Glucose associated NETosis in patients with ST-elevation myocardial infarction: an observational study

Ragnhild Helseth, Eva Cecilie Knudsen, Jan Eritsland, Trine Baur Opstad, Harald Arnesen, Geir Øystein Andersen, Ingebjørg Seljeflot, Ragnhild Helseth, Eva Cecilie Knudsen, Jan Eritsland, Trine Baur Opstad, Harald Arnesen, Geir Øystein Andersen, Ingebjørg Seljeflot

Abstract

Background: Neutrophil extracellular traps (NETs) have recently been identified as mediators in atherothrombosis. Although NETosis in general has been suggested to be glucose dependent, the transferability to patients with acute ST-elevation myocardial infarction (STEMI) is unclear. We assessed whether the NETs markers double-stranded deoxyribonucleid acid (dsDNA) and myeloperoxidase-DNA (MPO-DNA) associated with plasma glucose and the glucometabolic status in the acute phase and 3 months after a STEMI. We also explored whether an acute glucose load resulted in upregulated NETosis by assessment of peptidylarginine deiminase 4 (PAD4) gene expression.

Methods: In total, 224 STEMI patients were prospectively enrolled and underwent blood sampling acutely (median 16.5 h after PCI) and after 3 months. Glucometabolic status was defined based on the results of an oral glucose tolerance test (OGTT) as normal glucose regulation (NGR), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) or type 2 diabetes (T2DM). dsDNA and MPO-DNA were measured in serum, while PAD4 mRNA was measured in circulating leukocytes by RT-PCR.

Results: dsDNA levels were significantly correlated to plasma glucose both acutely and after 3 months (r = 0.12 and r = 0.17, both p < 0.02), whereas MPO-DNA was not. No associations with the glucometabolic status were encountered for dsDNA and MPO-DNA acutely, but after 3 months dsDNA levels were elevated in patients with IFG and T2DM vs. NGR (428 vs. 371 ng/ml and 408 vs. 371 ng/ml, both p < 0.045). During the acute glucose load after 3 months, dsDNA and MPO-DNA remained unchanged while PAD4 mRNA increased significantly (RQ 0.836 vs. 0.920, p = 0.02).

Conclusions: In this cohort of STEMI patients, levels of dsDNA associated with plasma glucose both in the acute and stable condition. The glucometabolic status was not substantially related to the selected NETs markers, however, an acute glucose load by OGTT performed after 3 months resulted in increased PAD4 expression, suggestive of enhanced NETosis in the aftermath of STEMI.

Trial registration: www.clinicaltrials.gov, NCT00926133 . Registered June 23, 2009.

Keywords: Acute ST-elevation myocardial infarction (STEMI); Double-stranded deoxyribonucleid acid (dsDNA); Glucometabolic status; Glucose; Immunothrombosis; Innate immunity; Neutrophil activation; Neutrophil extracellular traps (NETs).

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
The time profiles of NETs markers and change during OGTT. a dsDNA, b MPO-DNA, c PAD4 mRNA. Values are given as medians (25, 75 percentiles). p values are based on the Wilcoxon Signed Rank test. *: Significant change from the acute phase. **: Significant change during the course of OGTT. dsDNA: double-stranded deoxyribonucleic acid. MPO-DNA: myeloperodidase deoxyribonucleid acid. OGTT: oral glucose tolerance test. OD: optical density units. PAD4 mRNA: peptidyl arginine deiminase 4 messenger ribonucleic acid
Fig. 2
Fig. 2
Correlation between glucose and dsDNA. a Acute phase, b at 3 months. p values are based on the Spearman’s rho. dsDNA: double-stranded deoxyribonucleic acid. OGTT: oral glucose tolerance test
Fig. 3
Fig. 3
NETs markers related to the glucometabolic status at 3 months. Values are given as medians (25, 75 percentiles). a-c: dsDNA levels in NGR vs. IFG, IGT and T2DM, respectively. d-f: MPO-DNA levels in NGR vs. IFG, IGT and T2DM, respectively. g-i: PAD4 mRNA levels in NGR vs. IFG, IGT and T2DM, respectively.p values are based on the Mann-Whitney U test. dsDNA: double-stranded deoxyribonucleic acid. IFG: impaired fasting glucose. IGT: impaired glucose tolerance. MPO-DNA: myeloperoxidase deoxyribonucleic acid. NGR: normal glucose regulation. OD: optical density units. PAD4 mRNA: peptidylarginine deiminase 4 messenger ribonucleic acid. RQ: relative quantification values. T2DM: type 2 diabetes mellitus
Fig. 4
Fig. 4
Suggested metabolic pathways involved in glucose mediated NETosis, simplified schematic illustration

