The role of particle size in aerosolised pathogen transmission: a review

Jan Gralton, Euan Tovey, Mary-Louise McLaws, William D Rawlinson, Jan Gralton, Euan Tovey, Mary-Louise McLaws, William D Rawlinson

Abstract

Understanding respiratory pathogen transmission is essential for public health measures aimed at reducing pathogen spread. Particle generation and size are key determinant for pathogen carriage, aerosolisation, and transmission. Production of infectious respiratory particles is dependent on the type and frequency of respiratory activity, type and site of infection and pathogen load. Further, relative humidity, particle aggregation and mucus properties influence expelled particle size and subsequent transmission. Review of 26 studies reporting particle sizes generated from breathing, coughing, sneezing and talking showed healthy individuals generate particles between 0.01 and 500 μm, and individuals with infections produce particles between 0.05 and 500 μm. This indicates that expelled particles carrying pathogens do not exclusively disperse by airborne or droplet transmission but avail of both methods simultaneously and current dichotomous infection control precautions should be updated to include measures to contain both modes of aerosolised transmission.

Copyright © 2010 The British Infection Association. All rights reserved.

Figures

Figure 1
Figure 1
The changing size scale of particle sizes and demarcations of particle size. This schematic indicates the size range of expelled from individuals prior to and after 1979. The black arrow refers to the size range identified from healthy and infected individuals. The red dashed line refers to the size range identified from individuals with known bacterial infections. The yellow dashed line refers to the size range identified from individuals with known viral infections.

References

    1. Slonim N.B., Chapin J.L. The C.V. Mosby Company; Saint Louis: 1967. Respiratory Physiology.
    1. Jennison M.W. Atomizing of mouth and nose secretions into the air as revealed by high-speed photography. Aerobiology. 1942;17:106–128.
    1. Ross B.B. Physical dynamics of the cough mechanism. Journal of Applied Physiology. 1955;8:264–269.
    1. Gebhart J., Anselm A., Heyder J., Stalhofen W. The human lung as aerosol particle Generator. Journal of Aerosol Medicine. 1988;1:196–197.
    1. Almstrand A.-C., Bake B., Ljungstrom E., Larsson P., Bredberg A., Mirgorodskaya E. Effect of airway opening on production of exhaled particles. Journal of Applied Physiology. March 1, 2010;108(3):584–588.
    1. Johnson G.R., Morawska L. The mechanism of breath aerosol formation. Journal of Aerosol Medicine and Pulmonary Drug Delivery. 2009;22(3):229–237.
    1. Holmgren H., Ljungström E., Almstrand A.-C., Bake B., Olin A- C. Size distribution of exhaled particles in the range from 0.01 to 2.0 [mu]m. Journal of Aerosol Science. 2010;41(5):439–446. doi: 10.1016/j.jaerosci.2010.02.011.
    1. Haslbeck K., Schwarz K., Hohlfeld J.M., Seume J.R., Koch W. Submicron droplet formation in the human lung. Journal of Aerosol Science. 2010;41(5):429–438. doi: 10.1016/j.jaerosci.2010.02.010.
    1. Morawska L., Johnson G.R., Ristovski Z.D., Hargreaves M., Mengersen K., Corbett S. Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science. 2008;40(1):256–269.
    1. Wells W.F. On airborne infection: study II. Droplets and droplet nuclei. American Journal of Hygiene. 1934;1934(20):611–618.
    1. World Health Organisation Western Pacific Region Practical guidelines for infection control in health care facilities. [Online Guidelines] Manila: WHO; 2005 [updated 1 January 2005; cited 2008 19 November]; Available from.
    1. Garner J.S. Guideline for isolation precautions in hospitals. Infection Control and Hospital Epidemiology. 1996;17(1):53–80.
    1. Macias A.E., de la Torre A., Moreno-Espinosa S., Leal P.E., Bourlon M.T., Ruiz-Palacios G.M. Controlling the novel A (H1N1) influenza virus: don’t touch your face! Journal of Hospital Infection. 2009;73:280–291.
