A plant-based meal reduces postprandial oxidative and dicarbonyl stress in men with diabetes or obesity compared with an energy- and macronutrient-matched conventional meal in a randomized crossover study

Hana Malinska, Marta Klementová, Michaela Kudlackova, Jiri Veleba, Eva Hoskova, Olena Oliyarnyk, Irena Markova, Lenka Thieme, Martin Hill, Terezie Pelikanova, Hana Kahleova, Hana Malinska, Marta Klementová, Michaela Kudlackova, Jiri Veleba, Eva Hoskova, Olena Oliyarnyk, Irena Markova, Lenka Thieme, Martin Hill, Terezie Pelikanova, Hana Kahleova

Abstract

Background: Increased oxidative/dicarbonyl stress and chronic inflammation are considered key pathophysiological mediators in the progression of complications in obesity and type 2 diabetes (T2D). Lifestyle and diet composition have a major impact. In this study, we tested the effects of a vegan (V) and a conventional meat containg (M) meal, matched for energy and macronutrients, on postprandial oxidative and dicarbonyl stress, inflammatory markers and appetite hormones.

Methods: A randomised crossover design was used to evaluate T2D, obese with normal glucose tolerance and control participants (n = 20 in each group), with serum concentrations of analytes determined at 0, 120 and 180 min. Repeated-measures ANOVA was used for statistical analysis.

Results: In T2D subjects, we observed decreased postprandial concentrations of oxidised glutathione (p ˂ 0.001) and increased glutathione peroxidase activity (p = 0.045) after the V-meal consumption, compared with the M-meal. In obese participants, V-meal consumption increased postprandial concentrations of reduced glutathione (p = 0.041) and decreased methylglyoxal concentrations (p = 0.023). There were no differences in postprandial secretion of TNFα, MCP-1 or ghrelin in T2D or obese men, but we did observe higher postprandial secretion of leptin after the V-meal in T2D men (p = 0.002) compared with the M-meal.

Conclusions: The results show that a plant-based meal is efficient in ameliorating the postprandial oxidative and dicarbonyl stress compared to a conventional energy- and macronutrient-matched meal, indicating the therapeutic potential of plant-based nutrition in improving the progression of complications in T2D and obese patients. Registered under ClinicalTrials.gov Identifier No. NCT02474147.

Keywords: Appetite hormones; Inflammation; Methylglyoxal; Oxidative stress; Plant-based diet; Postprandial state; Type 2 diabetes.

