Surviving sepsis campaign international guidelines for the management of septic shock and sepsis-associated organ dysfunction in children

Scott L Weiss, Mark J Peters, Waleed Alhazzani, Michael S D Agus, Heidi R Flori, David P Inwald, Simon Nadel, Luregn J Schlapbach, Robert C Tasker, Andrew C Argent, Joe Brierley, Joseph Carcillo, Enitan D Carrol, Christopher L Carroll, Ira M Cheifetz, Karen Choong, Jeffry J Cies, Andrea T Cruz, Daniele De Luca, Akash Deep, Saul N Faust, Claudio Flauzino De Oliveira, Mark W Hall, Paul Ishimine, Etienne Javouhey, Koen F M Joosten, Poonam Joshi, Oliver Karam, Martin C J Kneyber, Joris Lemson, Graeme MacLaren, Nilesh M Mehta, Morten Hylander Møller, Christopher J L Newth, Trung C Nguyen, Akira Nishisaki, Mark E Nunnally, Margaret M Parker, Raina M Paul, Adrienne G Randolph, Suchitra Ranjit, Lewis H Romer, Halden F Scott, Lyvonne N Tume, Judy T Verger, Eric A Williams, Joshua Wolf, Hector R Wong, Jerry J Zimmerman, Niranjan Kissoon, Pierre Tissieres, Scott L Weiss, Mark J Peters, Waleed Alhazzani, Michael S D Agus, Heidi R Flori, David P Inwald, Simon Nadel, Luregn J Schlapbach, Robert C Tasker, Andrew C Argent, Joe Brierley, Joseph Carcillo, Enitan D Carrol, Christopher L Carroll, Ira M Cheifetz, Karen Choong, Jeffry J Cies, Andrea T Cruz, Daniele De Luca, Akash Deep, Saul N Faust, Claudio Flauzino De Oliveira, Mark W Hall, Paul Ishimine, Etienne Javouhey, Koen F M Joosten, Poonam Joshi, Oliver Karam, Martin C J Kneyber, Joris Lemson, Graeme MacLaren, Nilesh M Mehta, Morten Hylander Møller, Christopher J L Newth, Trung C Nguyen, Akira Nishisaki, Mark E Nunnally, Margaret M Parker, Raina M Paul, Adrienne G Randolph, Suchitra Ranjit, Lewis H Romer, Halden F Scott, Lyvonne N Tume, Judy T Verger, Eric A Williams, Joshua Wolf, Hector R Wong, Jerry J Zimmerman, Niranjan Kissoon, Pierre Tissieres

Abstract

Objectives: To develop evidence-based recommendations for clinicians caring for children (including infants, school-aged children, and adolescents) with septic shock and other sepsis-associated organ dysfunction.

Design: A panel of 49 international experts, representing 12 international organizations, as well as three methodologists and three public members was convened. Panel members assembled at key international meetings (for those panel members attending the conference), and a stand-alone meeting was held for all panel members in November 2018. A formal conflict-of-interest policy was developed at the onset of the process and enforced throughout. Teleconferences and electronic-based discussion among the chairs, co-chairs, methodologists, and group heads, as well as within subgroups, served as an integral part of the guideline development process.

Methods: The panel consisted of six subgroups: recognition and management of infection, hemodynamics and resuscitation, ventilation, endocrine and metabolic therapies, adjunctive therapies, and research priorities. We conducted a systematic review for each Population, Intervention, Control, and Outcomes question to identify the best available evidence, statistically summarized the evidence, and then assessed the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach. We used the evidence-to-decision framework to formulate recommendations as strong or weak, or as a best practice statement. In addition, "in our practice" statements were included when evidence was inconclusive to issue a recommendation, but the panel felt that some guidance based on practice patterns may be appropriate.

Results: The panel provided 77 statements on the management and resuscitation of children with septic shock and other sepsis-associated organ dysfunction. Overall, six were strong recommendations, 49 were weak recommendations, and nine were best-practice statements. For 13 questions, no recommendations could be made; but, for 10 of these, "in our practice" statements were provided. In addition, 52 research priorities were identified.

Conclusions: A large cohort of international experts was able to achieve consensus regarding many recommendations for the best care of children with sepsis, acknowledging that most aspects of care had relatively low quality of evidence resulting in the frequent issuance of weak recommendations. Despite this challenge, these recommendations regarding the management of children with septic shock and other sepsis-associated organ dysfunction provide a foundation for consistent care to improve outcomes and inform future research.

Keywords: Evidence-based medicine; Grading of Recommendations Assessment, Development and Evaluation criteria; Guidelines; Infection; Pediatrics; Sepsis; Septic shock; Surviving Sepsis Campaign.

Conflict of interest statement

Drs. Weiss and Peters served as arbiters for conflict interest management and adjudication throughout the guidelines process following standard operating procedures set forth by Society of Critical Care Medicine (SCCM) and endorsed by European Society of Intensive Care Medicine. Dr. Weiss participates in Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) and Shock Society. Dr. Peters participates in the UK PICS study group (vice-chair) and has testified as an expert witness in cases of clinical negligence, causation of injuries. Dr. Agus participates in the American Academy of Pediatrics (AAP), Pediatric Academic Societies (PAS), American Pediatric Society, Society for Pediatric Research, and The American Society for Clinical Investigation, and he has testified as an expert witness in cases related to ICU and/or endocrinology in children. Dr. Flori participates in American Thoracic Society (ATS) State Chapter (Executive Board Member—Michigan and California State Chapters) and PALISI Network, Grant funding from Gerber Foundation (Steering committee member for various studies being implemented through the Network from intramural funding, governmental or other Foundation Grant funding). Dr. Nadel received funding form La Jolla Pharmaceutical (consulting), and he participates in the European Society of Pediatric and Neonatal Intensive Care (ESPNIC) (Medical President). Dr. Brierley participates in the ESPNIC. Dr. Carrol participates in National Institute for Health and Care Excellence (NICE) (Diagnostic Advisory Committee panel) and National Institutes for Health Research (two scientific panels, i4i and DTF). Dr. Cheifetz participates in American Association for Respiratory Care and ATS (volunteer activities) and has testified as an expert witness for medical malpractice cases, he is an advisor to Philips, and a contributor to Up-to-Date. Dr. Cies received funding from Allergan, Merck, Thermo Fisher Scientific, and Atlantic Diagnostic Laboratories (consultant), and he participates in Pediatric Pharmacy Advocacy Group (multiple positions), Society of Infectious Diseases Pharmacists (Vice-Chair of the Inter-organizations Liaison Committee), and the American College of Clinical Pharmacists (member and fellow). Dr. Cruz has testified as an expert witness in cases of children with tuberculosis-related meningitis and is an associate editor for Pediatrics. Dr. De Luca serves as Medical President-elect on the Executive Committee of ESPNIC, he served as a consultant and lecturer on the external advisory board and received research and educational grants from Chiesi Farmaceutici S.p.A and AbbVie, and travel grants from AbbVie, he has been a lecturer for Philips, Radiometer, and Waire. Dr. Faust served as chair of the UK NICE Guideline Committee for Sepsis in Children and Adults published in 2016 and for Lyme disease published in 2018, serves as a regional representative to the UK NHS England Clinical Reference Group for commissioning pediatric specialist medicine care (immunology and infection). Dr. Hall receives funding from La Jolla Pharmaceuticals (consultant on the data safety monitoring board for a clinical trial of a sepsis therapeutic), and he participates in the ATS (online journal club editor) and the American Board of Pediatrics (Critical Care Medicine sub-board). Dr. Ishimine participates in SAEM (Consensus Conference Co-Chair), American Board of Pediatrics/American Board of Emergency Medicine (Immediate Past Chair of the Pediatric Emergency Medicine Subboard), and the American College of Emergency Physicians (Pediatric Emergency Medicine Committee member). Dr. Javouhey received funding from CSL Behring (trial on IV Immunoglobulins in toxic shock syndrome in children). Dr. Karam participates in BloodNet, PALISI, ISBT, AABB, and CCCTG. Dr. Kneyber participates in the European Society for Pediatric and Neonatal Intensive Care. Dr. MacLaren participates in Extracorporeal Life Support Organization (Executive Committee). Dr. Mehta participates in the American Society for Parenteral and Enteral Nutrition (president). Dr. Møller participates in the Science Systems and Applications, Inc (board member). Dr. Newth received funding from Philips Research North America (consulting concerning monitoring in PICU), and he participates in the ATS. Dr. Nishisaki’s institutional department receives an unrestricted grant from Nihon Kohden (involves an activity to develop a device to measure capillary refill time), and he participates in the Society for Simulation in Healthcare and International Society for Pediatric Simulation. Dr. Nunnally participates in American College of Critical Care Medicine (Regent), Society of Critical Care Anesthesiologists (director), American Society of Anesthesiologists (committee), International Anesthesia Research Society, and NYSA. Dr. Randolph’s institution received funding from Genentech (influenza biomarker study research support); she has received funding from Bristol Myers Squibb (consultant in 2017) and La Jolla Pharmaceuticals (design of pediatric septic shock trial of angiotensin II); and she participates in the ATS and the International Sepsis Forum. Dr. Ranjit participates as the Chancellor of College of Pediatric Critical Care, India. Dr. Tume participates in ESPNIC (Nursing President) and the UK PICS Scientific and Education Committee. Dr. Verger participates in the American Association of Critical-Care Nurses (Cert. Corp. Governance Committee) and the Academy of Nursing (Acute and Critical Care Special Interest Group). Dr. Williams participates in the Pediatric Cardiac Intensive Care Society. Dr. Wolf received funding support for participation in industry-sponsored research from Merck & Co, Astellas, and Cempra Pharmaceuticals, and he received other support from Karius, Empatica, and Bluespark Technologies. Dr. Zimmerman (Past President of SCCM) received funding from Immunexpress, Seattle (sepsis biomarker research), and he participates in the AAP and PAS. Dr. Tissieres received funding from Baxter acute therapies, Bristol-Myers Squibb Company, Chiesi Farmaceutici S.p.A., Faron Pharmaceuticals (consulting, renal replacement therapy), and Biomerieux, funding from La Jolla Pharmaceuticals, Chiesi Farmaceutici S.p.A., and is President ESPNIC (research grant, biomarkers sepsis), and he participates in the Swiss Intensive Care Society, Swiss Pediatric Society, and the French Society of Intensive Care. The remaining authors have disclosed that they do not have any potential conflicts of interest.

Figures

Fig. 1
Fig. 1
Framework to determine the appropriateness of using indirect evidence from studies of children without sepsis or from adults.

