Insulin Resistance Predicts Postoperative Cognitive Dysfunction in Elderly Gastrointestinal Patients

Xi He, Ge Long, Chengxuan Quan, Bin Zhang, Jia Chen, Wen Ouyang, Xi He, Ge Long, Chengxuan Quan, Bin Zhang, Jia Chen, Wen Ouyang

Abstract

Background: Members of the aging population who undergo surgery are at risk of postoperative cognitive dysfunction (POCD). Exploring an effective and reliable early predictor of POCD is essential to the identification of high-risk patients and to making prospective decisions. The purpose of this study was to examine whether preoperative insulin resistance is an independent predictor of POCD.

Methods: A total of 124 patients aged 60 years and older and who were scheduled for gastrointestinal surgery were enrolled in a prospective observational clinical study. All participants completed a battery of neuropsychological tests before surgery and 7 days later. POCD was defined as a decline of at least 1.5 SD on two or more of neuropsychological tests. Plasma concentration of the tumor necrosis factor α (TNF-α), C-reactive protein (CRP), and S-100β protein were measured. The status of insulin resistance was assessed by Homeostasis Model Assessment-Insulin Resistance (HOMA-IR). The relationship between HOMA-IR and POCD was assessed by Multivariable logistic regression models and the receiver operating characteristic (ROC) curve.

Results: Fifty one patients (41.1%) were diagnosed with POCD at 7 days after surgery. Preoperative HOMA-IR values of the POCD group were significantly higher than the non-POCD group. Furthermore, CRP and TNF-α levels of the POCD group were significantly higher at each postoperative time point (P < 0.05). The preoperative HOMA-IR value was an independent predictor of POCD (adjusted OR 1.88, 95% CI, 1.18-2.99) even after adjust for confounding variables, and when dichotomized, individuals above the HOMA-IR threshold (HOMA-IR > 2.6) had a three-times higher risk of POCD (OR 3.26; 95% CI, 1.07-9.91) compared to individuals below the threshold. The areas under the ROC curve of HOMA-IR was 0.804 (95% CI, 0.725-0.883; P < 0.001). The optimal cut-off value was found to be 0.583, with a sensitivity of 84.3% and specificity of 74%. The HOMA-IR value was positively associated with the TNF-α concentration at baseline (R 2 = 0.43, P < 0.01) and 1 day after surgery (R 2 = 0.3861, P < 0.01).

Conclusion: Preoperative insulin resistance is an effective predictor for the occurrence of POCD. Targeted prevention and treatment strategies of insulin resistance may be effective interventions of patients at risk for POCD.

Keywords: elderly; insulin resistance; metabolic risk factors; postoperative cognitive dysfunction; tumor necrosis factor α.

Figures

FIGURE 1
FIGURE 1
Enrollment and follow-up of study participants.
FIGURE 2
FIGURE 2
Receiver operating characteristic analysis of the preoperative HOMA-IR value. ROC, Receiver operating characteristic; HOMA-IR, Homeostasis Model Assessment–Insulin Resistance.
FIGURE 3
FIGURE 3
Plasma biomarker levels in two groups at different times. TNF-α (A), CRP (B), and S100β protein (C) were sampled at baseline and at 1, 3, and 7 days after surgery. ∗p < 0.05; ∗∗p < 0.01. POCD, postoperative cognitive dysfunction; Non-POCD, Non-postoperative cognitive dysfunction; TNF-α, Tumor necrosis factor α; CRP, C reactive protein; S100β, S100 calcium binding protein β. D0 at baseline; D1, 1 day after surgery; D3, 3 days after surgery; D7, 7 days after surgery.
FIGURE 4
FIGURE 4
The correlation of HOMA-IR and systemic inflammation. HOMA-IR and TNF-α concentration at baseline (A); HOMA-IR and TNF-α concentration D1 (B). D1, HOMA-IR and CRP concentration at baseline (C); HOMA-IR and CRP concentration D1 (D). D1, 1 day after surgery.