Conflict of interest statement

The authors declare no conflict of interest.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Postprandial changes in plasma concentrations of glucose and lipids in T2D, obese and control subjects after a standard meal test consisting of either a conventional meat burger (M-meal) or a plant-based tofu burger (V-meal). Data are expressed as the mean with a 95% CI. * indicates the difference between T2D and obese men, ¶ difference between obese and control men, and # difference between T2D and control men at α = 0.05. (A) Plasma glucose (*, ¶, #). T2D: Meal: F = 1, p = 0.309; Time: F = 118.1, p < 0.001; Meal × Time: F = 0.3, p = 0.889. Obese: Meal: F = 3.6, p = 0.06; Time: F = 151.8, p < 0.001; Meal × Time: F = 1.5, p = 0.192. Controls: Meal: F = 6.2, p = 0.014; Time: F = 59.7, p < 0.001; Meal × Time: F = 1.7, p = 0.143. (B) Plasma triglycerides (*, ¶, #). T2D: Meal: F = 1.3, p = 0.259; Time: F = 20.9, p < 0.001; Meal × Time: F = 0.3, p = 0.887. Obese: Meal: F = 8.4, p = 0.004; Time: F = 34, p < 0.001; Meal × Time: F = 0.1, p = 0.987. Controls: Meal: F = 0.6, p = 0.432; Time: F = 16.4, p < 0.001; Meal × Time: F = 0.2, p = 0.921. (C) Non-esterified fatty acids (NEFA) (*, ¶, #). T2D: Meal: F = 0.6, p = 0.432; Time: F = 126.3, p < 0.001; Meal × Time: F = 0.9, p = 0.469. Obese: Meal: F = 0.2, p = 0.632; Time: F = 40.9, p < 0.001; Meal × Time: F = 1.4, p = 0.239. Controls: Meal: F = 1.5, p = 0.223; Time: F = 31.1, p < 0.001; Meal × Time: F = 0.3, p = 0.848
Fig. 2
Fig. 2
Postprandial changes in plasma parameters of oxidative and dicarbonyl stress in T2D, obese and control subjects after a standard meal test consisting of either a conventional meat burger (M-meal) or a plant-based tofu burger (V-meal). Data are expressed as the mean with a 95% CI. *Indicates the difference between T2D and obese men, ¶ difference between obese and control men, and # difference between T2D and control men at α = 0.05. (A) Plasma GSH (*, #) T2D: Meal: F = 1.2, p = 0.274; Time: F = 0.8, p = 0.445; Meal × Time: F = 0.3, p = 0.757. Obese: Meal: F = 4.3, p = 0.041; Time: F = 1.6, p = 0.203; Meal × Time: F = 1.3, p = 0.293. Controls: Meal: F = 2, p = 0.161; Time: F = 0.9, p = 0.415; Meal × Time: F = 0, p = 0.961. (B) GSSG (*, #) T2D: Meal: F = 12, p < 0.001; Time: F = 2.4, p = 0.095; Meal × Time: F = 0.2, p = 0.835. Obese: Meal: F = 0.3, p = 0.62; Time: F = 0.7, p = 0.526; Meal × Time: F = 2.9, p = 0.062. Controls: Meal: F = 2, p = 0.166; Time: F = 0.4, p = 0.654; Meal × Time: F = 0, p = 0.984. (C) GPx activity (#). T2D: Meal: F = 4.1, p = 0.045; Time: F = 11, p < 0.001; Meal × Time: F = 0.9, p = 0.423. Obese: Meal: F = 2.1, p = 0.156; Time: F = 6.5, p = 0.002; Meal × Time: F = 0.4, p = 0.681. Controls: Meal: F = 0, p = 0.901; Time: F = 37, p < 0.001; Meal × Time: F = 0.2, p = 0.844. (D) Methylglyoxal (*, ¶, #). T2D: Meal: F = 3.7, p = 0.058; Time: F = 23, p < 0.001; Meal × Time: F = 0.4, p = 0.668. Obese: Meal: F = 5.4, p = 0.023; Time: F = 10.9, p < 0.001; Meal × Time: F = 0.3, p = 0.769. Controls: Meal: F = 0.1, p = 0.716; Time: F = 20, p < 0.001; Meal × Time: F = 1.1, p = 0.352. (E) Ascorbic acid (*, ¶, #). T2D: Meal: F = 0.2, p = 0.693; Time: F = 2.2, p = 0.122; Meal × Time: F = 0.4, p = 0.705. Obese: Meal: F = 2.1, p = 0.155; Time: F = 0.1, p = 0.869; Meal × Time: F = 0.3, p = 0.776. Controls: Meal: F = 3.9, p = 0.053; Time: F = 0.7, p = 0.502; Meal × Time: F = 0.1, p = 0.952
Fig. 2
Fig. 2
