. Booth BJ, Ramakrishnan B, Narayan K, Wollacott AM, Babcock GJ, Shriver Z, et al. Extending human IgG half-life using structure-guided design. MAbs. 2018;10(7):1098–110. 10.1080/19420862.2018.1490119.

Source: PubMed

3
Předplatit