References

    1. Akintola A. A., van Heemst D. (2015). Insulin, aging, and the brain: mechanisms and implications. Front. Endocrinol. 6:13. 10.3389/fendo.2015.00013
    1. Alberti K. G., Eckel R. H., Grundy S. M., Zimmet P. Z., Cleeman J. I., Donato K. A., et al. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; national heart, lung, and blood institute; American heart association; world heart federation; international atherosclerosis society; and international association for the study of obesity. Circulation 120 1640–1645. 10.1161/CIRCULATIONAHA.109.192644
    1. Arora S. S., Gooch J. L., Garcia P. S. (2014). Postoperative cognitive dysfunction, Alzheimer’s disease, and anesthesia. Int. J. Neurosci. 124 236–242. 10.3109/00207454.2013.833919
    1. Biessels G. J., Reagan L. P. (2015). Hippocampal insulin resistance and cognitive dysfunction. Nat. Rev. Neurosci. 16 660–671. 10.1038/nrn4019
    1. Bischof G. N., Park D. C. (2015). Obesity and aging: consequences for cognition, Brain structure, and brain function. Psychosom. Med. 77 697–709. 10.1097/PSY.0000000000000212
    1. Bluher M. (2019). Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15 288–298. 10.1038/s41574-019-0176-8
    1. Carracher A. M., Marathe P. H., Close K. L. (2018). International diabetes federation 2017. J. Diabetes 10 353–356. 10.1111/1753-0407.12644
    1. Chen C. W., Lin C. C., Chen K. B., Kuo Y. C., Li C. Y., Chung C. J. (2014). Increased risk of dementia in people with previous exposure to general anesthesia: a nationwide population-based case-control study. Alzheime’s Dement. 10 196–204. 10.1016/j.jalz.2013.05.1766
    1. Cholerton B., Baker L. D., Craft S. (2013). Insulin, cognition, and dementia. Eur. J. Pharmacol, 719 170–179. 10.1016/j.ejphar.2013.08.008
    1. Claxton A., Baker L. D., Hanson A., Trittschuh E. H., Cholerton B., Morgan A., et al. (2015). Long-Acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s Disease dementia. J. Alzheimers Dis. 44 897–906. 10.3233/Jad-141791
    1. Claxton A., Baker L. D., Wilkinson C. W., Trittschuh E. H., Chapman D., Watson G. S., et al. (2013). Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer’s Disease. J. Alzheimers Dis. 35 789–797. 10.3233/Jad-122308
    1. Craft S. (2005). Insulin resistance syndrome and Alzheimer’s disease: age- and obesity-related effects on memory, amyloid, and inflammation. Neurobiol. Aging 26 S65–S69. 10.1016/j.neurobiolaging.2005.08.021
    1. Craft S., Baker L. D., Montine T. J., Minoshima S., Watson G. S., Claxton A., et al. (2012). Intranasal insulin therapy for alzheimer disease and amnestic mild cognitive impairment a pilot clinical trial. Arch. Neurol. Chicago 69 29–38. 10.1001/archneurol.2011.233
    1. Ekblad L. L., Rinne J. O., Puukka P., Laine H., Ahtiluoto S., Sulkava R., et al. (2017). Insulin resistance predicts cognitive decline: an 11-year follow-up of a nationally representative adult population sample. Diabetes Care 40 751–758. 10.2337/dc16-2001
    1. Evered L., Silbert B., Scott D. A., Ames D., Maruff P., Blennow K. (2016). Cerebrospinal fluid biomarker for alzheimer disease predicts postoperative cognitive dysfunction. Anesthesiology 124 353–361. 10.1097/ALN.0000000000000953
    1. Feinkohl I., Winterer G., Pischon T. (2016). Obesity and post-operative cognitive dysfunction: a systematic review and meta-analysis. Diabetes Metab. Res. 32 643–651. 10.1002/dmrr.2786
    1. Feinkohl I., Winterer G., Pischon T. (2017a). Diabetes is associated with risk of postoperative cognitive dysfunction: a meta-analysis. Diabetes Metab. Res. 33:e2884. 10.1002/dmrr.2884
    1. Feinkohl I., Winterer G., Pischon T. (2017b). hypertension and risk of post-operative cognitive dysfunction (POCD): a systematic review and meta-analysis. Clin. Pract. Epidemiol. Men. Health CP EMH 13 27–42. 10.2174/1745017901713010027