References

    1. Fleischmann-Struzek C, Goldfarb DM, Schlattmann P, et al. The global burden of paediatric and neonatal sepsis: a systematic review. Lancet Respir Med. 2018;6:223–230. doi: 10.1016/S2213-2600(18)30063-8.
    1. Balamuth F, Weiss SL, Neuman MI, et al. Pediatric severe sepsis in U.S. children’s hospitals. Pediatr Crit Care Med. 2014;15:798–805. doi: 10.1097/PCC.0000000000000225.
    1. Odetola FO, Gebremariam A, Freed GL. Patient and hospital correlates of clinical outcomes and resource utilization in severe pediatric sepsis. Pediatrics. 2007;119:487–494. doi: 10.1542/peds.2006-2353.
    1. Ruth A, McCracken CE, Fortenberry JD, et al. Pediatric severe sepsis: current trends and outcomes from the Pediatric Health Information Systems database. Pediatr Crit Care Med. 2014;15:828–838. doi: 10.1097/PCC.0000000000000254.
    1. Weiss SL, Fitzgerald JC, Pappachan J, Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network et al. Global epidemiology of pediatric severe sepsis: The sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015;191:1147–1157. doi: 10.1164/rccm.201412-2323OC.
    1. Schlapbach LJ, Straney L, Alexander J, ANZICS Paediatric Study Group et al. mortality related to invasive infections, sepsis, and septic shock in critically ill children in Australia and New Zealand, 2002–13: a multicentre retrospective cohort study. Lancet Infect Dis. 2015;15:46–54. doi: 10.1016/S1473-3099(14)71003-5.
    1. Ames SG, Davis BS, Angus DC, et al. Hospital variation in risk-adjusted pediatric sepsis mortality. Pediatr Crit Care Med. 2018;19:390–396. doi: 10.1097/PCC.0000000000001502.
    1. Evans IVR, Phillips GS, Alpern ER, et al. Association between the New York sepsis care mandate and in-hospital mortality for pediatric sepsis. JAMA. 2018;320:358–367. doi: 10.1001/jama.2018.9071.
    1. Prout AJ, Talisa VB, Carcillo JA, et al. Children with chronic disease bear the highest burden of pediatric sepsis. J Pediatr. 2018;199(194–199):e1.
    1. Morin L, Ray S, Wilson C, ESPNIC Refractory Septic Shock Definition Taskforce the Infection Systemic Inflammation Sepsis section of ESPNIC et al. Refractory septic shock in children: a European Society of Paediatric and Neonatal Intensive Care definition. Intensive Care Med. 2016;42:1948–1957. doi: 10.1007/s00134-016-4574-2.
    1. Schlapbach LJ, MacLaren G, Festa M, Australian & New Zealand Intensive Care Society (ANZICS) Centre for Outcomes & Resource Evaluation (CORE) and Australian & New Zealand Intensive Care Society (ANZICS) Paediatric Study Group et al. Prediction of pediatric sepsis mortality within 1 h of intensive care admission. Intensive Care Med. 2017;43:1085–1096. doi: 10.1007/s00134-017-4701-8.
    1. Weiss SL, Balamuth F, Hensley J, et al. The epidemiology of hospital death following pediatric severe sepsis: when, why, and how children with sepsis die. Pediatr Crit Care Med. 2017;18:823–830. doi: 10.1097/PCC.0000000000001222.
    1. Cvetkovic M, Lutman D, Ramnarayan P, et al. Timing of death in children referred for intensive care with severe sepsis: implications for interventional studies. Pediatr Crit Care Med. 2015;16:410–417. doi: 10.1097/PCC.0000000000000385.
    1. World Health Organization: Guideline (2016) Updates on paediatric emergency triage, assessment and treatment: care of critically-Ill children. Geneva, Switzerland, World Health Organization. . Accessed 18 Aug 2019
    1. Davis AL, Carcillo JA, Aneja RK, et al. The American college of critical care medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock: executive summary. Pediatr Crit Care Med. 2017;18:884–890. doi: 10.1097/PCC.0000000000001259.
    1. NICE. National Institute for Health and Care Excellence (2016) Sepsis: recognition, diagnosis and early Management (NICE Guideline 51). . Accessed 18 Aug 2019
    1. Goldstein B, Giroir B, Randolph A, International Consensus Conference on Pediatric Sepsis (2005) International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med 6:2–8
    1. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3) JAMA. 2016;315:801–810. doi: 10.1001/jama.2016.0287.
    1. Matics TJ, Sanchez-Pinto LN. Adaptation and validation of a pediatric sequential organ failure assessment score and evaluation of the sepsis-3 definitions in critically ill children. JAMA Pediatr. 2017;171:e172352. doi: 10.1001/jamapediatrics.2017.2352.
    1. Schlapbach LJ, Straney L, Bellomo R, et al. Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Intensive Care Med. 2018;44:179–188. doi: 10.1007/s00134-017-5021-8.
    1. Schlapbach LJ, Kissoon N. Defining pediatric sepsis. JAMA Pediatr. 2018;172:312–314. doi: 10.1001/jamapediatrics.2017.5208.
    1. Leteurtre S, Duhamel A, Salleron J, Groupe Francophone de Réanimation et d’Urgences Pédiatriques (GFRUP) et al. PELOD-2: an update of the PEdiatric logistic organ dysfunction score. Crit Care Med. 2013;41:1761–1773. doi: 10.1097/CCM.0b013e31828a2bbd.
    1. Proulx F, Gauthier M, Nadeau D, et al. Timing and predictors of death in pediatric patients with multiple organ system failure. Crit Care Med. 1994;22:1025–1031. doi: 10.1097/00003246-199406000-00023.
    1. Pediatric Acute Lung Injury Consensus Conference Group Pediatric acute respiratory distress syndrome: consensus recommendations from the pediatric acute lung injury consensus conference. Pediatr Crit Care Med. 2015;16:428–439. doi: 10.1097/PCC.0000000000000350.
    1. Higgins JP, Altman DG, Gøtzsche PC, Cochrane Bias Methods Group; Cochrane Statistical Methods Group et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928. doi: 10.1136/bmj.d5928.
    1. Wells G, Shea B, O’Connell D et al (2009) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. . Accessed 18 Aug 2019
    1. Guyatt GH, Oxman AD, Vist GE, GRADE Working Group: GRADE et al. An emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–926. doi: 10.1136/.
    1. Neumann I, Brignardello-Petersen R, Wiercioch W, et al. The GRADE evidence-to-decision framework: a report of its testing and application in 15 international guideline panels. Implement Sci. 2016;11:93. doi: 10.1186/s13012-016-0462-y.
    1. Alexander PE, Gionfriddo MR, Li SA, et al. A number of factors explain why WHO guideline developers make strong recommendations inconsistent with GRADE guidance. J Clin Epidemiol. 2016;70:111–122. doi: 10.1016/j.jclinepi.2015.09.006.
    1. Guyatt GH, Schünemann HJ, Djulbegovic B, et al. Guideline panels should not GRADE good practice statements. J Clin Epidemiol. 2015;68:597–600. doi: 10.1016/j.jclinepi.2014.12.011.
    1. Paul R, Melendez E, Stack A, et al. Improving adherence to PALS septic shock guidelines. Pediatrics. 2014;133:e1358–e1366. doi: 10.1542/peds.2013-3871.
    1. Paul R, Neuman MI, Monuteaux MC, et al. Adherence to PALS sepsis guidelines and hospital length of stay. Pediatrics. 2012;130:e273–e280. doi: 10.1542/peds.2012-0094.
    1. Lane RD, Funai T, Reeder R, et al. High reliability pediatric septic shock quality improvement initiative and decreasing mortality. Pediatrics. 2016;138:e20154153. doi: 10.1542/peds.2015-4153.
    1. Balamuth F, Weiss SL, Fitzgerald JC, et al. Protocolized treatment is associated with decreased organ dysfunction in pediatric severe sepsis. Pediatr Crit Care Med. 2016;17:817–822. doi: 10.1097/PCC.0000000000000858.
    1. Akcan Arikan A, Williams EA, Graf JM, et al. Resuscitation bundle in pediatric shock decreases acute kidney injury and improves outcomes. J Pediatr. 2015;167(1301–1305):e1.
    1. Cruz AT, Perry AM, Williams EA, et al. Implementation of goal-directed therapy for children with suspected sepsis in the emergency department. Pediatrics. 2011;127:e758–e766. doi: 10.1542/peds.2010-2895.
    1. Scott HF, Deakyne SJ, Woods JM, et al. The prevalence and diagnostic utility of systemic inflammatory response syndrome vital signs in a pediatric emergency department. Acad Emerg Med. 2015;22:381–389. doi: 10.1111/acem.12610.
    1. Parshuram CS, Dryden-Palmer K, Farrell C, Canadian Critical Care Trials Group and the EPOCH Investigators et al. Effect of a pediatric early warning system on all-cause mortality in hospitalized pediatric patients: The EPOCH randomized clinical trial. JAMA. 2018;319:1002–1012. doi: 10.1001/jama.2018.0948.
    1. Moore LJ, Jones SL, Kreiner LA, et al. Validation of a screening tool for the early identification of sepsis. J Trauma. 2009;66:1539–1546. doi: 10.1097/TA.0b013e3181a3ac4b.
    1. Sepanski RJ, Godambe SA, Mangum CD, et al. Designing a pediatric severe sepsis screening tool. Front Pediatr. 2014;2:56. doi: 10.3389/fped.2014.00056.
    1. Balamuth F, Alpern ER, Abbadessa MK, et al. Improving recognition of pediatric severe sepsis in the emergency department: contributions of a vital sign-based electronic alert and bedside clinician identification. Ann Emerg Med. 2017;70(759–768):e2.
    1. Bradshaw C, Goodman I, Rosenberg R, et al. Implementation of an inpatient pediatric sepsis identification pathway. Pediatrics. 2016;137:e20144082. doi: 10.1542/peds.2014-4082.
    1. Balamuth F, Alpern ER, Grundmeier RW, et al. Comparison of two sepsis recognition methods in a pediatric emergency department. Acad Emerg Med. 2015;22:1298–1306. doi: 10.1111/acem.12814.
    1. Schlapbach LJ, Weiss SL, Wolf J. Reducing collateral damage from mandates for time to antibiotics in pediatric sepsis-primum non nocere. JAMA Pediatr. 2019;173:409–410. doi: 10.1001/jamapediatrics.2019.0174.
    1. Leigh S, Grant A, Murray N, et al. The cost of diagnostic uncertainty: a prospective economic analysis of febrile children attending an NHS emergency department. BMC Med. 2019;17:48. doi: 10.1186/s12916-019-1275-z.
    1. Duncan H, Hutchison J, Parshuram CS. The pediatric early warning system score: a severity of illness score to predict urgent medical need in hospitalized children. J Crit Care. 2006;21:271–278. doi: 10.1016/j.jcrc.2006.06.007.
    1. Chapman SM, Wray J, Oulton K, et al. ‘The Score Matters’: wide variations in predictive performance of 18 paediatric track and trigger systems. Arch Dis Child. 2017;102:487–495. doi: 10.1136/archdischild-2016-311088.
    1. Lambert V, Matthews A, MacDonell R, et al. Paediatric early warning systems for detecting and responding to clinical deterioration in children: a systematic review. BMJ Open. 2017;7:e014497. doi: 10.1136/bmjopen-2016-014497.
    1. Hernandez G, Bellomo R, Bakker J. The ten pitfalls of lactate clearance in sepsis. Intensive Care Med. 2019;45:82–85. doi: 10.1007/s00134-018-5213-x.
    1. Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6.
    1. Levy MM, Evans LE, Rhodes A. The surviving sepsis campaign bundle: 2018 update. Intensive Care Med. 2018;44:925–928. doi: 10.1007/s00134-018-5085-0.
    1. Bai Z, Zhu X, Li M, et al. Effectiveness of predicting in-hospital mortality in critically ill children by assessing blood lactate levels at admission. BMC Pediatr. 2014;14:83. doi: 10.1186/1471-2431-14-83.
    1. Chen M, Lu X, Hu L, et al. Development and validation of a mortality risk model for pediatric sepsis. Medicine (Baltimore) 2017;96:e6923. doi: 10.1097/MD.0000000000006923.
    1. Scott HF, Brou L, Deakyne SJ, et al. Association between early lactate levels and 30-day mortality in clinically suspected sepsis in children. JAMA Pediatr. 2017;171:249–255. doi: 10.1001/jamapediatrics.2016.3681.
    1. Schlapbach LJ, MacLaren G, Straney L. Venous vs arterial lactate and 30-day mortality in pediatric sepsis. JAMA Pediatr. 2017;171:813. doi: 10.1001/jamapediatrics.2017.1598.
    1. Scott HF, Brou L, Deakyne SJ, et al. Lactate clearance and normalization and prolonged organ dysfunction in pediatric sepsis. J Pediatr. 2016;170(149–155):e1.
    1. Kortz TB, Axelrod DM, Chisti MJ, et al. Clinical outcomes and mortality before and after implementation of a pediatric sepsis protocol in a limited resource setting: a retrospective cohort study in Bangladesh. PLoS One. 2017;12:e0181160. doi: 10.1371/journal.pone.0181160.
    1. Long E, Babl FE, Angley E, et al. A prospective quality improvement study in the emergency department targeting paediatric sepsis. Arch Dis Child. 2016;101:945–950. doi: 10.1136/archdischild-2015-310234.
    1. Workman JK, Ames SG, Reeder RW, et al. Treatment of pediatric septic shock with the surviving sepsis campaign guidelines and PICU patient outcomes. Pediatr Crit Care Med. 2016;17:e451–e458. doi: 10.1097/PCC.0000000000000906.
    1. Larsen GY, Mecham N, Greenberg R. An emergency department septic shock protocol and care guideline for children initiated at triage. Pediatrics. 2011;127:e1585–e1592. doi: 10.1542/peds.2010-3513.
    1. Tuuri RE, Gehrig MG, Busch CE, et al. “Beat the Shock Clock”: an interprofessional team improves pediatric septic shock care. Clin Pediatr (Phila) 2016;55:626–638. doi: 10.1177/0009922815601984.
    1. McMullan BJ, Bowen A, Blyth CC, et al. Epidemiology and mortality of Staphylococcus aureus bacteremia in Australian and New Zealand children. JAMA Pediatr. 2016;170:979–986. doi: 10.1001/jamapediatrics.2016.1477.
    1. Weiss SL, Fitzgerald JC, Balamuth F, et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. Crit Care Med. 2014;42:2409–2417. doi: 10.1097/CCM.0000000000000509.
    1. Martinón-Torres F, Salas A, Rivero-Calle I, EUCLIDS Consortium et al. Life-threatening infections in children in Europe (the EUCLIDS project): a prospective cohort study. Lancet Child Adolesc Health. 2018;2:404–414. doi: 10.1016/S2352-4642(18)30113-5.
    1. Agyeman PKA, Schlapbach LJ, Giannoni E, Swiss Pediatric Sepsis Study et al. Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: A population-based cohort study. Lancet Child Adolesc Health. 2017;1:124–133. doi: 10.1016/S2352-4642(17)30010-X.
    1. Lucignano B, Ranno S, Liesenfeld O, et al. Multiplex PCR allows rapid and accurate diagnosis of bloodstream infections in newborns and children with suspected sepsis. J Clin Microbiol. 2011;49:2252–2258. doi: 10.1128/JCM.02460-10.
    1. Rhee C, Filbin MR, Massaro AF, Centers for Disease Control and Prevention (CDC) Prevention Epicenters Program et al. Compliance with the national SEP-1 quality measure and association with sepsis outcomes: a multicenter retrospective cohort study. Crit Care Med. 2018;46:1585–1591. doi: 10.1097/CCM.0000000000003261.
    1. Kumar A, Roberts D, Wood KE, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34:1589–1596. doi: 10.1097/01.CCM.0000217961.75225.E9.
    1. Ferrer R, Martin-Loeches I, Phillips G, et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med. 2014;42:1749–1755. doi: 10.1097/CCM.0000000000000330.
    1. Barie PS, Hydo LJ, Shou J, et al. Influence of antibiotic therapy on mortality of critical surgical illness caused or complicated by infection. Surg Infect (Larchmt) 2005;6:41–54. doi: 10.1089/sur.2005.6.41.
    1. Barochia AV, Cui X, Vitberg D, et al. Bundled care for septic shock: an analysis of clinical trials. Crit Care Med. 2010;38:668–678. doi: 10.1097/CCM.0b013e3181cb0ddf.
    1. Gaieski DF, Mikkelsen ME, Band RA, et al. Impact of time to antibiotics on survival in patients with severe sepsis or septic shock in whom early goal-directed therapy was initiated in the emergency department. Crit Care Med. 2010;38:1045–1053. doi: 10.1097/CCM.0b013e3181cc4824.
    1. Klompas M, Calandra T, Singer M. Antibiotics for sepsis-finding the equilibrium. JAMA. 2018;320:1433–1434. doi: 10.1001/jama.2018.12179.
    1. Mi MY, Klompas M, Evans L. Early administration of antibiotics for suspected sepsis. N Engl J Med. 2019;380:593–596. doi: 10.1056/NEJMclde1809210.
    1. Kumar A, Ellis P, Arabi Y, Cooperative Antimicrobial Therapy of Septic Shock Database Research Group et al. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009;136:1237–1248. doi: 10.1378/chest.09-0087.
    1. Kimberlin D, Brady M, Jackson M et al (2018) American Academy of Pediatrics Committee on Infectious Diseases Red Book® 2018. . Accessed 18 Aug 2019