References

    1. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–1535. doi: 10.1126/science.1092385.
    1. Borissoff JI, Joosen IA, Versteylen MO, Brill A, Fuchs TA, Savchenko AS, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol. 2013;33(8):2032–2040. doi: 10.1161/ATVBAHA.113.301627.
    1. Langseth MS, Opstad TB, Bratseth V, Solheim S, Arnesen H, Pettersen AA, et al. Markers of neutrophil extracellular traps are associated with adverse clinical outcome in stable coronary artery disease. Eur J Prev Cardiol. 2018;25(7):762–769. doi: 10.1177/2047487318760618.
    1. Mangold A, Alias S, Scherz T, Hofbauer T, Jakowitsch J, Panzenbock A, et al. Coronary neutrophil extracellular trap burden and deoxyribonuclease activity in ST-elevation acute coronary syndrome are predictors of ST-segment resolution and infarct size. Circ Res. 2015;116(7):1182–1192. doi: 10.1161/CIRCRESAHA.116.304944.
    1. Helseth R, Solheim S, Arnesen H, Seljeflot I, Opstad TB. The time course of markers of neutrophil extracellular traps in patients undergoing revascularisation for acute myocardial infarction or stable angina pectoris. Mediat Inflamm. 2016;2016:2182358. doi: 10.1155/2016/2182358.
    1. Riegger J, Byrne RA, Joner M, Chandraratne S, Gershlick AH, Ten Berg JM, et al. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. Eur Heart J. 2016;37(19):1538–1549. doi: 10.1093/eurheartj/ehv419.
    1. Doring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and Atherothrombosis. Circ Res. 2017;120(4):736–743. doi: 10.1161/CIRCRESAHA.116.309692.
    1. Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol. 2013;13(1):34–45. doi: 10.1038/nri3345.
    1. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–15885. doi: 10.1073/pnas.1005743107.
    1. Stakos DA, Kambas K, Konstantinidis T, Mitroulis I, Apostolidou E, Arelaki S, et al. Expression of functional tissue factor by neutrophil extracellular traps in culprit artery of acute myocardial infarction. Eur Heart J. 2015;36(22):1405–1414. doi: 10.1093/eurheartj/ehv007.
    1. Gould TJ, Vu TT, Stafford AR, Dwivedi DJ, Kim PY, Fox-Robichaud AE, et al. Cell-free DNA modulates clot structure and impairs fibrinolysis in sepsis. Arterioscler Thromb Vasc Biol. 2015;35(12):2544–2553. doi: 10.1161/ATVBAHA.115.306035.
    1. Rohrbach AS, Slade DJ, Thompson PR, Mowen KA. Activation of PAD4 in NET formation. Front Immunol. 2012;3:360. doi: 10.3389/fimmu.2012.00360.
    1. Hoppenbrouwers T, Autar ASA, Sultan AR, Abraham TE, van Cappellen WA, Houtsmuller AB, et al. In vitro induction of NETosis: comprehensive live imaging comparison and systematic review. PLoS One. 2017;12(5):e0176472. doi: 10.1371/journal.pone.0176472.
    1. Menegazzo L, Ciciliot S, Poncina N, Mazzucato M, Persano M, Bonora B, et al. NETosis is induced by high glucose and associated with type 2 diabetes. Acta Diabetol. 2015;52(3):497–503. doi: 10.1007/s00592-014-0676-x.
    1. Rodriguez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MM, Lopez-Villegas EO, Sanchez-Garcia FJ. Metabolic requirements for neutrophil extracellular traps formation. Immunology. 2015;145(2):213–224. doi: 10.1111/imm.12437.
    1. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med. 2015;21(7):815–819. doi: 10.1038/nm.3887.
    1. Miyoshi A, Yamada M, Shida H, Nakazawa D, Kusunoki Y, Nakamura A, et al. Circulating neutrophil extracellular trap levels in well-controlled type 2 diabetes and pathway involved in their formation induced by high-dose glucose. Pathobiology. 2016;83(5):243–251. doi: 10.1159/000444881.