    1. Booth Timothy F., Kournikakis B., Bastien N., Ho J., Kobasa D., Stadnyk L. Detection of Airborne Severe Acute Respiratory syndrome (SARS) coronavirus and environmental contamination in SARS outbreak units. The Journal of Infectious Diseases. 2005;191(9):1472–1477.
    1. Duguid J.P. The size and the duration of air-carriage of respiratory droplets and droplet-nuclei. The Journal of Hygiene. 1946;44(6):471–479.
    1. Wang B., Zhang A., Sun J.L., Liu H., Hu J., Xu L.X. Study of SARS transmission via liquid droplets in air. Journal of Biomechanical Engineering. 2005;127(1):32–38.
    1. Xie X., Li Y., Chwang A.T.Y., Ho P.L., Seto W.H. How far droplets can move in indoor environments – revisiting the Wells evaporation-falling curve. Indoor Air. 2007;17:211–225.
    1. Hamburger M., Roberston O.H. Expulsion of Group A hemolytic streptococci in droplets and droplet nuclei by sneezing, coughing and talking. American Journal of Medicine. 1946;1946(4):690–701.
    1. WHO Infection prevention and control of epidemic- and pandemic-prone acute respiratory diseases in health care. WHO/CDS/EPR/20076 [serial on the Internet] 2007 August 18, 2008]: Available from.
    1. Siegel J.D., Rhinehart E., Jackson M., Chiarello L., Committee H.I.C.P.A. Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings. 2007 [cited 2008 December 8]; Available from.
    1. Austin E., Brock J., Wissler E. A model for deposition of stable and unstable aerosols in the human respiratory tract. American Industrial Hygiene Association Journal. 1979;40(12):1055–1066.
    1. Morrow P.E. Physics of airborne particles and their deposition in the lung. Annals of the New York Academy of Sciences. 1980;353:71–80.
    1. Stalhofen W., Gebhart J., Heyder J., Scheuch G. Deposition pattern of droplets from medical nebulizers in the human respiratory tract. Bulletin Europeen de Physiopathologie Respiratoire. 1983;19:459–463.
    1. Yu C.P., Taulbee D.B. A theory of predicting respiratory tract deposition of inhaled particles in man. Inhaled Particles. 1975;4(1):35–47.
    1. Brain J.D., Valberg P.A. Deposition of aerosol in the respiratory tract. American Review of Respiratory Disease. 1979;120:1325–1372.
    1. Hatch T.F. Distribution and deposition of inhaled particles in respiratory tract. Microbiology and Molecular Biology Reviews. 1961;25:237–240.
    1. Knight V. Viruses as agents as airborne contagion. Annals of the New York Academy of Science. 1980;353:147–156.
    1. Yeh H.C., Phalen R.F., Raabe O.G. Factors influencing the deposition of inhaled particles. Environmental Health Perspectives. 1976;15:147–156.
    1. Nicas M., Nazaroff W.W., Hubbard A. Toward understanding the risk of secondary airborne infection: emission of respirable pathogens. Journal of Occupational and Environmental Hygiene. 2005;2:143–154.
    1. Cheng Y.S., Yamada Y., Yeh H.C., Swift D.L. Diffusional deposition of ultrafine aerosols in a human nasal cast. Journal of Aerosol Science. 1988;19(6):741–751.
    1. Cheng Y.S., Yeh H.C., Swift D.L. Aerosol deposition in human nasal airway for particles 1 nm to 20 μm radiation. Protection Dosimetry. 1991;38(1):41–47.
    1. Licht W. The movement of aerosol particles. Journal of Society of Cosmetic Chemists. 1972;23:657–678.
    1. Weber T.P., Stilianakis N.I. Inactivation of infuenza A viruses in the environment and modes of transmission: a critical review. Journal of Infection. 2008;57:361–373.
    1. Stilianakis N.I., Drossinos Y. Dynamics of infectious disease transmission by inhalable respiratory droplets. Journal of the Royal Society Interface. 2010;7:1355–1366.