    1. Sharland M, Butler K, Cant A et al (2016) European Society for Paediatric Infectious Diseases Manual of Childhood Infections—The Blue Book. . Accessed 18 Aug 2019
    1. Lehrnbecher T, Robinson P, Fisher B, et al. Guideline for the management of fever and neutropenia in children with cancer and hematopoietic stem-cell transplantation recipients: 2017 update. J Clin Oncol. 2017;35:2082–2094. doi: 10.1200/JCO.2016.71.7017.
    1. Iroh Tam PY, Musicha P, Kawaza K, et al. Emerging resistance to empiric antimicrobial regimens for pediatric bloodstream infections in Malawi (1998-2017) Clin Infect Dis. 2019;69:61–68. doi: 10.1093/cid/ciy834.
    1. Malosh RE, Martin ET, Heikkinen T, et al. Efficacy and safety of oseltamivir in children: systematic review and individual patient data meta-analysis of randomized controlled trials. Clin Infect Dis. 2018;66:1492–1500. doi: 10.1093/cid/cix1040.
    1. Kumar A. Early versus late oseltamivir treatment in severely ill patients with 2009 pandemic influenza A (H1N1): speed is life. J Antimicrob Chemother. 2011;66:959–963. doi: 10.1093/jac/dkr090.
    1. Goodman KE, Lessler J, Cosgrove SE, Antibacterial Resistance Leadership Group et al. a clinical decision tree to predict whether a bacteremic patient is infected with an extended-spectrum β-lactamase-producing organism. Clin Infect Dis. 2016;63:896–903. doi: 10.1093/cid/ciw425.
    1. Carapetis JR, Jacoby P, Carville K, et al. Effectiveness of clindamycin and intravenous immunoglobulin, and risk of disease in contacts, in invasive group a streptococcal infections. Clin Infect Dis. 2014;59:358–365. doi: 10.1093/cid/ciu304.
    1. Guo Y, Gao W, Yang H, et al. De-escalation of empiric antibiotics in patients with severe sepsis or septic shock: a meta-analysis. Heart Lung. 2016;45:454–459. doi: 10.1016/j.hrtlng.2016.06.001.
    1. Hamdy RF, Zaoutis TE, Seo SK. Antifungal stewardship considerations for adults and pediatrics. Virulence. 2017;8:658–672. doi: 10.1080/21505594.2016.1226721.
    1. Dierig A, Berger C, Agyeman PKA, Swiss Pediatric Sepsis Study et al. Time-to-positivity of blood cultures in children with sepsis. Front Pediatr. 2018;6:222. doi: 10.3389/fped.2018.00222.
    1. Lin GL, McGinley JP, Drysdale SB, et al. Epidemiology and immune pathogenesis of viral sepsis. Front Immunol. 2018;9:2147. doi: 10.3389/fimmu.2018.02147.
    1. Paul M, Dickstein Y, Schlesinger A, et al. Beta-lactam versus beta-lactam-aminoglycoside combination therapy in cancer patients with neutropenia. Cochrane Database Syst Rev. 2013;6:CD003038.
    1. Paul M, Lador A, Grozinsky-Glasberg S, et al. Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev. 2014;1:CD003344.
    1. Sjövall F, Perner A, Hylander Møller M. Empirical mono- versus combination antibiotic therapy in adult intensive care patients with severe sepsis—a systematic review with meta-analysis and trial sequential analysis. J Infect. 2017;74:331–344. doi: 10.1016/j.jinf.2016.11.013.
    1. Baqui AH, Saha SK, Ahmed AS, Projahnmo Study Group in Bangladesh et al. Safety and efficacy of alternative antibiotic regimens compared with 7 day injectable procaine benzylpenicillin and gentamicin for outpatient treatment of neonates and young infants with clinical signs of severe infection when referral is not possible: a randomised, open-label, equivalence trial. Lancet Glob Health. 2015;3:e279–e287. doi: 10.1016/S2214-109X(14)70347-X.
    1. Metsvaht T, Ilmoja ML, Parm Ü, et al. Comparison of ampicillin plus gentamicin vs. penicillin plus gentamicin in empiric treatment of neonates at risk of early onset sepsis. Acta Paediatr. 2010;99:665–672. doi: 10.1111/j.1651-2227.2010.01687.x.
    1. Pasha YZ, Ahmadpour-Kacho M, Behmadi R, et al. 3-day versus 5-day course of intravenous antibiotics for suspected early onset neonatal sepsis: a randomized controlled trial. Iran J Pediatr. 2014;24:673–678.
    1. Ramasamy S, Biswal N, Bethou A, et al. Comparison of two empiric antibiotic regimen in late onset neonatal sepsis—a randomized controlled trial. J Trop Pediatr. 2014;60:83–86. doi: 10.1093/tropej/fmt080.
    1. Taheri PA, Eslamieh H, Salamati P. Is ceftizoxime an appropriate surrogate for amikacin in neonatal sepsis treatment? A randomized clinical trial. Acta Med Iran. 2011;49:499–503.
    1. Tewari VV, Jain N. Monotherapy with amikacin or piperacillin-tazobactum empirically in neonates at risk for early-onset sepsis: a randomized controlled trial. J Trop Pediatr. 2014;60:297–302. doi: 10.1093/tropej/fmu017.
    1. Tshefu A, Lokangaka A, Ngaima S, African Neonatal Sepsis Trial (AFRINEST) group et al. Simplified antibiotic regimens compared with injectable procaine benzylpenicillin plus gentamicin for treatment of neonates and young infants with clinical signs of possible serious bacterial infection when referral is not possible: a randomised, open-label, equivalence trial. Lancet. 2015;385:1767–1776. doi: 10.1016/S0140-6736(14)62284-4.
    1. Zaidi AK, Tikmani SS, Warraich HJ, et al. Community-based treatment of serious bacterial infections in newborns and young infants: a randomized controlled trial assessing three antibiotic regimens. Pediatr Infect Dis J. 2012;31:667–672. doi: 10.1097/INF.0b013e318256f86c.
    1. Ibrahim SL, Zhang L, Brady TM, et al. Low-dose gentamicin for uncomplicated enterococcus faecalis bacteremia may be nephrotoxic in children. Clin Infect Dis. 2015;61:1119–1124. doi: 10.1093/cid/civ461.
    1. Tamma PD, Turnbull AE, Harris AD, et al. Less is more: combination antibiotic therapy for the treatment of gram-negative bacteremia in pediatric patients. JAMA Pediatr. 2013;167:903–910. doi: 10.1001/jamapediatrics.2013.196.
    1. Falagas ME, Lourida P, Poulikakos P, et al. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother. 2014;58:654–663. doi: 10.1128/AAC.01222-13.
    1. Bass SN, Bauer SR, Neuner EA, et al. Impact of combination antimicrobial therapy on mortality risk for critically ill patients with carbapenem-resistant bacteremia. Antimicrob Agents Chemother. 2015;59:3748–3753. doi: 10.1128/AAC.00091-15.
    1. Chiotos K, Tamma PD, Flett KB et al (2018) Increased 30-day mortality associated with carbapenem-resistant Enterobacteriaceae in children. Open Forum Infect Dis 5:ofy222
    1. Baltimore RS, Gewitz M, Baddour LM, American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young and the Council on Cardiovascular and Stroke Nursing et al. Infective endocarditis in childhood: 2015 update: A scientific statement from the American Heart Association. Circulation. 2015;132:1487–1515. doi: 10.1161/CIR.0000000000000298.
    1. Hanretty AM, Kaur I, Evangelista AT, et al. Pharmacokinetics of the meropenem component of meropenem-vaborbactam in the treatment of KPC-producing Klebsiella pneumoniae bloodstream infection in a pediatric patient. Pharmacotherapy. 2018;38:e87–e91. doi: 10.1002/phar.2187.
    1. Costa Pde O, Atta EH, Silva AR. Infection with multidrug-resistant gram-negative bacteria in a pediatric oncology intensive care unit: risk factors and outcomes. J Pediatr (Rio J) 2015;91:435–441. doi: 10.1016/j.jped.2014.11.009.
    1. Shankar Krupa, Radhakrishnan Venkatraman, Vijayakumar Varalakskmi, Ramamoorthy Jaikumar, Ganesan Prasanth, Dhanushkodi Manikandan, Ganesan T. S., Sagar T. G. Prevalence of multi-drug resistant organisms in stool of paediatric patients with acute leukaemia and correlation with blood culture positivity: A single institution experience. Pediatric Blood & Cancer. 2017;65(1):e26740. doi: 10.1002/pbc.26740.
    1. Pereira CA, Petrilli AS, Carlesse FA, et al. Cefepime monotherapy is as effective as ceftriaxone plus amikacin in pediatric patients with cancer and high-risk febrile neutropenia in a randomized comparison. J Microbiol Immunol Infect. 2009;42:141–147.
    1. Petrilli AS, Cypriano M, Dantas LS, et al. Evaluation of ticarcillin/clavulanic acid versus ceftriaxone plus amikacin for fever and neutropenia in pediatric patients with leukemia and lymphoma. Braz J Infect Dis. 2003;7:111–120. doi: 10.1590/S1413-86702003000200003.
    1. Daneman N, Low DE, McGeer A, et al. At the threshold: defining clinically meaningful resistance thresholds for antibiotic choice in community-acquired pneumonia. Clin Infect Dis. 2008;46:1131–1138. doi: 10.1086/529440.
    1. Mandell LA, Wunderink RG, Anzueto A, Infectious Diseases Society of America; American Thoracic Society et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007;44(Suppl 2):S27–S72. doi: 10.1086/511159.
    1. Liu C, Bayer A, Cosgrove SE, Infectious Diseases Society of America et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52:e18–e55. doi: 10.1093/cid/ciq146.
    1. Cies JJ, Moore WS, 2nd, Enache A, et al. β-lactam therapeutic drug management in the PICU. Crit Care Med. 2018;46:272–279. doi: 10.1097/CCM.0000000000002817.
    1. Nehus EJ, Mizuno T, Cox S, et al. Pharmacokinetics of meropenem in children receiving continuous renal replacement therapy: validation of clinical trial simulations. J Clin Pharmacol. 2016;56:291–297. doi: 10.1002/jcph.601.
    1. Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR) Crit Care. 2019;23:104. doi: 10.1186/s13054-019-2378-9.
    1. Roberts JA, Abdul-Aziz MH, Lipman J, International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509. doi: 10.1016/S1473-3099(14)70036-2.
    1. Udy AA, Varghese JM, Altukroni M, et al. Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142:30–39. doi: 10.1378/chest.11-1671.
    1. Cotta MO, Roberts JA, Lipman J. Antibiotic dose optimization in critically ill patients. Med Intensiva. 2015;39:563–572. doi: 10.1016/j.medin.2015.07.009.
    1. De Bleecker JL, Meire VI, Declercq W, et al. Immunolocalization of tumor necrosis factor-alpha and its receptors in inflammatory myopathies. Neuromuscul Disord. 1999;9:239–246. doi: 10.1016/S0960-8966(98)00126-6.
    1. Van Der Heggen T, Dhont E, Peperstraete H, et al. Augmented renal clearance: a common condition in critically ill children. Pediatr Nephrol. 2019;34:1099–1106. doi: 10.1007/s00467-019-04205-x.
    1. Rizk NA, Kanafani ZA, Tabaja HZ, et al. Extended infusion of beta-lactam antibiotics: optimizing therapy in critically-ill patients in the era of antimicrobial resistance. Expert Rev Anti Infect Ther. 2017;15:645–652. doi: 10.1080/14787210.2017.1348894.
    1. Demirjian A, Finkelstein Y, Nava-Ocampo A, et al. A randomized controlled trial of a vancomycin loading dose in children. Pediatr Infect Dis J. 2013;32:1217–1223. doi: 10.1097/INF.0b013e3182a26774.
    1. Godbout EJ, Pakyz AL, Markley JD, et al. Pediatric antimicrobial stewardship: state of the art. Curr Infect Dis Rep. 2018;20:39. doi: 10.1007/s11908-018-0644-7.
    1. Weiss CH, Persell SD, Wunderink RG, et al. Empiric antibiotic, mechanical ventilation, and central venous catheter duration as potential factors mediating the effect of a checklist prompting intervention on mortality: an exploratory analysis. BMC Health Serv Res. 2012;12:198. doi: 10.1186/1472-6963-12-198.
    1. Weiss CH, Moazed F, McEvoy CA, et al. Prompting physicians to address a daily checklist and process of care and clinical outcomes: a single-site study. Am J Respir Crit Care Med. 2011;184:680–686. doi: 10.1164/rccm.201101-0037OC.
    1. Schuetz P, Briel M, Christ-Crain M, et al. Procalcitonin to guide initiation and duration of antibiotic treatment in acute respiratory infections: an individual patient data meta-analysis. Clin Infect Dis. 2012;55:651–662. doi: 10.1093/cid/cis464.
    1. Matthaiou DK, Ntani G, Kontogiorgi M, et al. An ESICM systematic review and meta-analysis of procalcitonin-guided antibiotic therapy algorithms in adult critically ill patients. Intensive Care Med. 2012;38:940–949. doi: 10.1007/s00134-012-2563-7.
    1. Prkno A, Wacker C, Brunkhorst FM, et al. Procalcitonin-guided therapy in intensive care unit patients with severe sepsis and septic shock—a systematic review and meta-analysis. Crit Care. 2013;17:R291. doi: 10.1186/cc13157.
    1. Westwood Marie, Ramaekers Bram, Whiting Penny, Tomini Florian, Joore Manuela, Armstrong Nigel, Ryder Steve, Stirk Lisa, Severens Johan, Kleijnen Jos. Procalcitonin testing to guide antibiotic therapy for the treatment of sepsis in intensive care settings and for suspected bacterial infection in emergency department settings: a systematic review and cost-effectiveness analysis. Health Technology Assessment. 2015;19(96):1–236. doi: 10.3310/hta19960.
    1. Wacker C, Prkno A, Brunkhorst FM, et al. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013;13:426–435. doi: 10.1016/S1473-3099(12)70323-7.
    1. de Jong E, van Oers JA, Beishuizen A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016;16:819–827. doi: 10.1016/S1473-3099(16)00053-0.
    1. Stocker M, van Herk W, El Helou S, NeoPInS Study Group et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns) Lancet. 2017;390:871–881. doi: 10.1016/S0140-6736(17)31444-7.
    1. Public Health England (2015) Start Smart—Then Focus. United Kingdom, Public Health England. . Accessed 18 Aug 2019
    1. Bamberger DM. Outcome of medical treatment of bacterial abscesses without therapeutic drainage: review of cases reported in the literature. Clin Infect Dis. 1996;23:592–603. doi: 10.1093/clind/23.1.592.
    1. Osmon DR, Berbari EF, Berendt AR, Infectious Diseases Society of America et al. Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis. 2013;56:e1–e25. doi: 10.1093/cid/cis803.
    1. Baddour LM, Wilson WR, Bayer AS, American Heart Association Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young, Council on Clinical Cardiology, Council on Cardiovascular Surgery and Anesthesia, and Stroke Council et al. Infective endocarditis in adults: Diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation. 2015;132:1435–1486. doi: 10.1161/CIR.0000000000000296.
    1. Yahav D, Franceschini E, Koppel F, Bacteremia Duration Study Group et al. Seven versus 14 days of antibiotic therapy for uncomplicated gram-negative bacteremia: a noninferiority randomized controlled trial. Clin Infect Dis. 2019;69:1091–1098. doi: 10.1093/cid/ciy1054.
    1. Chotiprasitsakul D, Han JH, Cosgrove SE, Antibacterial Resistance Leadership Group et al. Comparing the outcomes of adults with Enterobacteriaceae bacteremia receiving short-course versus prolonged-course antibiotic therapy in a multicenter, propensity score-matched cohort. Clin Infect Dis. 2018;66:172–177. doi: 10.1093/cid/cix767.
    1. Chong YP, Moon SM, Bang KM, et al. Treatment duration for uncomplicated Staphylococcus aureus bacteremia to prevent relapse: analysis of a prospective observational cohort study. Antimicrob Agents Chemother. 2013;57:1150–1156. doi: 10.1128/AAC.01021-12.
    1. Chowdhary G, Dutta S, Narang A. Randomized controlled trial of 7-day vs. 14-day antibiotics for neonatal sepsis. J Trop Pediatr. 2006;52:427–432. doi: 10.1093/tropej/fml054.
    1. Liu C, Bayer A, Cosgrove SE, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: executive summary. Clin Infect Dis. 2011;52:285–292. doi: 10.1093/cid/cir034.
    1. Berrevoets MAH, Kouijzer IJE, Aarntzen EHJG, et al. 18F-FDG PET/CT optimizes treatment in Staphylococcus Aureus bacteremia and is associated with reduced mortality. J Nucl Med. 2017;58:1504–1510. doi: 10.2967/jnumed.117.191981.
    1. McMullan BJ, Andresen D, Blyth CC, ANZPID-ASAP group et al. Antibiotic duration and timing of the switch from intravenous to oral route for bacterial infections in children: systematic review and guidelines. Lancet Infect Dis. 2016;16:e139–e152. doi: 10.1016/S1473-3099(16)30024-X.
    1. Alexander VN, Northrup V, Bizzarro MJ. Antibiotic exposure in the newborn intensive care unit and the risk of necrotizing enterocolitis. J Pediatr. 2011;159:392–397. doi: 10.1016/j.jpeds.2011.02.035.
    1. Paganini H, Rodriguez Brieshcke T, Santos P, et al. Risk factors for nosocomial candidaemia: a case–control study in children. J Hosp Infect. 2002;50:304–308. doi: 10.1053/jhin.2002.1169.
