In vivo efficacy of sulphadoxine-pyrimethamine for the treatment of asymptomatic parasitaemia in pregnant women in Machinga District, Malawi

Julie Gutman, Dyson Mwandama, Ryan E Wiegand, Joseph Abdallah, Nnaemeka C Iriemenam, Ya Ping Shi, Don P Mathanga, Jacek Skarbinski, Julie Gutman, Dyson Mwandama, Ryan E Wiegand, Joseph Abdallah, Nnaemeka C Iriemenam, Ya Ping Shi, Don P Mathanga, Jacek Skarbinski

Abstract

Background: The effectiveness of sulphadoxine-pyrimethamine (SP) intermittent preventive treatment of malaria in pregnancy (IPTp) might be compromised by high prevalence of resistance-associated Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutations. As a proxy for IPTp-SP effectiveness, the in vivo efficacy of SP to clear parasitaemia and prevent reinfection in asymptomatic parasitaemic pregnant women in an area with high SP resistance prevalence was assessed.

Methods: Pregnant women 16-26 weeks' gestation with asymptomatic parasitaemia presenting for antenatal care were given IPTp-SP and followed for 42 days. The primary outcome was polymerase chain reaction (PCR) uncorrected 42-day survival rate; the per cent of patients without recrudescence or reinfection by day 42. PCR was used to distinguish recrudescence from reinfection. DNA was sequenced to detect resistance-associated dhfr and dhps mutations.

Results: Of 245 pregnant women included in the intention-to-treat analysis, 93.9% cleared their parasitaemia by day 7. The day 42 PCR-uncorrected survival rate was 58.1% (95% confidence interval (CI) 51.5-65.7) and day 42 PCR-corrected survival was 68.7% (CI 61.4-76.0). Recrudescence was more common among primi- than among multigravid women; recrudescence rate 33.3% (CI 25.1-42.4%) versus 21.4% (CI 15.0-29.0%) (log rank test p-value 0.006). The quintuple mutant was present in nearly all samples (95%), while 2% were sextuple mutants with an additional mutation at dhps A581G.

Conclusions: SP efficacy for acute malaria treatment has been compromised by resistance, but SP retains partial activity among pregnant women with asymptomatic parasitaemia, and thus might be useful for IPTp. Nonetheless, research on non-SP IPTp regimens should continue.

Trial registration: ClinicalTrials.gov NCT01120145 .

Figures

Figure 1
Figure 1
Enrolment flow diagram for sulphadoxine-pyrimethamine (SP) modified in vivo efficacy study in pregnant women*. *Study included pregnant women with asymptomatic malaria parasitaemia attending antenatal care for their first dose of intermittent preventive treatment in pregnancy with SP (IPTp-SP), Machinga District Hospital, Malawi 2009–2010. RDT = rapid diagnostic test.
Figure 2
Figure 2
Kaplan-Meier survival curve estimates for asymptomatic parasitaemic women following treatment with sulphadoxine-pyrimethamine at day 0 with 95% confidence intervals, by gravidity.
Figure 3
Figure 3
Mean haemoglobin levels with 95% confidence intervals broken down by gravidity.