    1. Tellier R. Review of aerosol transmission of influenza A virus. Emerging Infectious Diseases. 2006;12(11):1657–1662.
    1. Fendrick A.M., Monto A.S., Nightengale B., Sarnes M. The Economic burden of non-influenza-related viral respiratory tract infection in the United states. Archives of Internal Medicine. February 24, 2003;163(4):487–494.
    1. MacFarlane J., Colville A., Guion A., MacFarlane R., Rose D.H. Prospective study of aetiology and outcome of adult lower-respiratory-tract infections in the community. Lancet. 1993;341:511–514.
    1. Tupasi T.E., Velmonte M.A., Sanvictores M.E.G., Abraham L., De Leon D.E., Tan S.A. Determinants of morbidity and mortality due to acute respiratory infections: implications for interventions. Journal of Infectious Diseases. 1988;157(4):615–623.
    1. Garbino J., Gerbase M.W., Wunderli W., Deffernez C., Thomas Y., Rochat T. Lower respiratory viral illnesses: improved diagnosis by molecular methods and clinical impact. American Journal of Respiratory and Critical Care Medicine. December 1, 2004;170(11):1197–1203.
    1. Mok J.Y., Simpson H. Outcome of acute lower respiratory tract infection in infants: preliminary report of seven-year follow-up study. British Medicine Journal (Clin Res Ed) July 31, 1982;285(6338):333–337.
    1. Sigurs N., Gustafsson P.M., Bjarnason R., Lundberg F., Schmidt S., Sigurbergsson F. Severe respiratory syncytial virus Bronchiolitis in infancy and asthma and allergy at age 13. AJRCCM. 2004;171:137–141.
    1. Barker D.J.P., Godfrey K.M., Fall C., Osmond C., Winter P.D., Shaheen S.O. Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BMJ. 1991;303:671–675.
    1. You D., Becnel D., Wang K., Ripple M., Daly M., Cormier S.A. Exposure of neonates to Respiratory Syncytial Virus is critical in determining subsequent airway response in adults. Respiratory Research. 2006;7(1):107.
    1. Illi S., von Mutius E., Lau S., Bergmann R., Niggemann B., Sommerfeld C. Early childhood infectious diseases and the development of asthma up to school age: a birth cohort study. BMJ. February 17, 2001;322(7283):390–395. 2001.
    1. Hiatt P.W., Grace S.C., Kozinetz C.A., Raboudi S.H., Treece D.G., Taber L.H. Effects of viral lower respiratory tract infection on lung function in infants with cystic fibrosis. Pediatrics. March 1, 1999;103(3):619–626.
    1. Navarro E.E., Gonzaga N.C., Lucero M., Queipo S.C., Schroeder I., Gomez M.L.O. Clinicopathologic studies of children who die of acute lower respiratory tract infections: mechanisms of death. Reviews of Infectious Diseases. 1990;12(Suppl. 8):s1065–s1073.
    1. Glezen W.P., Greenberg S.B., Atmar R.L., Piedra P.A., Couch R.B. Impact of respiratory virus infections on Persons with chronic Underlying conditions. JAMA. 2000;283(4):499–505.
    1. Stelzer-Braid S., Oliver B.G., Blazey A.J., Argent E., Newsome T.P., Rawlinson W.D. Exhalation of respiratory viruses by breathing, coughing and talking. Journal of Medical Virology. 2009;81:1674–1679.
    1. Fabian P., McDevitt J.J., DeHaan W.H., Fung R.O.P., Cowling B.J., Chan K.H. Influenza virus in human exhaled breath: an observational study. PLoS ONE. 2008;3(7):e2691. 07/16.
    1. Fabian P., McDevitt J.J., Lee W.M., Houseman E.A., Milton D.K. An optimized method to detect influenza virus and human rhinovirus from exhaled breath and the airborne environment. Journal of Environmental Monitoring. 2009;11(2):314–317.