    1. Zaoutis TE, Prasad PA, Localio AR, et al. Risk factors and predictors for candidemia in pediatric intensive care unit patients: implications for prevention. Clin Infect Dis. 2010;51:e38–e45. doi: 10.1086/655698.
    1. Chatterjee A, Modarai M, Naylor NR, et al. Quantifying drivers of antibiotic resistance in humans: a systematic review. Lancet Infect Dis. 2018;18:e368–e378. doi: 10.1016/S1473-3099(18)30296-2.
    1. Brown KA, Khanafer N, Daneman N, et al. Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrob Agents Chemother. 2013;57:2326–2332. doi: 10.1128/AAC.02176-12.
    1. Chuang YY, Huang YC, Lee CY, et al. Methicillin-resistant Staphylococcus aureus bacteraemia in neonatal intensive care units: an analysis of 90 episodes. Acta Paediatr. 2004;93:786–790. doi: 10.1111/j.1651-2227.2004.tb03019.x.
    1. Couto RC, Barbosa JA, Pedrosa TM, et al. C-reactive protein-guided approach may shorten length of antimicrobial treatment of culture-proven late-onset sepsis: an intervention study. Braz J Infect Dis. 2007;11:240–245. doi: 10.1590/S1413-86702007000200015.
    1. Dimopoulos G, Matthaiou DK, Karageorgopoulos DE, et al. Short- versus long-course antibacterial therapy for community-acquired pneumonia: a meta-analysis. Drugs. 2008;68:1841–1854. doi: 10.2165/00003495-200868130-00004.
    1. Havey TC, Fowler RA, Daneman N. Duration of antibiotic therapy for bacteremia: a systematic review and meta-analysis. Crit Care. 2011;15:R267. doi: 10.1186/cc10545.
    1. Hemels MA, van den Hoogen A, Verboon-Maciolek MA, et al. Shortening the antibiotic course for the treatment of neonatal coagulase-negative staphylococcal sepsis: fine with three days? Neonatology. 2012;101:101–105. doi: 10.1159/000330600.
    1. Karageorgopoulos DE, Valkimadi PE, Kapaskelis A, et al. Short versus long duration of antibiotic therapy for bacterial meningitis: a meta-analysis of randomised controlled trials in children. Arch Dis Child. 2009;94:607–614. doi: 10.1136/adc.2008.151563.
    1. Kavaliotis J, Manios SG, Kansouzidou A, et al. Treatment of childhood bacterial meningitis with ceftriaxone once daily: open, prospective, randomized, comparative study of short-course versus standard-length therapy. Chemotherapy. 1989;35:296–303. doi: 10.1159/000238685.
    1. Lassi ZS, Imdad A, Bhutta ZA (2017) Short-course versus long-course intravenous therapy with the same antibiotic for severe community-acquired pneumonia in children aged two months to 59 months. Cochrane Database Syst Rev 10:CD008032
    1. Lin TY, Chrane DF, Nelson JD, et al. Seven days of ceftriaxone therapy is as effective as ten days’ treatment for bacterial meningitis. JAMA. 1985;253:3559–3563. doi: 10.1001/jama.1985.03350480067021.
    1. Linder N, Lubin D, Hernandez A, et al. Duration of vancomycin treatment for coagulase-negative Staphylococcus sepsis in very low birth weight infants. Br J Clin Pharmacol. 2013;76:58–64. doi: 10.1111/bcp.12053.
    1. Martin E, Hohl P, Guggi T, et al. Short course single daily ceftriaxone monotherapy for acute bacterial meningitis in children: results of a Swiss multicenter study. Part I: Clinical results. Infection. 1990;18:70–77. doi: 10.1007/BF01641418.
    1. Molyneux E, Nizami SQ, Saha S, CSF 5 Study Group et al. 5 versus 10 days of treatment with ceftriaxone for bacterial meningitis in children: a double-blind randomised equivalence study. Lancet. 2011;377:1837–1845. doi: 10.1016/S0140-6736(11)60580-1.
    1. Onakpoya IJ, Walker AS, Tan PS, et al. Overview of systematic reviews assessing the evidence for shorter versus longer duration antibiotic treatment for bacterial infections in secondary care. PLoS One. 2018;13:e0194858. doi: 10.1371/journal.pone.0194858.
    1. Park SH, Milstone AM, Diener-West M, et al. Short versus prolonged courses of antibiotic therapy for children with uncomplicated Gram-negative bacteraemia. J Antimicrob Chemother. 2014;69:779–785. doi: 10.1093/jac/dkt424.
    1. Rohatgi S, Dewan P, Faridi MMA, et al. Seven versus 10 days antibiotic therapy for culture-proven neonatal sepsis: a randomised controlled trial. J Paediatr Child Health. 2017;53:556–562. doi: 10.1111/jpc.13518.
    1. Roine I, Ledermann W, Foncea LM, et al. Randomized trial of four vs. seven days of ceftriaxone treatment for bacterial meningitis in children with rapid initial recovery. Pediatr Infect Dis J. 2000;19:219–222. doi: 10.1097/00006454-200003000-00009.
    1. Singhi P, Kaushal M, Singhi S, et al. Seven days vs. 10 days ceftriaxone therapy in bacterial meningitis. J Trop Pediatr. 2002;48:273–279. doi: 10.1093/tropej/48.5.273.
    1. Tsai MH, Huang YC, Chiu CH, et al. Nontyphoidal Salmonella bacteremia in previously healthy children: analysis of 199 episodes. Pediatr Infect Dis J. 2007;26:909–913. doi: 10.1097/INF.0b013e318127189b.
    1. Yen MH, Huang YC, Chiu CH, et al. Duration of antimicrobial therapy for non-typhoid Salmonella bacteremia in healthy children. J Microbiol Immunol Infect. 2002;35:94–98.
    1. Jernelius H, Zbornik J, Bauer CA. One or three weeks’ treatment of acute pyelonephritis? A double-blind comparison, using a fixed combination of pivampicillin plus pivmecillinam. Acta Med Scand. 1988;223:469–477. doi: 10.1111/j.0954-6820.1988.tb15899.x.
    1. Pakistan Multicentre Amoxycillin Short Course Therapy (MASCOT) pneumonia study group (2002) Clinical efficacy of 3 days versus 5 days of oral amoxicillin for treatment of childhood pneumonia: a multicentre double-blind trial. Lancet 360:835–841
    1. Agarwal G, Awasthi S, Kabra SK, ISCAP Study Group et al. Three day versus five day treatment with amoxicillin for non-severe pneumonia in young children: a multicentre randomised controlled trial. BMJ. 2004;328:791. doi: 10.1136/.
    1. Lagunes L, Encina B, Ramirez-Estrada S. Current understanding in source control management in septic shock patients: a review. Ann Transl Med. 2016;4:330. doi: 10.21037/atm.2016.09.02.
    1. Martínez ML, Ferrer R, Torrents E, Edusepsis Study Group et al. Impact of source control in patients with severe sepsis and septic shock. Crit Care Med. 2017;45:11–19. doi: 10.1097/CCM.0000000000002011.
    1. Fustes-Morales A, Gutierrez-Castrellon P, Duran-Mckinster C, et al. Necrotizing fasciitis: report of 39 pediatric cases. Arch Dermatol. 2002;138:893–899. doi: 10.1001/archderm.138.7.893.
    1. Bingöl-Koloğlu M, Yildiz RV, Alper B, et al. Necrotizing fasciitis in children: diagnostic and therapeutic aspects. J Pediatr Surg. 2007;42:1892–1897. doi: 10.1016/j.jpedsurg.2007.07.018.
    1. Endorf FW, Garrison MM, Klein MB, et al. Characteristics, therapies, and outcome of children with necrotizing soft tissue infections. Pediatr Infect Dis J. 2012;31:221–223. doi: 10.1097/INF.0b013e3182456f02.
    1. Nazemi KJ, Buescher ES, Kelly RE, Jr, et al. Central venous catheter removal versus in situ treatment in neonates with enterobacteriaceae bacteremia. Pediatrics. 2003;111:e269–e274. doi: 10.1542/peds.111.3.e269.
    1. Vasudevan C, Oddie SJ, McGuire W (2016) Early removal versus expectant management of central venous catheters in neonates with bloodstream infection. Cochrane Database Syst Rev 4:CD008436
    1. Rodriguez D, Park BJ, Almirante B, Barcelona Candidemia Project Study Group et al. Impact of early central venous catheter removal on outcome in patients with candidaemia. Clin Microbiol Infect. 2007;13:788–793. doi: 10.1111/j.1469-0691.2007.01758.x.
    1. Smith PB, Benjamin DK, Jr, Cotten CM, et al. Is an increased dwell time of a peripherally inserted catheter associated with an increased risk of bloodstream infection in infants? Infect Control Hosp Epidemiol. 2008;29:749–753. doi: 10.1086/589905.
    1. Santhanam I, Sangareddi S, Venkataraman S, et al. A prospective randomized controlled study of two fluid regimens in the initial management of septic shock in the emergency department. Pediatr Emerg Care. 2008;24:647–655. doi: 10.1097/PEC.0b013e31818844cf.
    1. Sankar J, Ismail J, Sankar MJ, et al. Fluid bolus over 15–20 versus 5–10 minutes each in the first hour of resuscitation in children with septic shock: a randomized controlled trial. Pediatr Crit Care Med. 2017;18:e435–e445. doi: 10.1097/PCC.0000000000001269.
    1. Inwald DP, Canter R, Woolfall K, PERUKI (Paediatric Emergency Research in the UK and Ireland) and PICS SG (Paediatric Intensive Care Society Study Group) et al. Restricted fluid bolus volume in early septic shock: Results of the fluids in shock pilot trial. Arch Dis Child. 2019;104:426–431. doi: 10.1136/archdischild-2018-314924.
    1. Maitland K, Kiguli S, Opoka RO, FEAST Trial Group et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364:2483–2495. doi: 10.1056/NEJMoa1101549.
    1. Carcillo JA, Davis AL, Zaritsky A. Role of early fluid resuscitation in pediatric septic shock. JAMA. 1991;266:1242–1245. doi: 10.1001/jama.1991.03470090076035.
    1. Han YY, Carcillo JA, Dragotta MA, et al. Early reversal of pediatric-neonatal septic shock by community physicians is associated with improved outcome. Pediatrics. 2003;112:793–799. doi: 10.1542/peds.112.4.793.
    1. Carcillo JA, Kuch BA, Han YY, et al. Mortality and functional morbidity after use of PALS/APLS by community physicians. Pediatrics. 2009;124:500–508. doi: 10.1542/peds.2008-1967.
    1. van Paridon BM, Sheppard C, Garcia GG, et al. Timing of antibiotics, volume, and vasoactive infusions in children with sepsis admitted to intensive care. Crit Care. 2015;19:293. doi: 10.1186/s13054-015-1010-x.
    1. Houston KA, George EC, Maitland K. Implications for paediatric shock management in resource-limited settings: a perspective from the FEAST trial. Crit Care. 2018;22:119. doi: 10.1186/s13054-018-1966-4.
    1. Voigt J, Waltzman M, Lottenberg L. Intraosseous vascular access for in-hospital emergency use: a systematic clinical review of the literature and analysis. Pediatr Emerg Care. 2012;28:185–199. doi: 10.1097/PEC.0b013e3182449edc.
    1. de Oliveira CF, de Oliveira DS, Gottschald AF, et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 2008;34:1065–1075. doi: 10.1007/s00134-008-1085-9.
    1. Arya B, Kerstein D, Leu CS, et al. Echocardiographic assessment of right atrial pressure in a pediatric and young adult population. Pediatr Cardiol. 2016;37:558–567. doi: 10.1007/s00246-015-1315-1.
    1. Semler MW, Self WH, Wanderer JP, SMART Investigators and the Pragmatic Critical Care Research Group et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378:829–839. doi: 10.1056/NEJMoa1711584.
    1. Weiss SL, Keele L, Balamuth F, et al. Crystalloid fluid choice and clinical outcomes in pediatric sepsis: a matched retrospective cohort study. J Pediatr. 2017;182(304–310):e10.
    1. Emrath ET, Fortenberry JD, Travers C, et al. Resuscitation with balanced fluids is associated with improved survival in pediatric severe sepsis. Crit Care Med. 2017;45:1177–1183. doi: 10.1097/CCM.0000000000002365.
    1. Self WH, Semler MW, Wanderer JP, SALT-ED Investigators et al. balanced crystalloids versus saline in noncritically ill adults. N Engl J Med. 2018;378:819–828. doi: 10.1056/NEJMoa1711586.
    1. Perner A, Haase N, Guttormsen AB et al, 6S Trial Group, Scandinavian Critical Care Trials Group (2012) Hydroxyethyl starch 130/042 versus ringer’s acetate in severe sepsis. N Engl J Med 367:124–134
    1. Myburgh JA, Finfer S, Bellomo R, CHEST Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–1911. doi: 10.1056/NEJMoa1209759.
    1. Zarychanski R, Abou-Setta AM, Turgeon AF, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA. 2013;309:678–688. doi: 10.1001/jama.2013.430.
    1. McIntyre L (2012) Hydroxyethyl starch for fluid resuscitation. . Accessed 18 Aug 2019
    1. European Medicines Agency (2018) Hydroxyethyl-starch solutions for infusion to be suspended—CMDh endorses PRAC recommendation. . Accessed 18 Aug 2019
    1. Upadhyay M, Singhi S, Murlidharan J, et al. Randomized evaluation of fluid resuscitation with crystalloid (saline) and colloid (polymer from degraded gelatin in saline) in pediatric septic shock. Indian Pediatr. 2005;42:223–231.
    1. Lamontagne F, Day AG, Meade MO, et al. Pooled analysis of higher versus lower blood pressure targets for vasopressor therapy septic and vasodilatory shock. Intensive Care Med. 2018;44:12–21. doi: 10.1007/s00134-017-5016-5.
    1. Davis AL, Carcillo JA, Aneja RK, et al. American College of Critical Care Medicine clinical practice parameters for hemodynamic support of pediatric and neonatal septic shock. Crit Care Med. 2017;45:1061–1093. doi: 10.1097/CCM.0000000000002425.
    1. Tibby SM, Hatherill M, Marsh MJ, et al. Clinicians’ abilities to estimate cardiac index in ventilated children and infants. Arch Dis Child. 1997;77:516–518. doi: 10.1136/adc.77.6.516.
    1. Brierley J, Peters MJ. Distinct hemodynamic patterns of septic shock at presentation to pediatric intensive care. Pediatrics. 2008;122:752–759. doi: 10.1542/peds.2007-1979.
    1. Egan JR, Festa M, Cole AD, et al. Clinical assessment of cardiac performance in infants and children following cardiac surgery. Intensive Care Med. 2005;31:568–573. doi: 10.1007/s00134-005-2569-5.
    1. Ranjit S, Kissoon N. Bedside echocardiography is useful in assessing children with fluid and inotrope resistant septic shock. Indian J Crit Care Med. 2013;17:224–230. doi: 10.4103/0972-5229.114824.
    1. Ranjit S, Aram G, Kissoon N, et al. Multimodal monitoring for hemodynamic categorization and management of pediatric septic shock: a pilot observational study. Pediatr Crit Care Med. 2014;15:e17–e26. doi: 10.1097/PCC.0b013e3182a5589c.
    1. Razavi A, Newth CJL, Khemani RG, et al. Cardiac output and systemic vascular resistance: clinical assessment compared with a noninvasive objective measurement in children with shock. J Crit Care. 2017;39:6–10. doi: 10.1016/j.jcrc.2016.12.018.
    1. El-Nawawy AA, Abdelmohsen AM, Hassouna HM. Role of echocardiography in reducing shock reversal time in pediatric septic shock: a randomized controlled trial. J Pediatr (Rio J) 2018;94:31–39. doi: 10.1016/j.jped.2017.02.005.
    1. Gan H, Cannesson M, Chandler JR, et al. Predicting fluid responsiveness in children: a systematic review. Anesth Analg. 2013;117:1380–1392. doi: 10.1213/ANE.0b013e3182a9557e.
    1. Rivers E, Nguyen B, Havstad S, Early Goal-Directed Therapy Collaborative Group et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Peake SL, Delaney A, Bailey M, ARISE Investigators, ANZICS Clinical Trials Group et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–1506. doi: 10.1056/NEJMoa1404380.
    1. Yealy DM, Kellum JA, Huang DT, ProCESS Investigators et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370:1683–1693. doi: 10.1056/NEJMoa1401602.
    1. Mouncey PR, Osborn TM, Power GS, ProMISe Trial Investigators et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–1311. doi: 10.1056/NEJMoa1500896.
    1. Jansen TC, van Bommel J, Schoonderbeek FJ, LACTATE study group et al. Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010;182:752–761. doi: 10.1164/rccm.200912-1918OC.
    1. Jones AE, Shapiro NI, Trzeciak S, Emergency Medicine Shock Research Network (EMShockNet) Investigators et al. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739–746. doi: 10.1001/jama.2010.158.
    1. Tian HH, Han SS, Lv CJ, et al (2012) The effect of early goal lactate clearance rate on the outcome of septic shock patients with severe pneumonia. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 24:42–45
    1. Yu B, Tian HY, Hu ZJ, et al (2013) Comparison of the effect of fluid resuscitation as guided either by lactate clearance rate or by central venous oxygen saturation in patients with sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 25:578–583
    1. Lyu X, Xu Q, Cai G et al (2015) Efficacies of fluid resuscitation as guided by lactate clearance rate and central venous oxygen saturation in patients with septic shock. Zhonghua Yi Xue Za Zhi 95:496–500
    1. Zhou X, Liu D, Su L, et al. Use of stepwise lactate kinetics-oriented hemodynamic therapy could improve the clinical outcomes of patients with sepsis-associated hyperlactatemia. Crit Care. 2017;21:33. doi: 10.1186/s13054-017-1617-1.