References

    1. Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, et al. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis. 2007;7:93–104. doi: 10.1016/S1473-3099(07)70021-X.
    1. ter Kuile FO, van Eijk AM, Filler SJ. Effect of sulfadoxine-pyrimethamine resistance on the efficacy of intermittent preventive therapy for malaria control during pregnancy. JAMA. 2007;297:2603–16. doi: 10.1001/jama.297.23.2603.
    1. Kayentao K, Kodio M, Newman RD, Maiga H, Doumtabe D, Ongoiba A, et al. Comparison of intermittent preventive treatment with chemoprophylaxis for the prevention of malaria during pregnancy in Mali. J Infect Dis. 2005;191:109–16. doi: 10.1086/426400.
    1. Parise ME, Ayisi JG, Nahlen BL, Schultz LJ, Roberts JM, Misore A, et al. Efficacy of sulfadoxine-pyrimethamine for prevention of placental malaria in an area of Kenya with a high prevalence of malaria and human immunodeficiency virus infection. Am J Trop Med Hyg. 1998;59:813–22.
    1. WHO Malaria Policy Advisory Committee Secretariat Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of September 2012 meeting. Malar J. 2012;11:424. doi: 10.1186/1475-2875-11-424.
    1. Taylor SM, Antonia A, Chaluluka E, Mwapasa V, Feng G, Molyneux ME, et al. Antenatal receipt of sulfadoxine-pyrimethamine does not exacerbate pregnancy-associated malaria despite the expansion of drug-resistant Plasmodium falciparum: clinical outcomes from the QuEERPAM study. Clin Infect Dis. 2012;55:42–50. doi: 10.1093/cid/cis301.
    1. Taylor SM, Antonia A, Feng G, Mwapasa V, Chaluluka E, Molyneux M, et al. Adaptive evolution and fixation of drug-resistant Plasmodium falciparum genotypes in pregnancy-associated malaria: 9-year results from the QuEERPAM study. Infect Genet Evol. 2012;12:282–90. doi: 10.1016/j.meegid.2011.11.006.
    1. Kayentao K, Garner P, van Eijk AM, Naidoo I, Roper C, Mulokozi A, et al. Intermittent preventive therapy for malaria during pregnancy using 2 vs 3 or more doses of sulfadoxine-pyrimethamine and risk of low birth weight in africa: systematic review and meta-analysis. JAMA. 2013;309:594–604. doi: 10.1001/jama.2012.216231.
    1. Feng G, Simpson JA, Chaluluka E, Molyneux ME, Rogerson SJ. Decreasing burden of malaria in pregnancy in Malawian women and its relationship to use of intermittent preventive therapy or bed nets. PLoS ONE. 2010;5:e12012. doi: 10.1371/journal.pone.0012012.
    1. Harrington WE, Mutabingwa TK, Muehlenbachs A, Sorensen B, Bolla MC, Fried M, et al. Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc Natl Acad Sci U S A. 2009;106:9027–32. doi: 10.1073/pnas.0901415106.
    1. Harrington W, Mutabingwa T, Kabyemela E, Fried M, Duffy P. Intermittent treatment to prevent pregnancy malaria does not confer benefit in an area of widespread drug resistance. Clin Infect Dis. 2011;53:224–30. doi: 10.1093/cid/cir376.
    1. Minja D, Schmiegelow C, Mmbando B, Boström S, Oesterholt M, Magistrado P, et al. Infections with Plasmodium falciparum sextuple dihydrofolate reductase/dihydropteroate synthetase allelic haplotypes during pregnancy are associated with decreased birth weight in Korogwe, Tanzania. Emerg Inf Dis. 2013,19 Sept
    1. Gutman J, Kalilani L, Taylor S, Zhou Z, Wiegand RE, Thwai KL, et al. Plasmodium falciparum dhps-581G mutation reduces the effectiveness of sulfadoxine-pyrimethamine intermittent preventive therapy in Malawian pregnant women. JID 2015. Epub ahead of print.
    1. Msyamboza K, Amanor A, Kazembe P, Brabin B, Meshnick S, Mwapasa V. In-vivo parasitological response to sulfadoxine-pyrimethamine in pregnant women in southern Malawi. Malawi Med J. 2007;19:11–3. doi: 10.4314/mmj.v19i1.10926.
    1. WHO . Standard protocol for measuring efficacy of antimalarial drugs in high transmission settings. Geneva: World Health Organization; 2003.