    1. Huynh K.N., Oliver B.G., Stelzer S., Rawlinson W., Tovey E.R. A new method for sampling and detection of exhaled respiratory virus aerosols. Clinical Infectious Diseases. 2008;46:93–95.
    1. Winslow C.E., Robinson E.A. An investigation of the extent of bacterial pollution of the atmosphere by mouth-Spray. American Journal of Public Hygiene. 1910;20(3):566–569.
    1. Koeniger H. Untersuchungen uber die Frage der Tropfcheninfection. Ztschr F Hyg. 1900;36:125.
    1. Wainwright C.E., France M.W., O’Rourke P., Anuj S., Kidd T.J., Nissen M.D. Cough-generated aerosols of Pseudomonas aeruginosa and other Gram-negative bacteria from patients with cystic fibrosis. Thorax. 2009;64:926–931.
    1. Buckland F.E., Tyrrell D.A.J. Experiments on the spread of Colds: !. Laboratory studies on the Dispersal of nasal Secretion. Journal of Hygiene. 1964;62(3):365–377.
    1. Gerone P.J., Couch R.B., Keefer G.V., Douglas R.G., Derrenbacher E.B., Knight V. Assessment of experimental and natural viral aerosols. Bacteriological Reviews. 1966;30:576–584.
    1. Couch R.B., Cate T.R., Douglas R.G.J., Gerone P.J., Knight V. Effect of route of inoculation on experimental respiratory disease in volunteers and evidence for airborne transmission. Bacteriological Reviews. 1966;30:517–529.
    1. Lee C.-S., Lee J.-H. Dynamics of clinical symptoms in patients with pandemic influenza A (H1N1) Clinical Microbiology and Infection. 2010;16(4):389–390.
    1. Monto A.S., Gravenstein S., Elliott M., Colopy M., Schweinle J. Clinical signs and symptoms predicting influenza infection. Archives of Internal Medicine. 2000;160:3243–3247.
    1. Gupta J.K., Lin C.-H., Chen Q. Flow dynamics and characterization of cough. Indoor Air. 2009;19:517–525.
    1. Call S.A., Vollenweider M.A., Hornung C.A., Simel D.L., McKinney W.P. Does this patient have influenza? JAMA. February 23, 2005;293(8):987–997.
    1. Seijo-Martinez M., Varela-Freijanes Grandes J., Vazquez F. Sneeze related area in the medulla: localisation of the human sneezing centre? Journal of Neurology and Neurosurgery Psychiatry. 2006;77(4):559–561.
    1. Hyden D., Arlinger S. On light-induced sneezing. Eye. 2009;23(11):2112–2114.
    1. Martin R.A., Handel S.F., Aldama A.E. Inability to sneeze as a manifestation of medullary neoplasm. Neurology. 1991;41:1675–1676.
    1. Rubbo S.D., Benjamin M. Transmission of Haemolytic streptococci. The Journal of Hygiene. 1953;51(2):278–292.
    1. Atkinson M.P., Wein L.M. Quantifying the routes of transmission for pandemic influenza. Bulletin of Mathematical Biology. 2008;70(3):820–867.
    1. Li S., Eisenberg J.N.S., Spicknall I.H., Koopman J.S. Dynamics and control of infections transmitted from person to person through the environment. American Journal of Epidemiology. 2009;170(2):257–265.
    1. Eichenwald H.F., Kotsevalov O., Fasso L.A. The “Cloud Baby”: an example of bacterial-viral interaction. American Journal of Diseases of Children. 1960;100:30–43.
    1. Heymann B. Ueber die Ausstreuung infectioser Tropfchen beim Husten der Phthisiker. Medical Microbiology and Immunology. 1899;30(1):139–162. [translated]
    1. Fennelly K.P., Martyny J.W., Fulton K.T., Orme I.M., Cave D.M., Heifets L.B. Cough-generated Aerosols of Mycobacterium tuberculosis. American Journal of Respiratory Critical Care Medicine. 2004;169:604–609.