    1. Ventura AM, Shieh HH, Bousso A, et al. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit Care Med. 2015;43:2292–2302. doi: 10.1097/CCM.0000000000001260.
    1. Ramaswamy KN, Singhi S, Jayashree M, et al. Double-blind randomized clinical trial comparing dopamine and epinephrine in pediatric fluid-refractory hypotensive septic shock. Pediatr Crit Care Med. 2016;17:e502–e512. doi: 10.1097/PCC.0000000000000954.
    1. Piva J, Alquati T, Garcia PC, et al. Norepinephrine infusion increases urine output in children under sedative and analgesic infusion. Rev Assoc Med Bras. 1992;2014(60):208–215.
    1. Avni T, Lador A, Lev S, et al. Vasopressors for the treatment of septic shock: systematic review and meta-analysis. PLoS One. 2015;10:e0129305. doi: 10.1371/journal.pone.0129305.
    1. Arikan AA, Zappitelli M, Goldstein SL, et al. Fluid overload is associated with impaired oxygenation and morbidity in critically ill children. Pediatr Crit Care Med. 2012;13:253–258. doi: 10.1097/PCC.0b013e31822882a3.
    1. Lampin ME, Rousseaux J, Botte A, et al. Noradrenaline use for septic shock in children: doses, routes of administration and complications. Acta Paediatr. 2012;101:e426–e430. doi: 10.1111/j.1651-2227.2012.02725.x.
    1. Patregnani JT, Sochet AA, Klugman D. Short-term peripheral vasoactive infusions in pediatrics: where is the harm? Pediatr Crit Care Med. 2017;18:e378–e381. doi: 10.1097/PCC.0000000000001230.
    1. Choong K, Bohn D, Fraser DD, Canadian Critical Care Trials Group et al. Vasopressin in pediatric vasodilatory shock: a multicenter randomized controlled trial. Am J Respir Crit Care Med. 2009;180:632–639. doi: 10.1164/rccm.200902-0221OC.
    1. Baldasso E, Ramos Garcia PC, Piva JP, et al. Hemodynamic and metabolic effects of vasopressin infusion in children with shock. J Pediatr (Rio J) 2007;83:S137–S145. doi: 10.1590/S0021-75572007000700004.
    1. Yildizdas D, Yapicioglu H, Celik U, et al. Terlipressin as a rescue therapy for catecholamine-resistant septic shock in children. Intensive Care Med. 2008;34:511–517. doi: 10.1007/s00134-007-0971-x.
    1. McIntyre WF, Um KJ, Alhazzani W, et al. Association of vasopressin plus catecholamine vasopressors vs catecholamines alone with atrial fibrillation in patients with distributive shock: a systematic review and meta-analysis. JAMA. 2018;319:1889–1900. doi: 10.1001/jama.2018.4528.
    1. Papoff P, Caresta E, Versacci P, et al. Beneficial effects of levosimendan in infants with sepsis-associated cardiac dysfunction: report of 2 cases. Pediatr Emerg Care. 2012;28:1062–1065. doi: 10.1097/PEC.0b013e31826cebe6.
    1. Rich N, West N, McMaster P, et al. Milrinone in meningococcal sepsis. Pediatr Crit Care Med. 2003;4:394–395. doi: 10.1097/01.PCC.0000074278.30462.73.
    1. Pham T, Brochard LJ, Slutsky AS. Mechanical ventilation: state of the art. Mayo Clin Proc. 2017;92:1382–1400. doi: 10.1016/j.mayocp.2017.05.004.
    1. Aubier M, Viires N, Syllie G, et al. Respiratory muscle contribution to lactic acidosis in low cardiac output. Am Rev Respir Dis. 1982;126:648–652.
    1. Cheifetz IM. Invasive and noninvasive pediatric mechanical ventilation. Respir Care. 2003;48:442–453.
    1. Ghuman AK, Newth CJ, Khemani RG. The association between the end tidal alveolar dead space fraction and mortality in pediatric acute hypoxemic respiratory failure. Pediatr Crit Care Med. 2012;13:11–15. doi: 10.1097/PCC.0b013e3182192c42.
    1. Khemani RG, Smith L, Lopez-Fernandez YM, Pediatric Acute Respiratory Distress syndrome Incidence and Epidemiology (PARDIE) Investigators; Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7:115–128. doi: 10.1016/S2213-2600(18)30344-8.
    1. Volpicelli Giovanni, Elbarbary Mahmoud, Blaivas Michael, Lichtenstein Daniel A., Mathis Gebhard, Kirkpatrick Andrew W., Melniker Lawrence, Gargani Luna, Noble Vicki E., Via Gabriele, Dean Anthony, Tsung James W., Soldati Gino, Copetti Roberto, Bouhemad Belaid, Reissig Angelika, Agricola Eustachio, Rouby Jean-Jacques, Arbelot Charlotte, Liteplo Andrew, Sargsyan Ashot, Silva Fernando, Hoppmann Richard, Breitkreutz Raoul, Seibel Armin, Neri Luca, Storti Enrico, Petrovic Tomislav. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Medicine. 2012;38(4):577–591. doi: 10.1007/s00134-012-2513-4.
    1. Riviello ED, Kiviri W, Twagirumugabe T, et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali modification of the berlin definition. Am J Respir Crit Care Med. 2016;193:52–59. doi: 10.1164/rccm.201503-0584OC.
    1. De Luca D, van Kaam AH, Tingay DG, et al. The montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir Med. 2017;5:657–666. doi: 10.1016/S2213-2600(17)30214-X.
    1. See KC, Ong V, Tan YL, et al. Chest radiography versus lung ultrasound for identification of acute respiratory distress syndrome: a retrospective observational study. Crit Care. 2018;22:203. doi: 10.1186/s13054-018-2105-y.
    1. Watt I, Ledingham IM. Mortality amongst multiple trauma patients admitted to an intensive therapy unit. Anaesthesia. 1984;39:973–981. doi: 10.1111/j.1365-2044.1984.tb08885.x.
    1. den Brinker M, Joosten KF, Liem O, et al. Adrenal insufficiency in meningococcal sepsis: bioavailable cortisol levels and impact of interleukin-6 levels and intubation with etomidate on adrenal function and mortality. J Clin Endocrinol Metab. 2005;90:5110–5117. doi: 10.1210/jc.2005-1107.
    1. Absalom A, Pledger D, Kong A. Adrenocortical function in critically ill patients 24 h after a single dose of etomidate. Anaesthesia. 1999;54:861–867. doi: 10.1046/j.1365-2044.1999.01003.x.
    1. Schenarts CL, Burton JH, Riker RR. Adrenocortical dysfunction following etomidate induction in emergency department patients. Acad Emerg Med. 2001;8:1–7. doi: 10.1111/j.1553-2712.2001.tb00537.x.
    1. Hildreth AN, Mejia VA, Maxwell RA, et al. Adrenal suppression following a single dose of etomidate for rapid sequence induction: a prospective randomized study. J Trauma. 2008;65:573–579. doi: 10.1097/TA.0b013e31818255e8.
    1. Jabre P, Combes X, Lapostolle F, KETASED Collaborative Study Group et al. Etomidate versus ketamine for rapid sequence intubation in acutely ill patients: a multicentre randomised controlled trial. Lancet. 2009;374:293–300. doi: 10.1016/S0140-6736(09)60949-1.
    1. Muñoz-Bonet JI, Flor-Macián EM, Brines J, et al. Predictive factors for the outcome of noninvasive ventilation in pediatric acute respiratory failure. Pediatr Crit Care Med. 2010;11:675–680. doi: 10.1097/PCC.0b013e3181d8e303.
    1. James CS, Hallewell CP, James DP, et al. Predicting the success of non-invasive ventilation in preventing intubation and re-intubation in the paediatric intensive care unit. Intensive Care Med. 2011;37:1994–2001. doi: 10.1007/s00134-011-2386-y.
    1. Wolfler A, Calderini E, Iannella E, Network of Pediatric Intensive Care Unit Study Group et al. Evolution of noninvasive mechanical ventilation use: A cohort study among Italian PICUs. Pediatr Crit Care Med. 2015;16:418–427. doi: 10.1097/PCC.0000000000000387.
    1. Abadesso C, Nunes P, Silvestre C, et al. Non-invasive ventilation in acute respiratory failure in children. Pediatr Rep. 2012;4:e16. doi: 10.4081/pr.2012.e16.
    1. Dohna-Schwake C, Stehling F, Tschiedel E, et al. Non-invasive ventilation on a pediatric intensive care unit: feasibility, efficacy, and predictors of success. Pediatr Pulmonol. 2011;46:1114–1120. doi: 10.1002/ppul.21482.
    1. Piastra M, De Luca D, Marzano L, et al. The number of failing organs predicts non-invasive ventilation failure in children with ALI/ARDS. Intensive Care Med. 2011;37:1510–1516. doi: 10.1007/s00134-011-2308-z.
    1. Yaman A, Kendirli T, Ödek Ç, et al. Efficacy of noninvasive mechanical ventilation in prevention of intubation and reintubation in the pediatric intensive care unit. J Crit Care. 2016;32:175–181. doi: 10.1016/j.jcrc.2015.12.013.
    1. Pancera CF, Hayashi M, Fregnani JH, et al. Noninvasive ventilation in immunocompromised pediatric patients: eight years of experience in a pediatric oncology intensive care unit. J Pediatr Hematol Oncol. 2008;30:533–538. doi: 10.1097/MPH.0b013e3181754198.
    1. Peters MJ, Agbeko R, Davis P, SCARF Study Investigators and the Pediatric Intensive Care Society Study Group (PICS-SG) et al. Randomized study of early continuous positive airways pressure in acute respiratory failure in children with impaired immunity (SCARF) ISRCTN82853500. Pediatr Crit Care Med. 2018;19:939–948. doi: 10.1097/PCC.0000000000001683.
    1. Piastra M, De Luca D, Pietrini D, et al. Noninvasive pressure-support ventilation in immunocompromised children with ARDS: a feasibility study. Intensive Care Med. 2009;35:1420–1427. doi: 10.1007/s00134-009-1558-5.
    1. Essouri S, Carroll C, Pediatric Acute Lung Injury Consensus Conference Group Noninvasive support and ventilation for pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16:S102–S110. doi: 10.1097/PCC.0000000000000437.
    1. Kneyber MCJ, de Luca D, Calderini E, Section Respiratory Failure of the European Society for Paediatric and Neonatal Intensive Care et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) Intensive Care Med. 2017;43:1764–1780. doi: 10.1007/s00134-017-4920-z.
    1. Brower RG, Matthay MA, Morris A, Acute Respiratory Distress Syndrome Network et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Curley MA, Hibberd PL, Fineman LD, et al. Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA. 2005;294:229–237. doi: 10.1001/jama.294.2.229.
    1. Newth CJL, Sward KA, Khemani RG, Eunice Kennedy Shriver National Institute for Child Health and Human Development Collaborative Pediatric Critical Care Research Network (CPCCRN) et al. Variability in usual care mechanical ventilation for pediatric acute respiratory distress syndrome: time for a decision support protocol? Pediatr Crit Care Med. 2017;18:e521–e529. doi: 10.1097/PCC.0000000000001319.
    1. Erickson S, Schibler A, Numa A, Paediatric Study Group; Australian and New Zealand Intensive Care Society et al. Acute lung injury in pediatric intensive care in Australia and New Zealand: a prospective, multicenter, observational study. Pediatr Crit Care Med. 2007;8:317–323.
    1. Flori HR, Glidden DV, Rutherford GW, et al. Pediatric acute lung injury: prospective evaluation of risk factors associated with mortality. Am J Respir Crit Care Med. 2005;171:995–1001. doi: 10.1164/rccm.200404-544OC.
    1. Parvathaneni K, Belani S, Leung D, et al. Evaluating the performance of the pediatric acute lung injury consensus conference definition of acute respiratory distress syndrome. Pediatr Crit Care Med. 2017;18:17–25. doi: 10.1097/PCC.0000000000000945.
    1. Miller MP, Sagy M. Pressure characteristics of mechanical ventilation and incidence of pneumothorax before and after the implementation of protective lung strategies in the management of pediatric patients with severe ARDS. Chest. 2008;134:969–973. doi: 10.1378/chest.08-0743.
    1. Santschi M, Jouvet P, Leclerc F, PALIVE Investigators; Pediatric Acute Lung Injury and Sepsis Investigators Network (PALISI); European Society of Pediatric and Neonatal Intensive Care (ESPNIC) et al. Acute lung injury in children: Therapeutic practice and feasibility of international clinical trials. Pediatr Crit Care Med. 2010;11:681–689. doi: 10.1097/PCC.0b013e3181d904c0.
    1. Khemani RG, Markovitz BP, Curley MAQ. Characteristics of children intubated and mechanically ventilated in 16 PICUs. Chest. 2009;136:765–771. doi: 10.1378/chest.09-0207.
    1. López-Fernández Y, Azagra AM, de la Oliva P, Pediatric Acute Lung Injury Epidemiology and Natural History (PED-ALIEN) Network et al. Pediatric Acute Lung Injury Epidemiology and Natural History study: Incidence and outcome of the acute respiratory distress syndrome in children. Crit Care Med. 2012;40:3238–3245. doi: 10.1097/CCM.0b013e318260caa3.
    1. Ingaramo OA, Ngo T, Khemani RG, et al. Impact of positive end-expiratory pressure on cardiac index measured by ultrasound cardiac output monitor. Pediatr Crit Care Med. 2014;15:15–20. doi: 10.1097/PCC.0b013e3182976251.
    1. Guo F, Hao L, Zhen Q, et al. Multicenter study on the prognosis associated with respiratory support for children with acute hypoxic respiratory failure. Exp Ther Med. 2016;12:3227–3232. doi: 10.3892/etm.2016.3772.
    1. Yehya N, Thomas NJ. Disassociating lung mechanics and oxygenation in pediatric acute respiratory distress syndrome. Crit Care Med. 2017;45:1232–1239. doi: 10.1097/CCM.0000000000002406.
    1. Yehya N, Thomas NJ, Khemani RG. Risk stratification using oxygenation in the first 24 hours of pediatric acute respiratory distress syndrome. Crit Care Med. 2018;46:619–624. doi: 10.1097/CCM.0000000000002958.
    1. Khemani RG, Parvathaneni K, Yehya N, et al. Positive end-expiratory pressure lower than the ARDS network protocol is associated with higher pediatric acute respiratory distress syndrome mortality. Am J Respir Crit Care Med. 2018;198:77–89. doi: 10.1164/rccm.201707-1404OC.
    1. Halbertsma FJ, Vaneker M, Pickkers P, et al. A single recruitment maneuver in ventilated critically ill children can translocate pulmonary cytokines into the circulation. J Crit Care. 2010;25:10–15. doi: 10.1016/j.jcrc.2009.01.006.
    1. Wolf GK, Gómez-Laberge C, Kheir JN, et al. Reversal of dependent lung collapse predicts response to lung recruitment in children with early acute lung injury. Pediatr Crit Care Med. 2012;13:509–515. doi: 10.1097/PCC.0b013e318245579c.
    1. Goligher Ewan C., Hodgson Carol L., Adhikari Neill K. J., Meade Maureen O., Wunsch Hannah, Uleryk Elizabeth, Gajic Ognjen, Amato Marcelo P. B., Ferguson Niall D., Rubenfeld Gordon D., Fan Eddy. Lung Recruitment Maneuvers for Adult Patients with Acute Respiratory Distress Syndrome. A Systematic Review and Meta-Analysis. Annals of the American Thoracic Society. 2017;14(Supplement_4):S304–S311. doi: 10.1513/AnnalsATS.201704-340OT.
    1. Boriosi JP, Sapru A, Hanson JH, et al. Efficacy and safety of lung recruitment in pediatric patients with acute lung injury. Pediatr Crit Care Med. 2011;12:431–436. doi: 10.1097/PCC.0b013e3181fe329d.
    1. Duff JP, Rosychuk RJ, Joffe AR. The safety and efficacy of sustained inflations as a lung recruitment maneuver in pediatric intensive care unit patients. Intensive Care Med. 2007;33:1778–1786. doi: 10.1007/s00134-007-0764-2.
    1. Cavalcanti AB, Suzumura EA, Laranjeira LN, Writing Group for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) Investigators et al. Effect of lung recruitment and titrated positive end-expiratory pressure (PEEP) vs low PEEP on mortality in patients with acute respiratory distress syndrome: a randomized clinical trial. JAMA. 2017;318:1335–1345. doi: 10.1001/jama.2017.14171.
    1. Kang H, Yang H, Tong Z. Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation: a systematic review and meta-analysis. J Crit Care. 2019;50:1–10. doi: 10.1016/j.jcrc.2018.10.033.
    1. Santini A, Protti A, Langer T, et al. Prone position ameliorates lung elastance and increases functional residual capacity independently from lung recruitment. Intensive Care Med Exp. 2015;3:55. doi: 10.1186/s40635-015-0055-0.
    1. Sud S, Friedrich JO, Adhikari NK, et al. Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis. CMAJ. 2014;186:E381–E390. doi: 10.1503/cmaj.140081.
    1. Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36:585–599. doi: 10.1007/s00134-009-1748-1.
    1. Kornecki A, Frndova H, Coates AL, et al. 4A randomized trial of prolonged prone positioning in children with acute respiratory failure. Chest. 2001;119:211–218. doi: 10.1378/chest.119.1.211.
    1. Macrae DJ, Field D, Mercier JC, et al. Inhaled nitric oxide therapy in neonates and children: reaching a European consensus. Intensive Care Med. 2004;30:372–380. doi: 10.1007/s00134-003-2122-3.