    1. Feinkohl I., Winterer G., Pischon T. (2018). Associations of dyslipidaemia and lipid-lowering treatment with risk of postoperative cognitive dysfunction: a systematic review and meta-analysis. J. Epidemiol. Commun. H 72 499–506. 10.1136/jech-2017-210338
    1. Feng X., Degos V., Koch L. G., Britton S. L., Zhu Y., Vacas S., et al. (2013). Surgery results in exaggerated and persistent cognitive decline in a rat model of the metabolic syndrome. Anesthesiology 118 1098–1105. 10.1097/ALN.0b013e318286d0c9
    1. Ferreira S. T., Clarke J. R., Bomfim T. R., De Felice F. G. (2014). Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement. 10 S76–S83. 10.1016/j.jalz.2013.12.010
    1. Frisardi V., Solfrizzi V., Seripa D., Capurso C., Santamato A., Sancarlo D., et al. (2010). Metabolic-cognitive syndrome: a cross-talk between metabolic syndrome and Alzheimer’s disease. Ageing Res. Rev. 9 399–417. 10.1016/j.arr.2010.04.007
    1. Grundy S. M. (2003). Inflammation, hypertension, and the metabolic syndrome. Jama 290 3000–3002. 10.1001/jama.290.22.3000
    1. Heni M., Schopfer P., Peter A., Sartorius T., Fritsche A., Synofzik M., et al. (2014). Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans. Acta Diabetol. 51 679–681. 10.1007/s00592-013-0546-y
    1. Karczewska-Kupczewska M., Tarasow E., Nikolajuk A., Stefanowicz M., Matulewicz N., Otziomek E., et al. (2013). The effect of insulin infusion on the metabolites in cerebral tissues assessed with proton magnetic resonance spectroscopy in young healthy subjects with high and low insulin sensitivity. Diabetes Care 36 2787–2793. 10.2337/dc12-1437
    1. Krenk L., Rasmussen L. S., Kehlet H. (2010). New insights into the pathophysiology of postoperative cognitive dysfunction. Acta Anaesth. Scand. 54 951–956. 10.1111/j.1399-6576.2010.02268.x
    1. Kullmann S., Heni M., Hallschmid M., Fritsche A., Preissl H., Haring H. U. (2016). Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol. Rev. 96 1169–1209. 10.1152/physrev.00032.2015
    1. Lewis M., Maruff P., Silbert B. (2004). Statistical and conceptual issues in defining post-operative cognitive dysfunction. Neurosci. Biobehav. Rev. 28 433–440. 10.1016/j.neubiorev.2004.05.002
    1. Lin G. X., Wang T., Chen M. H., Hu Z. H., Ouyang W. (2014). Serum high-mobility group box 1 protein correlates with cognitive decline after gastrointestinal surgery. Acta Anaesthesiol, Scand. 58 668–674. 10.1111/aas.12320
    1. Marks D. R., Tucker K., Cavallin M. A., Mast T. G., Fadool D. A. (2009). Awake Intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J. Neurosci. 29 6734–6751. 10.1523/Jneurosci.1350-09.2009
    1. Monk T. G., Weldon B. C., Garvan C. W., Dede D. E., Aa M. T., Heilman K. M., et al. (2008). Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology 108 18–30. 10.1097/01.anes.0000296071.19434.1e
    1. Moran C., Beare R., Phan T. G., Bruce D. G., Callisaya M. L., Srikanth V., et al. (2015). Type 2 diabetes mellitus and biomarkers of neurodegeneration. Neurology 85 1123–1130. 10.1212/Wnl.0000000000001982
    1. Nagpal M., De D., Handa S., Pal A., Sachdeva N. (2016). Insulin Resistance and metabolic syndrome in young men with acne. JAMA Dermatol. 152 399–404. 10.1001/jamadermatol.2015.4499
    1. Neergaard J. S., Dragsbaek K., Christiansen C., Nielsen H. B., Brix S., Karsdal M. A., et al. (2017). Metabolic syndrome. insulin resistance, and cognitive dysfunction: does your metabolic profile affect your brain?. Diabetes 66 1957–1963. 10.2337/db16-1444
    1. Ohara T., Doi Y., Ninomiya T., Hirakawa Y., Hata J., Iwaki T., et al. (2011). Glucose tolerance status and risk of dementia in the community: the Hisayama study. Neurology 77 1126–1134. 10.1212/WNL.0b013e31822f0435