Postprandial changes in plasma parameters of oxidative and dicarbonyl stress in T2D, obese and control subjects after a standard meal test consisting of either a conventional meat burger (M-meal) or a plant-based tofu burger (V-meal). Data are expressed as the mean with a 95% CI. *Indicates the difference between T2D and obese men, ¶ difference between obese and control men, and # difference between T2D and control men at α = 0.05. (A) Plasma GSH (*, #) T2D: Meal: F = 1.2, p = 0.274; Time: F = 0.8, p = 0.445; Meal × Time: F = 0.3, p = 0.757. Obese: Meal: F = 4.3, p = 0.041; Time: F = 1.6, p = 0.203; Meal × Time: F = 1.3, p = 0.293. Controls: Meal: F = 2, p = 0.161; Time: F = 0.9, p = 0.415; Meal × Time: F = 0, p = 0.961. (B) GSSG (*, #) T2D: Meal: F = 12, p < 0.001; Time: F = 2.4, p = 0.095; Meal × Time: F = 0.2, p = 0.835. Obese: Meal: F = 0.3, p = 0.62; Time: F = 0.7, p = 0.526; Meal × Time: F = 2.9, p = 0.062. Controls: Meal: F = 2, p = 0.166; Time: F = 0.4, p = 0.654; Meal × Time: F = 0, p = 0.984. (C) GPx activity (#). T2D: Meal: F = 4.1, p = 0.045; Time: F = 11, p < 0.001; Meal × Time: F = 0.9, p = 0.423. Obese: Meal: F = 2.1, p = 0.156; Time: F = 6.5, p = 0.002; Meal × Time: F = 0.4, p = 0.681. Controls: Meal: F = 0, p = 0.901; Time: F = 37, p < 0.001; Meal × Time: F = 0.2, p = 0.844. (D) Methylglyoxal (*, ¶, #). T2D: Meal: F = 3.7, p = 0.058; Time: F = 23, p < 0.001; Meal × Time: F = 0.4, p = 0.668. Obese: Meal: F = 5.4, p = 0.023; Time: F = 10.9, p < 0.001; Meal × Time: F = 0.3, p = 0.769. Controls: Meal: F = 0.1, p = 0.716; Time: F = 20, p < 0.001; Meal × Time: F = 1.1, p = 0.352. (E) Ascorbic acid (*, ¶, #). T2D: Meal: F = 0.2, p = 0.693; Time: F = 2.2, p = 0.122; Meal × Time: F = 0.4, p = 0.705. Obese: Meal: F = 2.1, p = 0.155; Time: F = 0.1, p = 0.869; Meal × Time: F = 0.3, p = 0.776. Controls: Meal: F = 3.9, p = 0.053; Time: F = 0.7, p = 0.502; Meal × Time: F = 0.1, p = 0.952
Fig. 3
Fig. 3
Postprandial changes in plasma inflammatory markers and appetite hormones in T2D, obese and control subjects after a standard meal test consisting of either a conventional meat burger (M-meal) or a plant-based tofu burger (V-meal). Data are expressed as the mean with a 95% CI. *Indicates the difference between T2D and obese men, ¶ difference between obese and control men, and # difference between T2D and control men at α = 0.05. (A) TNFα (*, ¶, #). T2D: Meal: F = 0.6, p = 0.44; Time: F = 3.7, p = 0.007; Meal × Time: F = 0.6, p = 0.664. Obese: Meal: F = 0.6, p = 0.434; Time: F = 3.6, p = 0.008; Meal × Time: F = 0.3, p = 0.91. Controls: Meal: F = 8.1, p = 0.005; Time: F = 0.8, p = 0.544; Meal × Time: F = 0.3, p = 0.864. (B) MCP-1 (¶, #). T2D: Meal: F = 0.2, p = 0.671; Time: F = 7.8, p < 0.001; Meal × Time: F = 1.5, p = 0.211. Obese: Meal: F = 1.5, p = 0.228; Time: F = 3.6, p = 0.008; Meal × Time: F = 0.5, p = 0.775. Controls: Meal: F = 1.5, p = 0.23; Time: F = 3.9, p = 0.005; Meal × Time: F = 0.8, p = 0.517. (C) Leptin (*, ¶, #). T2D: Meal: F = 10.2, p = 0.002; Time: F = 7.4, p < 0.001; Meal × Time: F = 0.2, p = 0.951. Obese: Meal: F = 0.2, p = 0.633; Time: F = 4.6, p = 0.002; Meal × Time: F = 0.2, p = 0.945. Controls: Meal: F = 103.7, p < 0.001; Time: F = 4.4, p = 0.002; Meal × Time: F = 0, p = 1. (D) Ghrelin (¶, #). T2D: Meal: F = 1.4, p = 0.246; Time: F = 11.2, p < 0.001; Meal × Time: F = 1, p = 0.417. Obese: Meal: F = 2.4, p = 0.124; Time: F = 23.5, p < 0.001; Meal × Time: F = 1.9, p = 0.11. Controls: Meal: F = 1.7, p = 0.201; Time: F = 54.3, p < 0.001; Meal × Time: F = 0.4, p = 0.832

