Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis

Hajo Grundmann, David M Aanensen, Cees C van den Wijngaard, Brian G Spratt, Dag Harmsen, Alexander W Friedrich, European Staphylococcal Reference Laboratory Working Group, Hajo Grundmann, David M Aanensen, Cees C van den Wijingaard, Artur J Sabat, Jan Muilwijk, Jos Monen, Adriana Tami, Tjibbe Donker, Helmut Mittermayer, Karina Krziwanek, Sabine Stumvoll, Walter Koller, Olivier Denis, Marc Struelens, Dimitr Nashev, Ana Budimir, Smilja Kalenic, Despo Peridou-Bagatzouni, Vladislav Jakubu, Helena Zemlickova, Henrik Westh, Marit Sørum, Robert Skov, Frederic Laurent, Jerome Ettienne, Birgit Strommenger, Wolfgang Witte, Sofia Vourli, Alkis Vatopoulos, Anni Vainio, Jaana Vuopio-Varkila, Miklos Fuzi, Erika Ungvári, Stephan Murchan, Angela Rossney, Edvins Miklasevics, Arta Balode, Gunnsteinn Haraldsson, Karl G Kristinsson, Monica Monaco, Analisa Pantosti, Michael Borg, Marga van Santen-Verheuvel, Xander Huijsdens, Lillian Marstein, Trond Jacobsen, Gunnar Skov Simonsen, Marta Aires-de-Sousa, Herminia de Lencastre, Agnieszka Luczak-Kadlubowska, Waleria Hryniewicz, Monica Straut, Irina Codita, Maria Perez-Vazquez, Oscar Cuevas, Vesna Cvitkovic Spik, Manica Mueller-Premru, Sara Haegman, Barbro Olsen-Liljequist, Matthew Ellington, Angela Kearns, Robin Köck, Alexander Mellmann, Karsten Becker, Ulrich Vogel, Brian G Spratt, Dag Harmsen, Alexander W Friedrich, Hajo Grundmann, David M Aanensen, Cees C van den Wijngaard, Brian G Spratt, Dag Harmsen, Alexander W Friedrich, European Staphylococcal Reference Laboratory Working Group, Hajo Grundmann, David M Aanensen, Cees C van den Wijingaard, Artur J Sabat, Jan Muilwijk, Jos Monen, Adriana Tami, Tjibbe Donker, Helmut Mittermayer, Karina Krziwanek, Sabine Stumvoll, Walter Koller, Olivier Denis, Marc Struelens, Dimitr Nashev, Ana Budimir, Smilja Kalenic, Despo Peridou-Bagatzouni, Vladislav Jakubu, Helena Zemlickova, Henrik Westh, Marit Sørum, Robert Skov, Frederic Laurent, Jerome Ettienne, Birgit Strommenger, Wolfgang Witte, Sofia Vourli, Alkis Vatopoulos, Anni Vainio, Jaana Vuopio-Varkila, Miklos Fuzi, Erika Ungvári, Stephan Murchan, Angela Rossney, Edvins Miklasevics, Arta Balode, Gunnsteinn Haraldsson, Karl G Kristinsson, Monica Monaco, Analisa Pantosti, Michael Borg, Marga van Santen-Verheuvel, Xander Huijsdens, Lillian Marstein, Trond Jacobsen, Gunnar Skov Simonsen, Marta Aires-de-Sousa, Herminia de Lencastre, Agnieszka Luczak-Kadlubowska, Waleria Hryniewicz, Monica Straut, Irina Codita, Maria Perez-Vazquez, Oscar Cuevas, Vesna Cvitkovic Spik, Manica Mueller-Premru, Sara Haegman, Barbro Olsen-Liljequist, Matthew Ellington, Angela Kearns, Robin Köck, Alexander Mellmann, Karsten Becker, Ulrich Vogel, Brian G Spratt, Dag Harmsen, Alexander W Friedrich

Abstract

Background: Staphylococcus aureus is one of the most important human pathogens and methicillin-resistant variants (MRSAs) are a major cause of hospital and community-acquired infection. We aimed to map the geographic distribution of the dominant clones that cause invasive infections in Europe.

Methods and findings: In each country, staphylococcal reference laboratories secured the participation of a sufficient number of hospital laboratories to achieve national geo-demographic representation. Participating laboratories collected successive methicillin-susceptible (MSSA) and MRSA isolates from patients with invasive S. aureus infection using an agreed protocol. All isolates were sent to the respective national reference laboratories and characterised by quality-controlled sequence typing of the variable region of the staphylococcal spa gene (spa typing), and data were uploaded to a central database. Relevant genetic and phenotypic information was assembled for interactive interrogation by a purpose-built Web-based mapping application. Between September 2006 and February 2007, 357 laboratories serving 450 hospitals in 26 countries collected 2,890 MSSA and MRSA isolates from patients with invasive S. aureus infection. A wide geographical distribution of spa types was found with some prevalent in all European countries. MSSA were more diverse than MRSA. Genetic diversity of MRSA differed considerably between countries with dominant MRSA spa types forming distinctive geographical clusters. We provide evidence that a network approach consisting of decentralised typing and visualisation of aggregated data using an interactive mapping tool can provide important information on the dynamics of MRSA populations such as early signalling of emerging strains, cross border spread, and importation by travel.