    1. Rasmussen L. S., Larsen K., Houx P., Skovgaard L. T., Hanning C. D., Moller J. T., et al. (2001). The assessment of postoperative cognitive function. Acta Anaesthesiol. Scand. 45 275–289.
    1. Ridker P. M., Buring J. E., Cook N. R., Rifai N. (2003). C-reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: an 8-year follow-up of 14 719 initially healthy American women. Circulation 107 391–397. 10.1161/01.cir.0000055014.62083.05
    1. Roberts R. O., Knopman D. S., Cha R. H., Mielke M. M., Pankratz V. S., Boeve B. F., et al. (2014). Diabetes and elevated hemoglobin A1c levels are associated with brain hypometabolism but not amyloid accumulation. J. Nucl. Med. 55 759–764. 10.2967/jnumed.113.132647
    1. Sartorius T., Peter A., Heni M., Maetzler W., Fritsche A., Haring H. U., et al. (2015). The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier? Plos One 10:e0126804. 10.1371/journal.pone.0126804
    1. Schimming C., Luo X., Zhang C., Sano M. (2017). Cognitive performance of older adults in a specialized diabetes clinic. J. Diabetes 9 929–935. 10.1111/1753-0407.12503
    1. Schwartz M. W., Figlewicz D. F., Kahn S. E., Baskin D. G., Greenwood M. R., Porte D. (1990). Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats. Peptides 11 467–472. 10.1016/0196-9781(90)90044-6
    1. Sesti G. (2006). Pathophysiology of insulin resistance. Best Pract. Res. Clin. Endocrinol. Metab. 20 665–679. 10.1016/j.beem.2006.09.007
    1. Sheline Y. I., Raichle M. E. (2013). Resting state functional connectivity in preclinical Alzheimer’s Disease. Biol. Psychiat. 74 340–347. 10.1016/j.biopsych.2012.11.028
    1. Skvarc D. R., Berk M., Byrne L. K., Dean O. M., Dodd S., Lewis M., et al. (2018). Post-operative cognitive dysfunction: an exploration of the inflammatory hypothesis and novel therapies. Neurosci. Biobehav. Rev. 84 116–133. 10.1016/j.neubiorev.2017.11.011
    1. Terrando N., Monaco C., Ma D. Q., Foxwell B. M. J., Feldmann M., Maze M. (2010). Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proc. Natl. Acad. Sci. U.S.A. 107 20518–20522. 10.1073/pnas.1014557107
    1. Thambisetty M., Beason-Held L. L., An Y., Kraut M., Metter J., Egan J., et al. (2013a). Impaired glucose tolerance in midlife and longitudinal changes in brain function during aging. Neurobiol. Aging 34 2271–2276. 10.1016/j.neurobiolaging.2013.03.025
    1. Thambisetty M., Jeffrey Metter E., Yang A., Dolan H., Marano C., Zonderman A. B., et al. (2013b). Glucose intolerance, insulin resistance, and pathological features of Alzheimer disease in the baltimore longitudinal study of aging. JAMA Neurol. 70 1167–1172. 10.1001/jamaneurol.2013.284
    1. Tzimas P., Petrou A., Laou E., Milionis H., Mikhailidis D. P., Papadopoulos G. (2015). Impact of metabolic syndrome in surgical patients: should we bother? Br. J. Anaesth 115 194–202. 10.1093/bja/aev199
    1. Ursache A., Wedin W., Tirsi A., Convit A. (2012). Preliminary evidence for obesity and elevations in fasting insulin mediating associations between cortisol awakening response and hippocampal volumes and frontal atrophy. Psychoneuroendocrinology 37 1270–1276. 10.1016/j.psyneuen.2011.12.020
    1. Verdile G., Fuller S. J., Martins R. N. (2015). The role of type 2 diabetes in neurodegeneration. Neurobiol. Dis. 84 22–38. 10.1016/j.nbd.2015.04.008
    1. Yaffe K. (2007). Metabolic syndrome and cognitive disorders - Is the sum greater than its parts? Alz. Dis. Assoc. Dis. 21 167–171. 10.1097/Wad.0b013e318065bfd6
    1. Zhang Y. L., Dai C. L., Chen Y. X., Iqbal K., Liu F., Gong C. X. (2016). Intranasal Insulin prevents anesthesia-induced spatial learning and memory deficit in mice. Sci. Rep. 6:21186. 10.1038/srep21186

Source: PubMed

3
Předplatit