References

    1. Sottero B, Gargiulo S, Russo I, Barale C, Poli G, Cavalot F. Postprandial dysmetabolism and oxidative stress in type 2 diabetes: pathogenetic mechanisms and therapeutic strategies. Med Res Rev. 2015;35:968–1031. doi: 10.1002/med.21349.
    1. Jiang J, Zhao L, Lin L, Gui M, Aleteng Q, Wu B, Wang S, Pan B, Ling Y, Gao X. Postprandial blood glucose outweighs fasting blood glucose and HbA1c in screening coronary heart disease. Sci Rep. 2017;7(1):14212. doi: 10.1038/s41598-017-14152-y.
    1. Higgins V, Adeli K. Postprandial dyslipidemia: pathophysiology and cardiovascular disease risk assessment. EJIFCC. 2017;28(3):168–184.
    1. Ceriello A, Esposito K, Testa R, Bonfigli AR, Marra M, Giugliano D. The possible protective role of glucagon-like peptide 1 on endothelium during the meal and evidence for an "endothelial resistance" to glucagon-like peptide 1 in diabetes. Diabetes Care. 2011;34:697–702. doi: 10.2337/dc10-1949.
    1. Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diabetes Obes Metab. 2018;20(Suppl 1):5–21. doi: 10.1111/dom.13129.
    1. Malinska H, Kahleova H, Topolcan O, Vrzalova J, Oliyarnyk O, Kazdova L, Belinova L, Hill M, Pelikanova T. Postprandial oxidative stress and gastrointestinal hormones: is there a link? PLoS ONE. 2014;9:e103565. doi: 10.1371/journal.pone.0103565.
    1. Hanssen NMJ, Scheijen J, Houben A, van de Waarenburg M, Berendschot T, Webers CAB, Reesink KD, van Greevenbroek MMJ, van der Kallen C, Schaper, NC et al. Fasting and post-oral-glucose-load levels of methylglyoxal are associated with microvascular, but not macrovascular, disease in individuals with and without (pre)diabetes: The Maastricht Study. Diabetes. Metab. 2020.
    1. Schalkwijk CG. Vascular AGE-ing by methylglyoxal: the past, the present and the future. Diabetologia. 2015;58:1715–1719. doi: 10.1007/s00125-015-3597-5.
    1. Olfert MD, Wattick RA. Vegetarian diets and the risk of diabetes. Curr Diab Rep. 2018;18:101. doi: 10.1007/s11892-018-1070-9.
    1. Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009;32:791–796. doi: 10.2337/dc08-1886.
    1. Kahleova H, Matoulek M, Malinska H, Oliyarnik O, Kazdova L, Neskudla T, Skoch A, Hajek M, Hill M, Kahle M, Pelikanova T. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet Med. 2011;28:549–559. doi: 10.1111/j.1464-5491.2010.03209.x.
    1. Klementova M, Thieme L, Haluzik M, Pavlovicova R, Hill M, Pelikanova T, Kahleova H. A plant-based meal increases gastrointestinal hormones and satiety more than an energy- and macronutrient-matched processed-meat meal in T2D, obese, and healthy men: a three-group randomized crossover study. Nutrients 2019; 11.
    1. Kahleova H, Tura A, Hill M, Holubkov R, Barnard ND. A plant-based dietary intervention improves beta-cell function and insulin resistance in overweight adults: a 16-week randomized clinical trial. Nutrients 2018; 10.
    1. Kahleova H, Tintera J, Thieme L, Veleba J, Klementova M, Kudlackova M, Malinska H, Oliyarnyk O, Markova I, Haluzik M, Pavlovicova R, Hill M, Tura A, Pelikanova T. A plant-based meal affects thalamus perfusion differently than an energy- and macronutrient-matched conventional meal in men with type 2 diabetes, overweight/obese, and healthy men: a three-group randomized crossover study. Clin Nutr. 2020;S0261–5614(20)30532-X. 10.1016/j.clnu.2020.10.005.