    1. Hersen G., Moularat S., Robine E., Ghin E., Corbet S., Vabret A. Impact of health on particle size of exhaled respiratory aerosols: case-control study. Clean. 2008;36(7):572–577.
    1. Strausz W. Z Hyg. 1926;105:416 [cited by Duguid, 1946].
    1. Loudon R.G., Roberts R.M. Droplet explusion from the respiratory tract. American Review of Respiratory Disease. 1967;95(3):435–442.
    1. Downie A.W., Meiklejohn M., St. Vincent L., Rao A.R., Sundara Babu B.V., Kempe C.H. The recovery of Smallpox virus from patients and their environment in a Smallpox hospital. Bulletin of the World Health Organisation. 1965;33:615–622.
    1. Xie X., Li Y., Sun H., Liu L. Exhaled droplets due to talking and coughing. Journal of the Royal Society Interface. 2009;6:s703–s714.
    1. Li C.-S., Hao M.-L., Lin W.-H., Chang C.-W., Wang C.-S. Evaluation of microbial samplers for bacterial microorganisms. Aerosol Science and Technology. 1999;30:100–108.
    1. Fabian P., McDevitt J.J., Houseman E.A., Milton D.K. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: considerations for a new infectious virus aerosol sampler. Indoor Air. 2009;19:433–441.
    1. Tseng C.-C., Li C.-S. Collection efficiencies of aerosol samplers for virus-containing aerosols. Journal of Aerosol Science. 2005;36(5–6):593–607.
    1. Stewart S.L., Grinshpun S.A., Willeke K., Terzieva S., Ulevicius V., Donnelly J. Effect of impact stress on microbial recovery on an agar surface. Applied and Environmental Microbiology. April 1, 1995;61(4):1232–1239.
    1. Saldanha R., Manno M., Saleh M., Ewaze J.O., Scott J.A. The influence of sampling duration on recovery of culturable fungi using the Andersen N6 and RCS bioaerosol samplers. Indoor Air. 2008;18:464–472.
    1. Hogan C.J., Kettleson E.M., Lee M.-H., Ramaswami B., Angenent L.T., Biswas P. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of Applied Microbiology. 2005;99:1422–1434.
    1. Grinshpun S.A., Willeke K., Ulevicius V., Juozaitis A., Terzieva S., Donnelly J. Effect of impaction, bounce and Reaerosolization on the collection efficiency of impingers. Aerosol Science and Technology. 1997;26(4):326–342.
    1. Esmen N.A., Ziegler P., Whitfield R. The adhesion of particles upon impaction. Journal of Aerosol Science. 1978;9(6):547–556. doi: 10.1016/0021-8502(78)90020-4.
    1. Lai C.-Y., Huang S.-H., Chang C.-P., Lin J.-Y. Reducing particle bounce and loading effect for a multi-hole impactor. Aerosol Science and Technology. 2008;42(2):114–122.
    1. Chang M., Kim S., Sioutas C. Experimental studies on particle impaction and bounce: effects of substrate design and material. Atmospheric Environment. 1999;33:2313–2322.
    1. Dzubay T.G., Hines L.E., Stevens R.K. Particle bounce errors in cascade impactors. Atmospheric Environment. 1976;10(3):229–234. 1976.
    1. Yamamoto N., Fujii M., Endo O., Kumagai K., Yanagisawa Y. Broad range observation of particle deposition on greased and non-greased impaction surfaces using a line-sensing optical microscope. Journal of Aerosol Science. 2002;33(12):1667–1679.
    1. Ukiwe C., Kwok D.Y. On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir. 2004 12/18/;21(2):666–673.
    1. Moita A.S., Moreira A.L. The deformation of single droplets impacting onto a flat surface. Journal of Fuels and Lubricants. 2002:1477–1489. [SAE 2002 Transactions]
    1. Bhunia Impingement Splattering S.K., Disturbance Surface. Massachusetts Institute of Technology; Cambridge: 1993. Evolution on turbulent liquid jets in Gases.