Conclusions: In contrast to MSSA, MRSA spa types have a predominantly regional distribution in Europe. This finding is indicative of the selection and spread of a limited number of clones within health care networks, suggesting that control efforts aimed at interrupting the spread within and between health care institutions may not only be feasible but ultimately successful and should therefore be strongly encouraged.

Conflict of interest statement

DH is one of the developers of the Ridom StaphType software and the SpaServer mentioned in the manuscript. The client software is distributed and sold by the company Ridom GmbH, which is partially owned by him. All other authors have declared that no competing interests exist.

Figures

Figure 1. Locations of participating laboratories.
Figure 1. Locations of participating laboratories.
Figure 2. Age distribution and all-cause mortality…
Figure 2. Age distribution and all-cause mortality of patients 14 d after diagnosis of invasive S. aureus infections in Europe.
Age divided in bands of 5 y, except for infants under 1 y (−1).
Figure 3. Estimates of country-specific genetic diversity…
Figure 3. Estimates of country-specific genetic diversity expressed as Simpson's index of diversity of spa types (as a percentage) for MSSA (light blue diamonds) and MRSA (dark blue diamonds) and 95% CIs (bars).
Only countries for which spa type information for more then ten MRSA isolates were available were included in this figure.
Figure 4. Location of laboratories isolating S.…
Figure 4. Location of laboratories isolating S. aureus of spa types t067, t041, t032, and t003, which are the four most significant regional clusters on SRL-Maps.
The numbers within each placemark represent the number of isolates and the colours represent resistance phenotypes: red, MRSA; green, MSSA; yellow, a mixture of MRSA and MSSA.
Figure 5. Location of laboratories isolating S.…
Figure 5. Location of laboratories isolating S. aureus spa type t067 (as shown in Figure 4) viewed using SRL-Maps.
Isolates from LAB ES056 in Madrid, Spain, and the distribution of all other t067 isolates are shown (n = 62). Each placemark indicates whether isolates are MSSA (green), MRSA (red), or a mixture (yellow) and the selected laboratory is blue. The numbers of isolates are indicated inside the placemark. The pie charts on the right show the proportion of MRSA/MSSA and all-cause mortality after 14 d, and the bar chart displays patient age distribution.