    1. Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999;344(Pt 1):109–116. doi: 10.1042/bj3440109.
    1. Mullerova D, Tychtl Z, Muller, L, Brazdova Z. NutriDan 1.2. Prague, Czech Republic: Danone Institute, 2003.
    1. Meloun M, Hill M, Militky J, Kupka K. Transformation in the PC-aided biochemical data analysis. Clin Chem Lab Med. 2000;38:553–559. doi: 10.1515/CCLM.2000.081.
    1. Li W, Lin L, Malhotra R, Yang L, Acharya R, Poss M. A computational framework to assess genome-wide distribution of polymorphic human endogenous retrovirus-K In human populations. PLoS Comput Biol. 2019;15:e1006564. doi: 10.1371/journal.pcbi.1006564.
    1. Testa R, Bonfigli AR, Prattichizzo F, La Sala L, De Nigris V, Ceriello A. The "metabolic memory" theory and the early treatment of hyperglycemia in prevention of diabetic complications. Nutrients 2017; 9.
    1. de Bari L, Scirè A, Minnelli C, Cianfruglia L, Kalapos MP, Armeni T. Interplay among oxidative stress, methylglyoxal pathway and s-glutathionylation. Antioxidants (Basel) 2020;10(1):19. doi: 10.3390/antiox10010019.
    1. Maessen DE, Brouwers O, Gaens KH, Wouters K, Cleutjens JP, Janssen BJ, Miyata T, Stehouwer CD, Schalkwijk CG. Delayed intervention with pyridoxamine improves metabolic function and prevents adipose tissue inflammation and insulin resistance in high-fat diet-induced obese mice. Diabetes. 2016;65(4):956–966. doi: 10.2337/db15-1390.
    1. Zhou Y, Jiang Z, Lu H, Xu Z, Tong R, Shi J, Jia G. Recent advances of natural polyphenols activators for keap1-nrf2 signaling pathway. Chem Biodivers. 2019;16:e1900400.
    1. Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10:1618. doi: 10.3390/nu10111618.
    1. Koch W. Dietary polyphenols-important non-nutrients in the prevention of chronic noncommunicable diseases. A systematic review. Nutrients. 2019;11:1039. doi: 10.3390/nu11051039.
    1. Johnston CS, Beezhold BL, Mostow Bo, Swan PD. Plasma vitamin C is inversely related to body mass index and waist circumference but not to plasma adiponectin in nonsmoking adults. J Nutr. 2007;137(7):1757–1762. doi: 10.1093/jn/137.7.1757.
    1. Wilson R, Willis J, Gearry R, Skidmore P, Fleming E, Frampton C, Carr A. Inadequate vitamin c status in prediabetes and type 2 diabetes mellitus: associations with glycaemic control, obesity, and smoking. Nutrients. 2017;9(9):997. doi: 10.3390/nu9090997.
    1. Padh H, Subramoniam A, Aleo JJ. Glucose inhibits cellular ascorbic acid uptake by fibroblasts in vitro. Cell Biol Int Rep. 1985;9:531–538. doi: 10.1016/0309-1651(85)90017-7.
    1. Margioris AN. Fatty acids and postprandial inflammation. Curr Opin Clin Nutr Metab Care. 2009;12:129–137. doi: 10.1097/MCO.0b013e3283232a11.
    1. Nappo F, Esposito K, Cioffi M, Giugliano G, Molinari AM, Paolisso G, Marfella R, Giugliano D. Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol. 2002;39:1145–1150. doi: 10.1016/S0735-1097(02)01741-2.
    1. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106:2067–2072. doi: 10.1161/.
    1. Paniagua JA. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome. World J Diabetes. 2016;7:483–514. doi: 10.4239/wjd.v7.i19.483.
    1. Unger RH, Zhou YT. Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes. 2001;50(Suppl 1):S118–121. doi: 10.2337/diabetes.50.2007.S118.

Source: PubMed

3
Předplatit