    1. Jepsen R.A., Yoon S.S., Demosthenous B., editors. Effects of air on splashing during a droplet impact. Canada; Toronto: 2006. ILASS America, 19th Annual conference on liquid atomization and spray systems.
    1. Hawke S.R. Oregon State University; Corvallis: 2006. Effects of a thin, flexible nozzle on droplet formation and impingement.
    1. Park H., Carr W.W., Zhu J., Morris J.F. Single drop impaction on a solid surface. AIChE Journal. 2003;49(10):2461–2471.
    1. Sikalo S., Marengo M., Tropea C., Ganic E.N. Analysis of impact of droplets on horizontal surfaces. Experimental Thermal and Fluid Sciences. 2002;25:503–510.
    1. Papineni R.S., Rosenthal F.S. The size distribution of droplets in the exhaled breath of healthy human Subjects. Journal of Aerosol Medicine. 1997;10(2):105–116.
    1. Li Y.G., Chwang A.T.Y., Seto W.H., Ho P.L., Yuen P.L. Understanding droplets produced by nebulisers and respiratory activities. Hong Kong Medical Journal. 2008;14(Suppl. 1):s29–s32.
    1. Lindsley W.G. Institute of Medicine; Washingon, DC: 2010. Environmental and source measurements of airborne influenza. Current research issues – personal protective equipment for healthcare workers to prevent transmission of pandemic influenza and other viral respiratory infections. June 3.
    1. Chao C.Y.H., Wan M.P., Morawska L., Johnson G.R., Ristovski Z.D., Hargreaves M. Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science. 2009;40(2):122–133. doi: 10.1016/j.jaerosci.2008.10.003.
    1. Yang S., Lee G.W.M., Chen C.-M., Wu C.-C., Yu K.-P. The size and concentration of droplets generated by coughing in human Subjects. Journal of Aerosol Medicine. 2007;20(4):484–494.
    1. Edwards D.A., Man J.C., Brand P., Katstra J.P., Stone H.A., Nardell E. Inhaling to mitigate exhaled bioaersols. PNAS. 2004;101(50):17383–17388.
    1. Fang M., Lau A.P.S., Chan C.K., Hung C.T., Lee T.W. Aerodynamic properties of biohazardous aerosols in hospitals. Hong Kong Medical Journal. 2008;14(1):26–28.
    1. Morawska L, Johnson GR, Ristovski Z, Hargreaves M, Mengersen K, Chao C, et al., editors. Droplets expelled during human expiratory activities and their origins. Paper-1023. In: 11th International conference on indoor air quality and climate paper, Copenhagen, Denmark; 2009.
    1. Glover A.R., Skippon S.M., Boyle R.D. Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems. Applied Optics. 1995;34(36):8409–8421.
    1. Kinney P.D., Pui D.Y.H. Inlet efficiency study for the TSI aerodynamic particle sizer. Particle and Particle Systems Characterization. 1995;12:188–193.
    1. Armendariz A., Leith D. Concentration measurement and counting efficiency for the aerodynamic particle sizer 3320. Aerosol Science. 2002;33:133–148.
    1. Peters T.M., Leith D. Concentration measurement and counting efficiency of the aerodynamic particle sizer 3321. Aerosol Science. 2003;34:627–634.
    1. Marshall I.A., Mitchell J.P. The behaviour of spheroidal particles in time-of-flight aerodynamic particle sizers. Journal of Aerosol Science. 1992;23(Suppl. 1):s297–s300.
    1. Milton DK, Fabian P, Angel M, Perez DR, McDevitt JJ. Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks swine origin H1N1: the first pandemic of the 21st Century; April 18–20, 2010; [Atlanta, Georgia].
    1. Prescott L.M., Harley J.P., Klein D.A. 5th ed. McGraw-Hill; New York: 2002. Microbial growth. Microbiology. pp. 118.
    1. Morawska L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air. 2006;16(5):335–347.
    1. Wan M.P., Chao C.Y.H. Transport characteristics of expiratory droplets and droplet nuclei in indoor environments with different Ventilation airflow patterns. Journal of Biomedical Engineering. 2007;129:341–353.