References

    1. Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520–532.
    1. Morgan M. Methicillin-resistant Staphylococcus aureus and animals: zoonosis or humanosis? J Antimicrob Chemother. 2008;62:1181–1187.
    1. Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5:751–762.
    1. Trilla A, Miro JM. Identifying high risk patients for Staphylococcus aureus infections: skin and soft tissue infections. J Chemother. 1995;7:S37–S43.
    1. Gold LC, Barbour SD, Guerrero-Tiro LM, Koopot R, Lewis K, et al. Staphylococcus aureus endocarditis associated with varicella infection in children. Pediatr Infect Dis J. 1996;15:377–379.
    1. Burgess AM, Gromley CF. Pneumonia in relation to an epidemic of mild influenza with the report of three fulminating cases apparently due to Staphylococcus aureus. N Engl J Med. 1930;202:261–264.
    1. Croze M, Dauwalder O, Dumitrescu O, Badiou C, Gillet Y, et al. Serum antibodies against Panton-Valentine leukocidin in a normal population and during Staphylococcus aureus infection. Clin Microbiol Infect. 2009;15:144–8.
    1. Tacconelli E, Pop-Vicas AE, D'Agata EM. Increased mortality among elderly patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Hosp Infect. 2006;64:251–256.
    1. Feil EJ, Cooper JE, Grundmann H, Robinson DA, Enright MC, et al. How clonal is Staphylococcus aureus? J Bacteriol. 2003;185:3307–3316.
    1. Oliveira DC, Tomasz A, de Lencastre H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of methicillin-resistant Staphylococcus aureus. Lancet Infect Dis. 2002;2:180–189.
    1. Frénay HM, Bunschoten AE, Schouls LM, van Leeuwen WJ, Vandenbroucke-Grauls CM, et al. Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism. Eur J Clin Microbiol Infect Dis. 1996;15:60–64.
    1. Harmsen D, Claus H, Witte W, Rothgänger J, Claus H, et al. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol. 2003;41:5442–5448.
    1. Mellmann A, Friedrich AW, Rosenkötter N, Rothgänger J, Karch H, et al. Automated DNA sequence-based early warning system for the detection of methicillin-resistant Staphylococcus aureus outbreaks. PLoS Med. 2006;3:e33. doi: .
    1. Aires-de-Sousa M, Boye K, de Lencastre H, Deplano A, Enright MC, et al. High interlaboratory reproducibility of DNA sequence-based typing of bacteria in a multicenter study. J Clin Microbiol. 2006;44:619–621.
    1. Friedrich AW, Witte W, Harmsen D, de Lencastre H, Hryniewicz W, et al. : a European laboratory network for sequence-based typing of microbial pathogens. Euro Surveill. 2006;11(2):pii = 2874. Available: . Accessed 28 September 2009.
    1. Friedrich AW, Mellman A, Harmsen D. Spa sequence typing home page. 2004. Available: . Accessed 28 September 2009.
    1. Multilocus sequence typing home page. Available: . Accessed 28 September 2009.
    1. The Europea Parliament and the Council of the EU. Decision number 2119/98/EC of the European Parliament and of the Council of 24 September 1998: setting up a network for the epidemiological surveillance and control of communicable diseases in the community. Official J Eur Communities. 1998;L268/1 Available: . Accessed 28 September 2009.
    1. The European Commission of the European Communities. Commission decision of 22 December 1999 on the communicable diseases to be progressively covered by the community network under decision number 2119/98/EC of the Parliament and of the Council. Official J Eur Communities L. 2000;28/50 Available: . Accessed 28 September 2009.
    1. Grundmann H, Hori S, Tanner G. Determining confidence intervals when measuring genetic diversity and the discriminatory abilities of typing methods for microorganisms. J Clin Microbiol. 2001;39:4190–4192.
    1. Aanensen DM, Spratt BG. . Web mapping application for Infectious Disease Epidemiology. 2007. Available: . Accessed 28 September 2009.
    1. Kulldorff MA. Spatial scan statistic. Commun Stat Theory Methods. 1997;26:1481–96. Available: . Accessed 28 September 2009.
    1. Abrams AM, Kleinman KP. A SaTScan macro accessory for cartography (SMAC) package implemented with SAS software. Int J Health Geogr. 2007;6:6.
    1. European Antimicrobial Surveillance System (EARSS) Annual report 2007. Available: . Accessed 28 September 2009.
    1. Pérez-Vázquez M, Vindel A, Marcos C, Oteo J, Cuevas O, et al. Spread of invasive Spanish Staphylococcus aureus spa-type t067 associated with a high prevalence of the aminoglycoside-modifying enzyme gene ant(4′)-Ia and the efflux pump genes msrA/msrB. J Antimicrob Chemother. 2009;63:21–31.
    1. Nübel U, Roumagnac P, Feldkamp M, Song JH, Ko KS, et al. Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A. 2008;105:14130–14135.
    1. Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt BG. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A. 2002;99:7687–7692.
    1. Robotham JV, Scarff CA, Jenkins DR, Medley GF. Methicillin-resistant Staphylococcus aureus (MRSA) in hospitals and the community: model predictions based on the UK situation. J Hosp Infect. 2007;65(S2):93–99.
    1. Jessen O, Rosendal K, Bülow P, Faber V, Eriksen KR. Changing staphylococci and staphylococcal infections. A ten-year study of bacteria and cases of bacteremia. N Engl J Med. 1969;281:627–635.
    1. Lyytikäinen O, Ruotsalainen E, Järvinen A, Valtonen V, Ruutu P. Trends and outcome of nosocomial and community-acquired bloodstream infections due to Staphylococcus aureus in Finland, 1995–2001. Eur J Clin Microbiol Infect Dis. 2005;24:399–404.
    1. Witte W, Strommenger B, Cuny C, Heuck D, Nübel U. Methicillin-resistant Staphylococcus aureus containing the Panton-Valentine leucocidin gene in Germany in 2005 and 2006. J Antimicrob Chemother. 2007;60:1258–1263.
    1. Huijsdens XW, van Dijke BJ, Spalburg E, van Santen-Verheuvel MG, Heck ME, et al. Community-acquired MRSA and pig-farming. Ann Clin Microbiol Antimicrob. 2006;5:26.
    1. Hallin M, Deplano A, Denis O, De Mendonça R, De Ryck R, et al. Validation of pulsed-field gel electrophoresis and spa typing for long-term, nationwide epidemiological surveillance studies of Staphylococcus aureus infections. J Clin Microbiol. 2007;45:127–133.
    1. Strommenger B, Kettlitz C, Weniger T, Harmsen D, Friedrich AW, et al. Assignment of Staphylococcus isolates to groups by spa typing, SmaI macrorestriction analysis, and multilocus sequence typing. J Clin Microbiol. 2006;44:2533–2540.

Source: PubMed

3
Předplatit