    1. Day RW, Lynch JM, White KS, et al. Acute response to inhaled nitric oxide in newborns with respiratory failure and pulmonary hypertension. Pediatrics. 1996;98:698–705.
    1. Dobyns EL, Cornfield DN, Anas NG, et al. Multicenter randomized controlled trial of the effects of inhaled nitric oxide therapy on gas exchange in children with acute hypoxemic respiratory failure. J Pediatr. 1999;134:406–412. doi: 10.1016/S0022-3476(99)70196-4.
    1. Bronicki RA, Fortenberry J, Schreiber M, et al. Multicenter randomized controlled trial of inhaled nitric oxide for pediatric acute respiratory distress syndrome. J Pediatr. 2015;166(365–369):e1.
    1. Karam O, Gebistorf F, Wetterslev J, et al. The effect of inhaled nitric oxide in acute respiratory distress syndrome in children and adults: a cochrane systematic review with trial sequential analysis. Anaesthesia. 2017;72:106–117. doi: 10.1111/anae.13628.
    1. Fioretto JR, de Moraes MA, Bonatto RC, et al. Acute and sustained effects of early administration of inhaled nitric oxide to children with acute respiratory distress syndrome. Pediatr Crit Care Med. 2004;5:469–474. doi: 10.1097/01.PCC.0000137986.83738.D7.
    1. Tadphale SD, Rettiganti M, Gossett JM, et al. Is administration of nitric oxide during extracorporeal membrane oxygenation associated with improved patient survival? Pediatr Crit Care Med. 2016;17:1080–1087. doi: 10.1097/PCC.0000000000000939.
    1. Dowell JC, Thomas NJ, Yehya N. Association of response to inhaled nitric oxide and duration of mechanical ventilation in pediatric acute respiratory distress syndrome. Pediatr Crit Care Med. 2017;18:1019–1026. doi: 10.1097/PCC.0000000000001305.
    1. Bhalla AK, Yehya N, Mack WJ, et al. The association between inhaled nitric oxide treatment and ICU mortality and 28-day ventilator-free days in pediatric acute respiratory distress syndrome. Crit Care Med. 2018;46:1803–1810. doi: 10.1097/CCM.0000000000003312.
    1. Gebistorf F, Karam O, Wetterslev J et al (2016) Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst Rev 66:CD002787
    1. Ferguson ND, Cook DJ, Guyatt GH, OSCILLATE Trial Investigators; Canadian Critical Care Trials Group et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368:795–805. doi: 10.1056/NEJMoa1215554.
    1. Young D, Lamb SE, Shah S, et al. OSCAR Study Group: high-frequency oscillation for acute respiratory distress syndrome. N Engl J Med. 2013;368:806–813. doi: 10.1056/NEJMoa1215716.
    1. Guo YX, Wang ZN, Li YT, et al. High-frequency oscillatory ventilation is an effective treatment for severe pediatric acute respiratory distress syndrome with refractory hypoxemia. Ther Clin Risk Manag. 2016;12:1563–1571. doi: 10.2147/TCRM.S115884.
    1. Bateman Scot T., Borasino Santiago, Asaro Lisa A., Cheifetz Ira M., Diane Shelley, Wypij David, Curley Martha A. Q. Early High-Frequency Oscillatory Ventilation in Pediatric Acute Respiratory Failure. A Propensity Score Analysis. American Journal of Respiratory and Critical Care Medicine. 2016;193(5):495–503. doi: 10.1164/rccm.201507-1381OC.
    1. Arnold JH, Hanson JH, Toro-Figuero LO, et al. Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med. 1994;22:1530–1539. doi: 10.1097/00003246-199422100-00006.
    1. Samransamruajkit R, Prapphal N, Deelodegenavong J, et al. Plasma soluble intercellular adhesion molecule-1 (sICAM-1) in pediatric ARDS during high frequency oscillatory ventilation: a predictor of mortality. Asian Pac J Allergy Immunol. 2005;23:181–188.
    1. Samransamruajkit R, Rassameehirun C, Pongsanon K, et al. A comparison of clinical efficacy between high frequency oscillatory ventilation and conventional ventilation with lung volume recruitment in pediatric acute respiratory distress syndrome: a randomized controlled trial. Indian J Crit Care Med. 2016;20:72–77. doi: 10.4103/0972-5229.175940.
    1. Gainnier M, Roch A, Forel JM, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2004;32:113–119. doi: 10.1097/01.CCM.0000104114.72614.BC.
    1. Forel JM, Roch A, Marin V, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome. Crit Care Med. 2006;34:2749–2757. doi: 10.1097/01.CCM.0000239435.87433.0D.
    1. Papazian L, Forel JM, Gacouin A, ACURASYS Study Investigators et al. Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med. 2010;363:1107–1116. doi: 10.1056/NEJMoa1005372.
    1. Wilsterman MEF, de Jager P, Blokpoel R, et al. Short-term effects of neuromuscular blockade on global and regional lung mechanics, oxygenation and ventilation in pediatric acute hypoxemic respiratory failure. Ann Intensive Care. 2016;6:103. doi: 10.1186/s13613-016-0206-9.
    1. Da Silva PS, Neto HM, de Aguiar VE, et al. Impact of sustained neuromuscular blockade on outcome of mechanically ventilated children. Pediatr Int. 2010;52:438–443. doi: 10.1111/j.1442-200X.2010.03104.x.
    1. Wehling M. Specific, nongenomic actions of steroid hormones. Annu Rev Physiol. 1997;59:365–393. doi: 10.1146/annurev.physiol.59.1.365.
    1. Seri I, Evans J. Controversies in the diagnosis and management of hypotension in the newborn infant. Curr Opin Pediatr. 2001;13:116–123. doi: 10.1097/00008480-200104000-00005.
    1. Munck A, Mendel DB, Smith LI, et al. Glucocorticoid receptors and actions. Am Rev Respir Dis. 1990;141:S2–10. doi: 10.1164/ajrccm/141.1.2.
    1. Sasidharan P. Role of corticosteroids in neonatal blood pressure homeostasis. Clin Perinatol. 1998;25(723–740):xi.
    1. Yung M, Wilkins B, Norton L, Paediatric Study Group; Australian and New Zealand Intensive Care Society et al. Glucose control, organ failure, and mortality in pediatric intensive care. Pediatr Crit Care Med. 2008;9:147–152. doi: 10.1097/PCC.0b013e3181668c22.
    1. Kwon S, Hermayer KL, Hermayer K. Glucocorticoid-induced hyperglycemia. Am J Med Sci. 2013;345:274–277. doi: 10.1097/MAJ.0b013e31828a6a01.
    1. Milan G, Romanello V, Pescatore F, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670. doi: 10.1038/ncomms7670.
    1. Steiner SJ, Noe JD, Denne SC. Corticosteroids increase protein breakdown and loss in newly diagnosed pediatric crohn disease. Pediatr Res. 2011;70:484–488. doi: 10.1203/PDR.0b013e31822f5886.
    1. Costello JM, Graham DA, Morrow DF, et al. Risk factors for central line-associated bloodstream infection in a pediatric cardiac intensive care unit. Pediatr Crit Care Med. 2009;10:453–459. doi: 10.1097/PCC.0b013e318198b19a.
    1. Waljee AK, Rogers MA, Lin P, et al. Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ. 2017;357:j1415. doi: 10.1136/bmj.j1415.
    1. El-Nawawy A, Khater D, Omar H, et al. Evaluation of early corticosteroid therapy in management of pediatric septic shock in pediatric intensive care patients: a randomized clinical study. Pediatr Infect Dis J. 2017;36:155–159. doi: 10.1097/INF.0000000000001380.
    1. Rygård SL, Butler E, Granholm A, et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018;44:1003–1016. doi: 10.1007/s00134-018-5197-6.
    1. Annane D, Sébille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288:862–871. doi: 10.1001/jama.288.7.862.
    1. Sprung CL, Annane D, Keh D, CORTICUS Study Group et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–124. doi: 10.1056/NEJMoa071366.
    1. Annane D, Renault A, Brun-Buisson C, CRICS-TRIGGERSEP Network et al. Hydrocortisone plus fludrocortisone for adults with septic shock. N Engl J Med. 2018;378:809–818. doi: 10.1056/NEJMoa1705716.
    1. Venkatesh B, Finfer S, Cohen J, ADRENAL Trial Investigators and the Australian-New Zealand Intensive Care Society Clinical Trials Group et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med. 2018;378:797–808. doi: 10.1056/NEJMoa1705835.
    1. Yehya N, Vogiatzi MG, Thomas NJ, et al. Cortisol correlates with severity of illness and poorly reflects adrenal function in pediatric acute respiratory distress syndrome. J Pediatr. 2016;177(212–218):e1.
    1. Rochwerg B, Oczkowski SJ, Siemieniuk RAC, et al. Corticosteroids in sepsis: an updated systematic review and meta-analysis. Crit Care Med. 2018;46:1411–1420. doi: 10.1097/CCM.0000000000003262.
    1. Lamontagne F, Rochwerg B, Lytvyn L, et al. Corticosteroid therapy for sepsis: a clinical practice guideline. BMJ. 2018;362:k3284. doi: 10.1136/bmj.k3284.
    1. Slusher T, Gbadero D, Howard C, et al. Randomized, placebo-controlled, double blinded trial of dexamethasone in African children with sepsis. Pediatr Infect Dis J. 1996;15:579–583. doi: 10.1097/00006454-199607000-00004.
    1. Valoor HT, Singhi S, Jayashree M. Low-dose hydrocortisone in pediatric septic shock: an exploratory study in a third world setting. Pediatr Crit Care Med. 2009;10:121–125. doi: 10.1097/PCC.0b013e3181936ab3.
    1. Menon K, McNally D, O’Hearn K, Canadian Critical Care Trials Group et al. A randomized controlled trial of corticosteroids in pediatric septic shock: A pilot feasibility study. Pediatr Crit Care Med. 2017;18:505–512. doi: 10.1097/PCC.0000000000001121.
    1. Markovitz BP, Goodman DM, Watson RS, et al. A retrospective cohort study of prognostic factors associated with outcome in pediatric severe sepsis: what is the role of steroids? Pediatr Crit Care Med. 2005;6:270–274. doi: 10.1097/01.PCC.0000160596.31238.72.
    1. Zimmerman JJ, Williams MD. Adjunctive corticosteroid therapy in pediatric severe sepsis: observations from the RESOLVE study. Pediatr Crit Care Med. 2011;12:2–8. doi: 10.1097/PCC.0b013e3181d903f6.
    1. Atkinson SJ, Cvijanovich NZ, Thomas NJ, et al. Corticosteroids and pediatric septic shock outcomes: a risk stratified analysis. PLoS One. 2014;9:e112702. doi: 10.1371/journal.pone.0112702.
    1. Wong HR, Cvijanovich NZ, Anas N, et al. Developing a clinically feasible personalized medicine approach to pediatric septic shock. Am J Respir Crit Care Med. 2015;191:309–315. doi: 10.1164/rccm.201410-1864OC.
    1. Menon K, McNally JD, Choong K, Canadian Critical Care Trials Group STRIPES Investigators et al. A cohort study of pediatric shock: Frequency of corticosteriod use and association with clinical outcomes. Shock. 2015;44:402–409. doi: 10.1097/SHK.0000000000000355.
    1. Bornstein SR, Allolio B, Arlt W, et al. Diagnosis and treatment of primary adrenal insufficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101:364–389. doi: 10.1210/jc.2015-1710.
    1. Broersen LH, Pereira AM, Jørgensen JO, et al. Adrenal insufficiency in corticosteroids use: systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100:2171–2180. doi: 10.1210/jc.2015-1218.
    1. Agus MS, Steil GM, Wypij D, SPECS Study Investigators et al. Tight glycemic control versus standard care after pediatric cardiac surgery. N Engl J Med. 2012;367:1208–1219. doi: 10.1056/NEJMoa1206044.
    1. Agus MSD, Wypij D, Nadkarni VM. Tight glycemic control in critically ill children. N Engl J Med. 2017;376:e48. doi: 10.1056/NEJMoa1612348.
    1. Macrae D, Grieve R, Allen E, CHiP Investigators et al. A randomized trial of hyperglycemic control in pediatric intensive care. N Engl J Med. 2014;370:107–118. doi: 10.1056/NEJMoa1302564.
    1. Vlasselaers D, Milants I, Desmet L, et al. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet. 2009;373:547–556. doi: 10.1016/S0140-6736(09)60044-1.
    1. Jeschke MG, Kulp GA, Kraft R, et al. Intensive insulin therapy in severely burned pediatric patients: a prospective randomized trial. Am J Respir Crit Care Med. 2010;182:351–359. doi: 10.1164/rccm.201002-0190OC.
    1. Chen L, Li T, Fang F, et al. Tight glycemic control in critically ill pediatric patients: a systematic review and meta-analysis. Crit Care. 2018;22:57. doi: 10.1186/s13054-018-1976-2.
    1. Zhao Y, Wu Y, Xiang B. Tight glycemic control in critically ill pediatric patients: a meta-analysis and systematic review of randomized controlled trials. Pediatr Res. 2018;84:22–27. doi: 10.1038/s41390-018-0002-3.
    1. McKinlay Christopher J. D., Alsweiler Jane M., Anstice Nicola S., Burakevych Nataliia, Chakraborty Arijit, Chase J. Geoffrey, Gamble Gregory D., Harris Deborah L., Jacobs Robert J., Jiang Yannan, Paudel Nabin, San Diego Ryan J., Thompson Benjamin, Wouldes Trecia A., Harding Jane E. Association of Neonatal Glycemia With Neurodevelopmental Outcomes at 4.5 Years. JAMA Pediatrics. 2017;171(10):972. doi: 10.1001/jamapediatrics.2017.1579.
    1. Mesotten D, Gielen M, Sterken C, et al. Neurocognitive development of children 4 years after critical illness and treatment with tight glucose control: a randomized controlled trial. JAMA. 2012;308:1641–1650. doi: 10.1001/jama.2012.12424.
    1. Sadhwani A, Asaro LA, Goldberg C, et al. Impact of tight glycemic control on neurodevelopmental outcomes at 1 year of age for children with congenital heart disease: a randomized controlled trial. J Pediatr. 2016;174(193–198):e2.
    1. Faustino EVS, Hirshberg EL, Asaro LA, Heart and lung failure-pediatric insulin titration (HALF-PINT) study investigators et al. Short-term adverse outcomes associated with hypoglycemia in critically ill children. Crit Care Med. 2019;47:706–714. doi: 10.1097/CCM.0000000000003699.
    1. Forsythe RM, Wessel CB, Billiar TR et al (2008) Parenteral calcium for intensive care unit patients. Cochrane Database Syst Rev CD006163
    1. Dotson B, Larabell P, Patel JU, et al. Calcium administration is associated with adverse outcomes in critically ill patients receiving parenteral nutrition: results from a natural experiment created by a calcium gluconate shortage. Pharmacotherapy. 2016;36:1185–1190. doi: 10.1002/phar.1849.
    1. Dias CR, Leite HP, Nogueira PC, et al. Ionized hypocalcemia is an early event and is associated with organ dysfunction in children admitted to the intensive care unit. J Crit Care. 2013;28:810–815. doi: 10.1016/j.jcrc.2013.03.019.
    1. Hebbar K, Rigby MR, Felner EI, et al. Neuroendocrine dysfunction in pediatric critical illness. Pediatr Crit Care Med. 2009;10:35–40. doi: 10.1097/PCC.0b013e3181936ef3.
    1. Shih JL, Agus MS. Thyroid function in the critically ill newborn and child. Curr Opin Pediatr. 2009;21:536–540. doi: 10.1097/MOP.0b013e32832cbc12.
    1. Marwali EM, Boom CE, Sakidjan I, et al. Oral triiodothyronine normalizes triiodothyronine levels after surgery for pediatric congenital heart disease*. Pediatr Crit Care Med. 2013;14:701–708. doi: 10.1097/PCC.0b013e3182917f87.
    1. Marwali EM, Boom CE, Budiwardhana N, et al. Oral triiodothyronine for infants and children undergoing cardiopulmonary bypass. Ann Thorac Surg. 2017;104:688–695. doi: 10.1016/j.athoracsur.2017.01.001.
    1. Smith LM, Leake RD, Berman N, et al. Postnatal thyroxine supplementation in infants less than 32 weeks’ gestation: effects on pulmonary morbidity. J Perinatol. 2000;20:427–431. doi: 10.1038/sj.jp.7200417.
    1. Lee BH, Inui D, Suh GY, Fever and Antipyretic in Critically ill patients Evaluation (FACE) Study Group et al. Association of body temperature and antipyretic treatments with mortality of critically ill patients with and without sepsis: Multi-centered prospective observational study. Crit Care. 2012;16:R33. doi: 10.1186/cc11660.
    1. Walter EJ, Hanna-Jumma S, Carraretto M, et al. The pathophysiological basis and consequences of fever. Crit Care. 2016;20:200. doi: 10.1186/s13054-016-1375-5.
    1. Sullivan JE, Farrar HC, Section on clinical pharmacology and therapeutics, committee on drugs Fever and antipyretic use in children. Pediatrics. 2011;127:580–587. doi: 10.1542/peds.2010-3852.
    1. Drewry AM, Ablordeppey EA, Murray ET, et al. Antipyretic therapy in critically ill septic patients: a systematic review and meta-analysis. Crit Care Med. 2017;45:806–813. doi: 10.1097/CCM.0000000000002285.
    1. Prakash V, Parameswaran N, Biswal N. Early versus late enteral feeding in critically ill children: a randomized controlled trial. Intensive Care Med. 2016;42:481–482. doi: 10.1007/s00134-015-4176-4.
    1. Rice TW, Mogan S, Hays MA, et al. Randomized trial of initial trophic versus full-energy enteral nutrition in mechanically ventilated patients with acute respiratory failure. Crit Care Med. 2011;39:967–974. doi: 10.1097/CCM.0b013e31820a905a.