    1. Nichol K., Bigelow P., O’Brien-Pallas L., McGeer A., Manno M., Holness D.L. The individual, environmental, and organizational factors that influence nurses’ use of facial protection to prevent occupational transmission of communicable respiratory illness in acute care hospitals. American Journal of Infection Control. 2008;36(7):481–487.
    1. Schaffer F.L., Soergel M.E., Straube D.C. Survival of airborne influenza virus: effects of propagating host, relative humidity and composition of spray Fluids. Archives of Virology. 1976;51:263–273.
    1. Lowen A.C., Mubareka S., Steel J., Palese P. Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathogens. 2007;3(10):e151.
    1. Hemmes J.H., Winkler K.C., Kool S.M. Virus Survival as a Seasonal factor in influenza and Poliomyelitis. Nature. 1960;188:430–431.
    1. Verreault D., Moineau S., Duchaine C. Methods for sampling of airborne viruses. Microbiology and Molecular Biology Reviews. September 1, 2008;72(3):413–444.
    1. Kozlova I., Vanthanouvong V., Marie J., Roomans G.M. Composition of airway surface liquid determined by X-ray microanalysis. Upsala Journal of Medical Sciences. 2006;111(1):137–153.
    1. Vanthanouvong V., Kozlova I., Johannesson M., Nääs E., Nordvall S.L., Dragomir A. Composition of nasal airway surface liquid in cystic fibrosis and other airway diseases determined by X-ray microanalysis. Microscopy Research and Technique. 2006;69(4):271–276.
    1. Fairchild C.I., Stampfer J.F. Particle concentration in exhaled breath. American Industrial Hygiene Association Journal. 1987;48(11):948–949.
    1. Riley S., Fraser C., Donnelly C.A., Ghani A.C., Abu-Raddard L.J., Hedley A.J. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health Intervention. Science. 2003;300:1961–1966.
    1. Glass L.M., Glass R.J. Social contact networks for the spread of pandemic influenza in children and teenagers. BMC Public Health. 2008;8(61)
    1. Small M., Tse C.K., Walker D.M. Super-spreaders and the rate of transmission of the SARS virus. Physica D. 2006;215:146–158.
    1. Wang S.H., Li Y.M., Sun B.C., Zhang S.W., Zhao W.H., Wei M.T. The SARS outbreak in a general hospital in Tianjin, China – the case of super-spreader. Epidemiology and Infection. 2006;134:786–791.
    1. Abdullah A.S.M., Tomlinson B., Cockram C.S., Neil Thomas G. Lessons from the Severe acute respiratory Syndrome outbreak in Hong Kong. Emerging Infectious Diseases. 2003;9(9):1042–1045.
    1. Lindsley W.G., Blanchere F.M., Davis K.A., Pearce T.A., Fisher M.A., Khakoo R. Distribution of airborne influenza virus and respiratory syncytial virus in an urgent care medical Clinic. Clinical Infectious Diseases. 2010;50(5):693–698.
    1. Blachere F.M., Lindsley W.G., Pearce T.A., Anderson S.E., Fisher M., Khakoo R. Measurement of airborne influenza virus in a hospital emergency department. Clinical Infectious Diseases. 2009;48(4):438–440.
    1. Roy C.J., Milton D.K. Airborne transmission of communicable infection – the elusive pathway. New England Journal of Medicine. 2004;350(17):1710–1712.
    1. Fiegel J., Clarke R., Edwards D.A. Airborne infectious disease and the suppression of pulmonary bioaerosols. Drug Discovery Today. 2006;11(1–2):51–57.
    1. Zayas G., Dimitry J., Zayas A., O’Brien D., King M. A new paradigm in respiratory hygiene: increasing the cohesivity of airway secretions to improve cough interaction and reduce aerosol dispersion. BMC Pulmonary Medicine. 2005;5(11):1–12.

Source: PubMed

3
Předplatit