    1. Iriemenam N, Shah M, Gatei W, van Eijk A, Ayisi J, Kariuki S, et al. Temporal trends of sulphadoxine-pyrimethamine (SP) drug-resistance molecular markers in Plasmodium falciparum parasites from pregnant women in western Kenya. Malar J. 2012;11:134. doi: 10.1186/1475-2875-11-134.
    1. Kublin JG, Dzinjalamala FK, Kamwendo DD, Malkin EM, Cortese JF, Martino LM, et al. Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. J Infect Dis. 2002;185:380–8. doi: 10.1086/338566.
    1. WHO . Recommended Genotyping Procedures (RGPs) to identify parasite populations. 2007.
    1. Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Amer Statist Assn. 1958;53:457–81. doi: 10.1080/01621459.1958.10501452.
    1. Groenwold RH, Donders AR, Roes KC, Harrell FE, Jr, Moons KG. Dealing with missing outcome data in randomized trials and observational studies. Am J Epidemiol. 2012;175:210–7. doi: 10.1093/aje/kwr302.
    1. Cox DR. Regression models and life tables. J Royal Stat Soc Ser B. 1972;20:187–220.
    1. Schwartz G. Estimating the dimension of a model. Ann Stat. 1978;6:461–4. doi: 10.1214/aos/1176344136.
    1. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.
    1. WHO . Methods for surveillance of antimalarial drug efficacy. Geneva: World Health Organization; 2009.
    1. WHO. Updated WHO policy recommendation: intermittent preventive treatment of malaria in pregnancy using sulfadoxine-pyrimethamine (IPTp-SP).
    1. Gutman J, Mwandama D, Wiegand R, Ali D, Mathanga DP, Skarbinski J. Effectiveness of intermittent preventive treatment with sulfadoxine-pyrimethamine in pregnancy on maternal and infant birth outcomes in Machinga District, Malawi. J Inf Dis. 2013;208:907–16. doi: 10.1093/infdis/jit276.
    1. Arinaitwe E, Ades V, Walakira A, Ninsiima B, Mugagga O, Patil TS, et al. Intermittent preventive therapy with sulfadoxine-pyrimethamine for malaria in pregnancy: a cross-sectional study from Tororo, Uganda. PLoS ONE. 2013;8:e73073. doi: 10.1371/journal.pone.0073073.
    1. Tan KR, Katalenich BL, Mace KE, Nambozi M, Taylor SM, Meshnick SR, et al. Efficacy of sulphadoxine-pyrimethamine for intermittent preventive treatment of malaria in pregnancy, Mansa, Zambia. Malar J. 2014;13:227. doi: 10.1186/1475-2875-13-227.
    1. Mace K, Chalwe V, Katalenich BL, Nambozi M, Mubikayi L, Mulele CK, et al. Evaluation of sulphadoxine-pyrimethamine for intermittent preventive treatment of malaria in pregnancy: a retrospective birth outcomes study-Mansa, Zambia. Malar J. 2015;14:69. doi: 10.1186/s12936-015-0576-8.
    1. White N. Intermittent presumptive treatment for malaria. PLoS Med. 2005;2:e3. doi: 10.1371/journal.pmed.0020003.
    1. Cohee L, Kalilani-Phiri L, Boudova S, Joshi S, Mukadam R, Seydel K, et al. Submicroscopic malaria infection during pregnancy and the impact of intermittent preventive treatment. Malar J. 2014;13:274. doi: 10.1186/1475-2875-13-274.
    1. Tagbor H, Bruce J, Agbo M, Greenwood B, Chandramohan D. Intermittent screening and treatment versus intermittent preventive treatment of malaria in pregnancy: a randomised controlled non-inferiority trial. PLoS ONE. 2010;5:e14425. doi: 10.1371/journal.pone.0014425.
    1. Coulibaly S, Kayentao K, Taylor S, Guirou E, Khairallah C, Guindo N, et al. Parasite clearance following treatment with sulphadoxine-pyrimethamine for intermittent preventive treatment in Burkina-Faso and Mali: 42-day in vivo follow-up study. Malar J. 2014;13:41. doi: 10.1186/1475-2875-13-41.
    1. Moussiliou A, De Tove YS-S, Doritchamou J, Luty A, Massougbodji A, Alifrangis M, et al. High rates of parasite recrudescence following intermittent preventive treatment with sulphadoxine-pyrimethamine during pregnancy in Benin. Malar J. 2013;12:195. doi: 10.1186/1475-2875-12-195.

Source: PubMed

3
Předplatit