    1. Meyer R, Harrison S, Sargent S, et al. The impact of enteral feeding protocols on nutritional support in critically ill children. J Hum Nutr Diet. 2009;22:428–436. doi: 10.1111/j.1365-277X.2009.00994.x.
    1. Petrillo-Albarano T, Pettignano R, Asfaw M, et al. Use of a feeding protocol to improve nutritional support through early, aggressive, enteral nutrition in the pediatric intensive care unit. Pediatr Crit Care Med. 2006;7:340–344. doi: 10.1097/01.PCC.0000225371.10446.8F.
    1. Yoshimura S, Miyazu M, Yoshizawa S, et al. Efficacy of an enteral feeding protocol for providing nutritional support after paediatric cardiac surgery. Anaesth Intensive Care. 2015;43:587–593. doi: 10.1177/0310057X1504300506.
    1. Hamilton S, McAleer DM, Ariagno K, et al. A stepwise enteral nutrition algorithm for critically ill children helps achieve nutrient delivery goals*. Pediatr Crit Care Med. 2014;15:583–589. doi: 10.1097/PCC.0000000000000179.
    1. Panchal AK, Manzi J, Connolly S, et al. Safety of enteral feedings in critically ill children receiving vasoactive agents. JPEN J Parenter Enteral Nutr. 2016;40:236–241. doi: 10.1177/0148607114546533.
    1. King W, Petrillo T, Pettignano R. Enteral nutrition and cardiovascular medications in the pediatric intensive care unit. JPEN J Parenter Enteral Nutr. 2004;28:334–338. doi: 10.1177/0148607104028005334.
    1. López-Herce J, Santiago MJ, Sánchez C, et al. Risk factors for gastrointestinal complications in critically ill children with transpyloric enteral nutrition. Eur J Clin Nutr. 2008;62:395–400. doi: 10.1038/sj.ejcn.1602710.
    1. Arabi YM, Aldawood AS, Haddad SH, PermiT Trial Group et al. Permissive underfeeding or standard enteral feeding in critically ill adults. N Engl J Med. 2015;372:2398–2408. doi: 10.1056/NEJMoa1502826.
    1. Fivez T, Kerklaan D, Mesotten D, et al. Early versus late parenteral nutrition in critically ill children. N Engl J Med. 2016;374:1111–1122. doi: 10.1056/NEJMoa1514762.
    1. van Puffelen E, Vanhorebeek I, Joosten KFM, et al. Early versus late parenteral nutrition in critically ill, term neonates: a preplanned secondary subgroup analysis of the PEPaNIC multicentre, randomised controlled trial. Lancet Child Adolesc Health. 2018;2:505–515. doi: 10.1016/S2352-4642(18)30131-7.
    1. van Puffelen E, Hulst JM, Vanhorebeek I, et al. Outcomes of delaying parenteral nutrition for 1 week vs initiation within 24 hours among undernourished children in pediatric intensive care: a subanalysis of the PEPaNIC randomized clinical trial. JAMA Netw Open. 2018;1:e182668. doi: 10.1001/jamanetworkopen.2018.2668.
    1. Verstraete S, Verbruggen SC, Hordijk JA, et al. Long-term developmental effects of withholding parenteral nutrition for 1 week in the paediatric intensive care unit: a 2-year follow-up of the PEPaNIC international, randomised, controlled trial. Lancet Respir Med. 2019;7:141–153. doi: 10.1016/S2213-2600(18)30334-5.
    1. Doig GS, Simpson F, Sweetman EA, Early PN Investigators of the ANZICS Clinical Trials Group et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013;309:2130–2138. doi: 10.1001/jama.2013.5124.
    1. Casaer MP, Mesotten D, Hermans G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365:506–517. doi: 10.1056/NEJMoa1102662.
    1. Singer P, Anbar R, Cohen J, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med. 2011;37:601–609. doi: 10.1007/s00134-011-2146-z.
    1. Briassoulis G, Filippou O, Hatzi E, et al. Early enteral administration of immunonutrition in critically ill children: results of a blinded randomized controlled clinical trial. Nutrition. 2005;21:799–807. doi: 10.1016/j.nut.2004.12.006.
    1. Carcillo JA, Dean JM, Holubkov R, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Collaborative Pediatric Critical Care Research Network (CPCCRN) et al. The randomized comparative pediatric critical illness stress-induced immune suppression (CRISIS) prevention trial. Pediatr Crit Care Med. 2012;13:165–173. doi: 10.1097/PCC.0b013e31823896ae.
    1. Al-Biltagi MA, Abo-Elezz AA, Abd-Elhafez MA, et al. Beneficial effects of omega-3 supplement to the enteral feeding in children with mild to moderate sepsis. J Intensive Care Med. 2017;32:212–217. doi: 10.1177/0885066615623927.
    1. Tume LN, Bickerdike A, Latten L, et al. Routine gastric residual volume measurement and energy target achievement in the PICU: a comparison study. Eur J Pediatr. 2017;176:1637–1644. doi: 10.1007/s00431-017-3015-8.
    1. Meert KL, Daphtary KM, Metheny NA. Gastric vs small-bowel feeding in critically ill children receiving mechanical ventilation: a randomized controlled trial. Chest. 2004;126:872–878. doi: 10.1378/chest.126.3.872.
    1. Kamat P, Favaloro-Sabatier J, Rogers K, et al. Use of methylene blue spectrophotometry to detect subclinical aspiration in enterally fed intubated pediatric patients. Pediatr Crit Care Med. 2008;9:299–303. doi: 10.1097/PCC.0b013e318172d500.
    1. Sönmez Düzkaya D, Yildiz S. Effect of two different feeding methods on preventing ventilator associated pneumonia in the paediatric intensive care unit (PICU): a randomised controlled study. Aust Crit Care. 2016;29:139–145. doi: 10.1016/j.aucc.2015.11.001.
    1. Lewis K, Alqahtani Z, Mcintyre L, et al. The efficacy and safety of prokinetic agents in critically ill patients receiving enteral nutrition: a systematic review and meta-analysis of randomized trials. Crit Care. 2016;20:259. doi: 10.1186/s13054-016-1441-z.
    1. Yap YG, Camm AJ. Drug induced QT prolongation and torsades de pointes. Heart. 2003;89:1363–1372. doi: 10.1136/heart.89.11.1363.
    1. Freeman BD, Dixon DJ, Coopersmith CM, et al. Pharmacoepidemiology of QT-interval prolonging drug administration in critically ill patients. Pharmacoepidemiol Drug Saf. 2008;17:971–981. doi: 10.1002/pds.1637.
    1. Ray WA, Murray KT, Meredith S, et al. Oral erythromycin and the risk of sudden death from cardiac causes. N Engl J Med. 2004;351:1089–1096. doi: 10.1056/NEJMoa040582.
    1. Stadtman TC. Selenocysteine. Annu Rev Biochem. 1996;65:83–100. doi: 10.1146/annurev.bi.65.070196.000503.
    1. Iglesias SB, Leite HP, Paes AT, et al. Low plasma selenium concentrations in critically ill children: the interaction effect between inflammation and selenium deficiency. Crit Care. 2014;18:R101. doi: 10.1186/cc13877.
    1. Loui A, Raab A, Braetter P, et al. Selenium status in term and preterm infants during the first months of life. Eur J Clin Nutr. 2008;62:349–355. doi: 10.1038/sj.ejcn.1602715.
    1. Sammalkorpi K, Valtonen V, Alfthan G, et al. Serum selenium in acute infections. Infection. 1988;16:222–224. doi: 10.1007/BF01650756.
    1. Asci A, Surmeli-Onay O, Erkekoglu P, et al. Oxidant and antioxidant status in neonatal proven and clinical sepsis according to selenium status. Pediatr Int. 2015;57:1131–1137. doi: 10.1111/ped.12698.
    1. Mertens K, Lowes DA, Webster NR, et al. Low zinc and selenium concentrations in sepsis are associated with oxidative damage and inflammation. Br J Anaesth. 2015;114:990–999. doi: 10.1093/bja/aev073.
    1. Darlow BA, Austin NC (2003) Selenium supplementation to prevent short-term morbidity in preterm neonates. Cochrane Database Syst Rev CD003312
    1. Alhazzani W, Almasoud A, Jaeschke R, et al. Small bowel feeding and risk of pneumonia in adult critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care. 2013;17:R127. doi: 10.1186/cc12806.
    1. Barbosa E, Moreira EA, Goes JE, et al. Pilot study with a glutamine-supplemented enteral formula in critically ill infants. Rev Hosp Clin Fac Med Sao Paulo. 1999;54:21–24. doi: 10.1590/S0041-87811999000100005.
    1. Briassoulis G, Filippou O, Kanariou M, et al. Comparative effects of early randomized immune or non-immune-enhancing enteral nutrition on cytokine production in children with septic shock. Intensive Care Med. 2005;31:851–858. doi: 10.1007/s00134-005-2631-3.
    1. Heyland D, Muscedere J, Wischmeyer PE, Canadian Critical Care Trials Group et al. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368:1489–1497. doi: 10.1056/NEJMoa1212722.
    1. Jordan I, Balaguer M, Esteban ME, et al. Glutamine effects on heat shock protein 70 and interleukines 6 and 10: randomized trial of glutamine supplementation versus standard parenteral nutrition in critically ill children. Clin Nutr. 2016;35:34–40. doi: 10.1016/j.clnu.2015.01.019.
    1. Novak F, Heyland DK, Avenell A, et al. Glutamine supplementation in serious illness: a systematic review of the evidence. Crit Care Med. 2002;30:2022–2029. doi: 10.1097/00003246-200209000-00011.
    1. van Zanten AR, Sztark F, Kaisers UX, et al. High-protein enteral nutrition enriched with immune-modulating nutrients vs standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA. 2014;312:514–524. doi: 10.1001/jama.2014.7698.
    1. Wernerman J, Kirketeig T, Andersson B, Scandinavian Critical Care Trials Group et al. Scandinavian glutamine trial: a pragmatic multi-centre randomised clinical trial of intensive care unit patients. Acta Anaesthesiol Scand. 2011;55:812–818. doi: 10.1111/j.1399-6576.2011.02453.x.
    1. Beale RJ, Sherry T, Lei K, et al. Early enteral supplementation with key pharmaconutrients improves sequential organ failure assessment score in critically ill patients with sepsis: outcome of a randomized, controlled, double-blind trial. Crit Care Med. 2008;36:131–144. doi: 10.1097/01.CCM.0000297954.45251.A9.
    1. Fuentes-Orozco C, Anaya-Prado R, González-Ojeda A, et al. L-alanyl-l-glutamine-supplemented parenteral nutrition improves infectious morbidity in secondary peritonitis. Clin Nutr. 2004;23:13–21. doi: 10.1016/S0261-5614(03)00055-4.
    1. Koksal GM, Erbabacan E, Tunali Y, et al. The effects of intravenous, enteral and combined administration of glutamine on malnutrition in sepsis: a randomized clinical trial. Asia Pac J Clin Nutr. 2014;23:34–40.
    1. Bollhalder L, Pfeil AM, Tomonaga Y, et al. A systematic literature review and meta-analysis of randomized clinical trials of parenteral glutamine supplementation. Clin Nutr. 2013;32:213–223. doi: 10.1016/j.clnu.2012.11.003.
    1. Tao KM, Li XQ, Yang LQ, et al. Glutamine supplementation for critically ill adults. Cochrane Database Syst Rev. 2014;9:CD010050.
    1. Tubman TR, Thompson SW, McGuire W (2008) Glutamine supplementation to prevent morbidity and mortality in preterm infants. Cochrane Database Syst Rev 1:CD001457.
    1. Carcillo JA, Dean JM, Holubkov R, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Collaborative Pediatric Critical Care Research Network (CPCCRN) et al. Interaction between 2 nutraceutical treatments and host immune status in the pediatric critical illness stress-induced immune suppression comparative effectiveness trial. JPEN J Parenter Enteral Nutr. 2017;41:1325–1335. doi: 10.1177/0148607116670377.
    1. Barbul A, Uliyargoli A. Use of exogenous arginine in multiple organ dysfunction syndrome and sepsis. Crit Care Med. 2007;35:S564–S567. doi: 10.1097/01.CCM.0000279188.97421.FE.
    1. Bertolini G, Iapichino G, Radrizzani D, et al. Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med. 2003;29:834–840. doi: 10.1007/s00134-003-1711-5.
    1. Suchner U, Kuhn KS, Fürst P. The scientific basis of immunonutrition. Proc Nutr Soc. 2000;59:553–563. doi: 10.1017/S0029665100000793.
    1. Argaman Z, Young VR, Noviski N, et al. Arginine and nitric oxide metabolism in critically ill septic pediatric patients. Crit Care Med. 2003;31:591–597. doi: 10.1097/01.CCM.0000050291.37714.74.
    1. Bower RH, Cerra FB, Bershadsky B, et al. Early enteral administration of a formula (impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit Care Med. 1995;23:436–449. doi: 10.1097/00003246-199503000-00006.
    1. Caparrós T, Lopez J, Grau T. Early enteral nutrition in critically ill patients with a high-protein diet enriched with arginine, fiber, and antioxidants compared with a standard high-protein diet. The effect on nosocomial infections and outcome. JPEN J Parenter Enteral Nutr. 2001;25:299–308. doi: 10.1177/0148607101025006299.
    1. Galbán C, Montejo JC, Mesejo A, et al. An immune-enhancing enteral diet reduces mortality rate and episodes of bacteremia in septic intensive care unit patients. Crit Care Med. 2000;28:643–648. doi: 10.1097/00003246-200003000-00007.
    1. Santora R, Kozar RA. Molecular mechanisms of pharmaconutrients. J Surg Res. 2010;161:288–294. doi: 10.1016/j.jss.2009.06.024.
    1. Kieft H, Roos AN, van Drunen JD, et al. Clinical outcome of immunonutrition in a heterogeneous intensive care population. Intensive Care Med. 2005;31:524–532. doi: 10.1007/s00134-005-2564-x.
    1. Taylor BE, McClave SA, Martindale RG et al, Society of Critical Care Medicine, American Society of Parenteral and Enteral Nutrition (2016) Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). Crit Care Med 44:390–438
    1. Langlois P, Lamontagne F. Vitamin C for the critically ill: Is the evidence strong enough? Nutrition. 2019;60:185–190. doi: 10.1016/j.nut.2018.10.009.
    1. Marik PE. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacol Ther. 2018;189:63–70. doi: 10.1016/j.pharmthera.2018.04.007.
    1. Teng J, Pourmand A, Mazer-Amirshahi M. Vitamin C: the next step in sepsis management? J Crit Care. 2018;43:230–234. doi: 10.1016/j.jcrc.2017.09.031.
    1. Carr AC, Rosengrave PC, Bayer S, et al. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care. 2017;21:300. doi: 10.1186/s13054-017-1891-y.
    1. Fowler AA, 3rd, Syed AA, Knowlson S, Medical Respiratory Intensive Care Unit Nursing et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014;12:32. doi: 10.1186/1479-5876-12-32.
    1. Zabet MH, Mohammadi M, Ramezani M, et al. Effect of high-dose ascorbic acid on vasopressor’s requirement in septic shock. J Res Pharm Pract. 2016;5:94–100. doi: 10.4103/2279-042X.179569.
    1. Moskowitz A, Andersen LW, Huang DT, et al. Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation. Crit Care. 2018;22:283. doi: 10.1186/s13054-018-2217-4.
    1. Marik PE, Khangoora V, Rivera R, et al. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before–after study. Chest. 2017;151:1229–1238. doi: 10.1016/j.chest.2016.11.036.
    1. Donnino MW, Andersen LW, Chase M, Center for Resuscitation Science Research Group et al. Randomized, double-blind, placebo-controlled trial of thiamine as a metabolic resuscitator in septic shock: a pilot study. Crit Care Med. 2016;44:360–367. doi: 10.1097/CCM.0000000000001572.
    1. Lima LF, Leite HP, Taddei JA. Low blood thiamine concentrations in children upon admission to the intensive care unit: risk factors and prognostic significance. Am J Clin Nutr. 2011;93:57–61. doi: 10.3945/ajcn.2009.29078.
    1. Costa NA, Gut AL, de Souza Dorna M, et al. Serum thiamine concentration and oxidative stress as predictors of mortality in patients with septic shock. J Crit Care. 2014;29:249–252. doi: 10.1016/j.jcrc.2013.12.004.
    1. McNally JD, Menon K, Chakraborty P, Canadian Critical Care Trials Group et al. The association of vitamin D status with pediatric critical illness. Pediatrics. 2012;130:429–436. doi: 10.1542/peds.2011-3059.
    1. Madden K, Feldman HA, Smith EM, et al. Vitamin D deficiency in critically ill children. Pediatrics. 2012;130:421–428. doi: 10.1542/peds.2011-3328.
    1. Sankar J, Lotha W, Ismail J, et al. Vitamin D deficiency and length of pediatric intensive care unit stay: a prospective observational study. Ann Intensive Care. 2016;6:3. doi: 10.1186/s13613-015-0102-8.
    1. Ponnarmeni S, Kumar Angurana S, Singhi S, et al. Vitamin D deficiency in critically ill children with sepsis. Paediatr Int Child Health. 2016;36:15–21. doi: 10.1179/2046905515Y.0000000042.
    1. Onwuneme C, Carroll A, Doherty D, et al. Inadequate vitamin D levels are associated with culture positive sepsis and poor outcomes in paediatric intensive care. Acta Paediatr. 2015;104:e433–e438. doi: 10.1111/apa.13090.