    1. Joshi MB, Baipadithaya G, Balakrishnan A, Hegde M, Vohra M, Ahamed R, et al. Elevated homocysteine levels in type 2 diabetes induce constitutive neutrophil extracellular traps. Sci Rep. 2016;6:36362. doi: 10.1038/srep36362.
    1. Carestia A, Frechtel G, Cerrone G, Linari MA, Gonzalez CD, Casais P, et al. NETosis before and after hyperglycemic control in type 2 diabetes mellitus patients. PLoS One. 2016;11(12):e0168647. doi: 10.1371/journal.pone.0168647.
    1. Knudsen EC, Seljeflot I, Abdelnoor M, Eritsland J, Mangschau A, Arnesen H, et al. Abnormal glucose regulation in patients with acute ST- elevation myocardial infarction-a cohort study on 224 patients. Cardiovasc Diabetol. 2009;8:6. doi: 10.1186/1475-2840-8-6.
    1. World Health Organization Department of Noncommunicable Disease Surveillance G. Definition, Diagnosis and Classification of Diabetes Mellitus and its Complication. Report of a WHO Consultation. Part 1: Diagnosis and Classification of Diabetes Mellitus. 2008.
    1. World Health Organization IDFIC. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. World Health Organization. 2006. . Accessed 5 Nov 2018.
    1. Kessenbrock K, Krumbholz M, Schonermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15(6):623–625. doi: 10.1038/nm.1959.
    1. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262.
    1. Capes SE, Hunt D, Malmberg K, Gerstein HC. Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet. 2000;355(9206):773–778. doi: 10.1016/S0140-6736(99)08415-9.
    1. Ceriello A. Acute hyperglycaemia: a ‘new’ risk factor during myocardial infarction. Eur Heart J. 2005;26(4):328–331. doi: 10.1093/eurheartj/ehi049.
    1. Joshi MB, Lad A, Bharath Prasad AS, Balakrishnan A, Ramachandra L, Satyamoorthy K. High glucose modulates IL-6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett. 2013;587(14):2241–2246. doi: 10.1016/j.febslet.2013.05.053.
    1. Kirchner T, Moller S, Klinger M, Solbach W, Laskay T, Behnen M. The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Mediat Inflamm. 2012;2012:849136. doi: 10.1155/2012/849136.
    1. Shah MS, Brownlee M. Molecular and cellular mechanisms of cardiovascular disorders in diabetes. Circ Res. 2016;118(11):1808–1829. doi: 10.1161/CIRCRESAHA.116.306923.
    1. Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab. 2000;85(8):2970–2973. doi: 10.1210/jcem.85.8.6854.
    1. Azevedo EP, Rochael NC, Guimaraes-Costa AB, de Souza-Vieira TS, Ganilho J, Saraiva EM, et al. A metabolic shift toward pentose phosphate pathway is necessary for amyloid fibril- and Phorbol 12-Myristate 13-acetate-induced neutrophil extracellular trap (NET) formation. J Biol Chem. 2015;290(36):22174–22183. doi: 10.1074/jbc.M115.640094.
    1. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–1687. doi: 10.1001/jama.295.14.1681.
    1. Masuda S, Nakazawa D, Shida H, Miyoshi A, Kusunoki Y, Tomaru U, et al. NETosis markers: quest for specific, objective, and quantitative markers. Clin Chim Acta. 2016;459:89–93. doi: 10.1016/j.cca.2016.05.029.
    1. Guiducci E, Lemberg C, Kung N, Schraner E, Theocharides APA, LeibundGut-Landmann S. Candida albicans-induced NETosis is independent of Peptidylarginine deiminase 4. Front Immunol. 2018;9:1573. doi: 10.3389/fimmu.2018.01573.

Source: PubMed

3
Předplatit