    1. Madden K, Feldman HA, Chun RF, et al. Critically ill children have low vitamin D-binding protein, influencing bioavailability of vitamin D. Ann Am Thorac Soc. 2015;12:1654–1661.
    1. McNally JD, Iliriani K, Pojsupap S, et al. Rapid normalization of vitamin D levels: a meta-analysis. Pediatrics. 2015;135:e152–e166. doi: 10.1542/peds.2014-1703.
    1. McNally D, Amrein K, O’Hearn K, Canadian Critical Care Trials Group et al. Study protocol for a phase II dose evaluation randomized controlled trial of cholecalciferol in critically ill children with vitamin D deficiency (VITdAL-PICU study) Pilot Feasibility Stud. 2017;3:70. doi: 10.1186/s40814-017-0214-z.
    1. McNally JD. Vitamin D deficiency in pediatric critical illness: time to move on from observational studies? Rev Chil Pediatr. 2016;87:439–441. doi: 10.1016/j.rchipe.2016.09.001.
    1. Marcinowska-Suchowierska E, Kupisz-Urbańska M, Łukaszkiewicz J, et al. Vitamin D toxicity-a clinical perspective. Front Endocrinol (Lausanne) 2018;9:550. doi: 10.3389/fendo.2018.00550.
    1. Narsaria P, Sankar J, Lodha R. Fatal outcome of accidental vitamin D overdose. Indian J Pediatr. 2016;83:1040. doi: 10.1007/s12098-016-2109-z.
    1. Misra M, Pacaud D, Petryk A, Drug and Therapeutics Committee of the Lawson Wilkins Pediatric Endocrine Society et al. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics. 2008;122:398–417. doi: 10.1542/peds.2007-1894.
    1. Karam O, Tucci M, Ducruet T, Canadian Critical Care Trials Group; PALISI Network et al. Red blood cell transfusion thresholds in pediatric patients with sepsis. Pediatr Crit Care Med. 2011;12:512–518. doi: 10.1097/PCC.0b013e3181fe344b.
    1. Lacroix J, Hébert PC, Hutchison JS, TRIPICU Investigators; Canadian Critical Care Trials Group; Pediatric Acute Lung Injury and Sepsis Investigators Network et al. Transfusion strategies for patients in pediatric intensive care units. N Engl J Med. 2007;356:1609–1619. doi: 10.1056/NEJMoa066240.
    1. Hébert PC, Wells G, Blajchman MA et al (1999) A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med 340:409–417
    1. Muszynski JA, Guzzetta NA, Hall MW, Pediatric Critical Care Transfusion and Anemia Expertise Initiative (TAXI); Pediatric Critical Care Blood Research Network (Blood Net), and the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network et al. Recommendations on RBC transfusions for critically ill children with nonhemorrhagic shock from the pediatric critical care transfusion and anemia expertise initiative. Pediatr Crit Care Med. 2018;19:S121–S126. doi: 10.1097/PCC.0000000000001620.
    1. Sankar J, Sankar MJ, Suresh CP, et al. Early goal-directed therapy in pediatric septic shock: comparison of outcomes “with” and “without” intermittent superior venacaval oxygen saturation monitoring: a prospective cohort study. Pediatr Crit Care Med. 2014;15:e157–e167. doi: 10.1097/PCC.0000000000000073.
    1. Holst LB, Haase N, Wetterslev J, TRISS Trial Group; Scandinavian Critical Care Trials Group et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014;371:1381–1391. doi: 10.1056/NEJMoa1406617.
    1. Du Pont-Thibodeau G, Tucci M, Robitaille N, et al. Platelet transfusions in pediatric intensive care. Pediatr Crit Care Med. 2016;17:e420–e429. doi: 10.1097/PCC.0000000000000879.
    1. Curley A, Stanworth SJ, Willoughby K, PlaNeT2 MATISSE Collaborators et al. Randomized trial of platelet-transfusion thresholds in neonates. N Engl J Med. 2019;380:242–251. doi: 10.1056/NEJMoa1807320.
    1. Pieters BJ, Conley L, Weiford J, et al. Prophylactic versus reactive transfusion of thawed plasma in patients undergoing surgical repair of craniosynostosis: a randomized clinical trial. Paediatr Anaesth. 2015;25:279–287. doi: 10.1111/pan.12571.
    1. Yang L, Stanworth S, Hopewell S, et al. Is fresh-frozen plasma clinically effective? An update of a systematic review of randomized controlled trials. Transfusion. 2012;52:1673–1686. doi: 10.1111/j.1537-2995.2011.03515.x.
    1. Church GD, Matthay MA, Liu K, et al. Blood product transfusions and clinical outcomes in pediatric patients with acute lung injury. Pediatr Crit Care Med. 2009;10:297–302. doi: 10.1097/PCC.0b013e3181988952.
    1. Karam O, Lacroix J, Robitaille N, et al. Association between plasma transfusions and clinical outcome in critically ill children: a prospective observational study. Vox Sang. 2013;104:342–349. doi: 10.1111/vox.12009.
    1. Abdel-Wahab OI, Healy B, Dzik WH. Effect of fresh-frozen plasma transfusion on prothrombin time and bleeding in patients with mild coagulation abnormalities. Transfusion. 2006;46:1279–1285. doi: 10.1111/j.1537-2995.2006.00891.x.
    1. Rimmer E, Houston BL, Kumar A, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care. 2014;18:699. doi: 10.1186/s13054-014-0699-2.
    1. Schwartz J, Padmanabhan A, Aqui N, et al. Guidelines on the use of therapeutic apheresis in clinical practice-evidence-based approach from the Writing Committee of the American Society for Apheresis: the seventh special issue. J Clin Apher. 2016;31:149–162.
    1. Nguyen TC, Han YY, Kiss JE, et al. Intensive plasma exchange increases a disintegrin and metalloprotease with thrombospondin motifs-13 activity and reverses organ dysfunction in children with thrombocytopenia-associated multiple organ failure. Crit Care Med. 2008;36:2878–2887. doi: 10.1097/CCM.0b013e318186aa49.
    1. Carcillo JA, Berg RA, Wessel D, Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network et al. A multicenter network assessment of three inflammation phenotypes in pediatric sepsis-induced multiple organ failure. Pediatr Crit Care Med. 2019;20:1137–1146.
    1. Nguyen TC, Liu A, Liu L, et al. Acquired ADAMTS-13 deficiency in pediatric patients with severe sepsis. Haematologica. 2007;92:121–124. doi: 10.3324/haematol.10262.
    1. Bernardo A, Ball C, Nolasco L, et al. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004;104:100–106. doi: 10.1182/blood-2004-01-0107.
    1. Ono T, Mimuro J, Madoiwa S, et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107:528–534. doi: 10.1182/blood-2005-03-1087.
    1. Crawley JT, Lam JK, Rance JB, et al. Proteolytic inactivation of ADAMTS13 by thrombin and plasmin. Blood. 2005;105:1085–1093. doi: 10.1182/blood-2004-03-1101.
    1. Studt JD, Kremer Hovinga JA, Antoine G, et al. Fatal congenital thrombotic thrombocytopenic purpura with apparent ADAMTS13 inhibitor: in vitro inhibition of ADAMTS13 activity by hemoglobin. Blood. 2005;105:542–544. doi: 10.1182/blood-2004-06-2096.
    1. Nolasco LH, Turner NA, Bernardo A, et al. Hemolytic uremic syndrome-associated Shiga toxins promote endothelial-cell secretion and impair ADAMTS13 cleavage of unusually large von Willebrand factor multimers. Blood. 2005;106:4199–4209. doi: 10.1182/blood-2005-05-2111.
    1. Tsai HM, Lian EC. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med. 1998;339:1585–1594. doi: 10.1056/NEJM199811263392203.
    1. Fortenberry JD, Nguyen T, Grunwell JR, Thrombocytopenia-Associated Multiple Organ Failure (TAMOF) Network Study Group et al. Therapeutic plasma exchange in children with thrombocytopenia-associated multiple organ failure: The Thrombocytopenia-Associated Multiple Organ Failure Network prospective experience. Crit Care Med. 2019;47:e173–e181. doi: 10.1097/CCM.0000000000003559.
    1. Sevketoglu E, Yildizdas D, Horoz OO, et al. Use of therapeutic plasma exchange in children with thrombocytopenia-associated multiple organ failure in the Turkish thrombocytopenia-associated multiple organ failure network. Pediatr Crit Care Med. 2014;15:e354–e359. doi: 10.1097/PCC.0000000000000227.
    1. Rock Gail A., Shumak Kenneth H., Buskard Noel A., Blanchette Victor S., Kelton John G., Nair Rama C., Spasoff Robert A. Comparison of Plasma Exchange with Plasma Infusion in the Treatment of Thrombotic Thrombocytopenic Purpura. New England Journal of Medicine. 1991;325(6):393–397. doi: 10.1056/NEJM199108083250604.
    1. Guo XH, Sun YF, Han SZ, et al. Continuous blood purification in children with severe sepsis. J Biol Regul Homeost Agents. 2017;31:389–394.
    1. Sutherland SM, Zappitelli M, Alexander SR, et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am J Kidney Dis. 2010;55:316–325. doi: 10.1053/j.ajkd.2009.10.048.
    1. Gulla KM, Sachdev A, Gupta D, et al. Continuous renal replacement therapy in children with severe sepsis and multiorgan dysfunction—a pilot study on timing of initiation. Indian J Crit Care Med. 2015;19:613–617. doi: 10.4103/0972-5229.167044.
    1. Borthwick EM, Hill CJ, Rabindranath KS et al (2017) High-volume haemofiltration for sepsis in adults. Cochrane Database Syst Rev 1:CD008075
    1. Miao H, Wang F, Xiong X, et al. Clinical benefits of high-volume hemofiltration in critically ill pediatric patients with severe sepsis: a Retrospective Cohort Study. Blood Purif. 2018;45:18–27. doi: 10.1159/000481249.
    1. Nasr VG, Raman L, Barbaro RP, et al. Highlights from the extracorporeal life support organization registry: 2006–2017. ASAIO J. 2019;65:537–544. doi: 10.1097/MAT.0000000000000863.
    1. Maclaren G, Butt W, Best D, et al. Extracorporeal membrane oxygenation for refractory septic shock in children: one institution’s experience. Pediatr Crit Care Med. 2007;8:447–451. doi: 10.1097/01.PCC.0000282155.25974.8F.
    1. Ruth A, McCracken CE, Fortenberry JD, et al. Extracorporeal therapies in pediatric severe sepsis: findings from the pediatric health-care information system. Crit Care. 2015;19:397. doi: 10.1186/s13054-015-1105-4.
    1. Skinner SC, Iocono JA, Ballard HO, et al. Improved survival in venovenous vs venoarterial extracorporeal membrane oxygenation for pediatric noncardiac sepsis patients: a study of the Extracorporeal Life Support Organization registry. J Pediatr Surg. 2012;47:63–67. doi: 10.1016/j.jpedsurg.2011.10.018.
    1. Barbaro RP, Xu Y, Borasino S, RESTORE Study Investigators et al. Does extracorporeal membrane oxygenation improve survival in pediatric acute respiratory failure? Am J Respir Crit Care Med. 2018;197:1177–1186. doi: 10.1164/rccm.201709-1893OC.
    1. Curley MA, Wypij D, Watson RS, RESTORE Study Investigators and the Pediatric Acute Lung Injury and Sepsis Investigators Network et al. Protocolized sedation vs usual care in pediatric patients mechanically ventilated for acute respiratory failure: a randomized clinical trial. JAMA. 2015;313:379–389. doi: 10.1001/jama.2014.18399.
    1. Bailly DK, Reeder RW, Winder M, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Collaborative Pediatric Critical Care Research Network (CPCCRN) et al. Development of the pediatric extracorporeal membrane oxygenation prediction model for risk-adjusting mortality. Pediatr Crit Care Med. 2019;20:426–434. doi: 10.1097/PCC.0000000000001882.
    1. Jen HC, Shew SB. Hospital readmissions and survival after nonneonatal pediatric ECMO. Pediatrics. 2010;125:1217–1223. doi: 10.1542/peds.2009-0696.
    1. Barbaro Ryan P., Odetola Folafoluwa O., Kidwell Kelley M., Paden Matthew L., Bartlett Robert H., Davis Matthew M., Annich Gail M. Association of Hospital-Level Volume of Extracorporeal Membrane Oxygenation Cases and Mortality. Analysis of the Extracorporeal Life Support Organization Registry. American Journal of Respiratory and Critical Care Medicine. 2015;191(8):894–901. doi: 10.1164/rccm.201409-1634OC.
    1. MacLaren G, Butt W, Best D, et al. Central extracorporeal membrane oxygenation for refractory pediatric septic shock. Pediatr Crit Care Med. 2011;12:133–136. doi: 10.1097/PCC.0b013e3181e2a4a1.
    1. Bréchot N, Luyt CE, Schmidt M, et al. Venoarterial extracorporeal membrane oxygenation support for refractory cardiovascular dysfunction during severe bacterial septic shock. Crit Care Med. 2013;41:1616–1626. doi: 10.1097/CCM.0b013e31828a2370.
    1. Oberender F, Ganeshalingham A, Fortenberry JD, et al. Venoarterial extracorporeal membrane oxygenation versus conventional therapy in severe pediatric septic shock. Pediatr Crit Care Med. 2018;19:965–972. doi: 10.1097/PCC.0000000000001660.
    1. Ohlsson A, Lacy JB (2013) Intravenous immunoglobulin for suspected or proven infection in neonates. Cochrane Database Syst Rev CD001239
    1. El-Nawawy A, El-Kinany H, Hamdy El-Sayed M, et al. Intravenous polyclonal immunoglobulin administration to sepsis syndrome patients: a prospective study in a pediatric intensive care unit. J Trop Pediatr. 2005;51:271–278. doi: 10.1093/tropej/fmi011.
    1. Brocklehurst P, Farrell B, King A, et al. INIS Collaborative Group: treatment of neonatal sepsis with intravenous immune globulin. N Engl J Med. 2011;365:1201–1211. doi: 10.1056/NEJMoa1100441.
    1. Alejandria MM, Lansang MA, Dans LF et al (2013) Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst Rev CD001090
    1. Berlot G, Vassallo MC, Busetto N, et al. Effects of the timing of administration of IgM- and IgA-enriched intravenous polyclonal immunoglobulins on the outcome of septic shock patients. Ann Intensive Care. 2018;8:122. doi: 10.1186/s13613-018-0466-7.
    1. Parks T, Wilson C, Curtis N, et al. Polyspecific intravenous immunoglobulin in clindamycin-treated patients with streptococcal toxic shock syndrome: a systematic review and meta-analysis. Clin Infect Dis. 2018;67:1434–1436. doi: 10.1093/cid/ciy401.
    1. Kadri SS, Swihart BJ, Bonne SL, et al. Impact of intravenous immunoglobulin on survival in necrotizing fasciitis with vasopressor-dependent shock: a propensity score-matched analysis from 130 US hospitals. Clin Infect Dis. 2017;64:877–885.
    1. Madsen MB, Lange T, Hjortrup PB, et al. Immunoglobulin for necrotising soft tissue infections (INSTINCT): protocol for a randomised trial. Dan Med J. 2016;63:A5250.
    1. Reveiz L, Guerrero-Lozano R, Camacho A, et al. Stress ulcer, gastritis, and gastrointestinal bleeding prophylaxis in critically ill pediatric patients: a systematic review. Pediatr Crit Care Med. 2010;11:124–132. doi: 10.1097/PCC.0b013e3181b80e70.
    1. Jimenez J, Drees M, Loveridge-Lenza B, et al. Exposure to gastric acid-suppression therapy is associated with health care- and community-associated Clostridium difficile infection in children. J Pediatr Gastroenterol Nutr. 2015;61:208–211. doi: 10.1097/MPG.0000000000000790.
    1. Cook Deborah, Heyland Daren, Griffith Lauren, Cook Richard, Marshall John, Pagliarello Joe. Risk factors for clinically important upper gastrointestinal bleeding in patients requiring mechanical ventilation. Critical Care Medicine. 1999;27(12):2812–2817. doi: 10.1097/00003246-199912000-00034.
    1. Duerksen DR. Stress-related mucosal disease in critically ill patients. Best Pract Res Clin Gastroenterol. 2003;17:327–344. doi: 10.1016/S1521-6918(03)00028-3.
    1. Marik PE, Vasu T, Hirani A, et al. Stress ulcer prophylaxis in the new millennium: a systematic review and meta-analysis. Crit Care Med. 2010;38:2222–2228. doi: 10.1097/CCM.0b013e3181f17adf.
    1. Massicotte P, Julian JA, Gent M, PROTEKT Study Group et al. An open-label randomized controlled trial of low molecular weight heparin for the prevention of central venous line-related thrombotic complications in children: The PROTEKT trial. Thromb Res. 2003;109:101–108. doi: 10.1016/S0049-3848(03)00099-9.
    1. Brandao LR, Shah N, Shah PS (2014) Low molecular weight heparin for prevention of central venous catheterization-related thrombosis in children. Cochrane Database Syst Rev CD005982
    1. van Ommen CH, Heijboer H, Büller HR, et al. Venous thromboembolism in childhood: a prospective two-year registry in The Netherlands. J Pediatr. 2001;139:676–681. doi: 10.1067/mpd.2001.118192.
    1. Raffini L, Huang YS, Witmer C, et al. Dramatic increase in venous thromboembolism in children’s hospitals in the United States from 2001 to 2007. Pediatrics. 2009;124:1001–1008. doi: 10.1542/peds.2009-0768.
    1. Takemoto CM, Sohi S, Desai K, et al. Hospital-associated venous thromboembolism in children: incidence and clinical characteristics. J Pediatr. 2014;164:332–338. doi: 10.1016/j.jpeds.2013.10.025.

Source: PubMed

3
Předplatit