Using the Medical Research Council framework for development and evaluation of complex interventions in a low resource setting to develop a theory-based treatment support intervention delivered via SMS text message to improve blood pressure control

Kirsten Bobrow, Andrew Farmer, Nomazizi Cishe, Ntobeko Nwagi, Mosedi Namane, Thomas P Brennan, David Springer, Lionel Tarassenko, Naomi Levitt, Kirsten Bobrow, Andrew Farmer, Nomazizi Cishe, Ntobeko Nwagi, Mosedi Namane, Thomas P Brennan, David Springer, Lionel Tarassenko, Naomi Levitt

Abstract

Background: Several frameworks now exist to guide intervention development but there remains only limited evidence of their application to health interventions based around use of mobile phones or devices, particularly in a low-resource setting. We aimed to describe our experience of using the Medical Research Council (MRC) Framework on complex interventions to develop and evaluate an adherence support intervention for high blood pressure delivered by SMS text message. We further aimed to describe the developed intervention in line with reporting guidelines for a structured and systematic description.

Methods: We used a non-sequential and flexible approach guided by the 2008 MRC Framework for the development and evaluation of complex interventions.

Results: We reviewed published literature and established a multi-disciplinary expert group to guide the development process. We selected health psychology theory and behaviour change techniques that have been shown to be important in adherence and persistence with chronic medications. Semi-structured interviews and focus groups with various stakeholders identified ways in which treatment adherence could be supported and also identified key features of well-regarded messages: polite tone, credible information, contextualised, and endorsed by identifiable member of primary care facility staff. Direct and indirect user testing enabled us to refine the intervention including refining use of language and testing of interactive components.

Conclusions: Our experience shows that using a formal intervention development process is feasible in a low-resource multi-lingual setting. The process enabled us to pre-test assumptions about the intervention and the evaluation process, allowing the improvement of both. Describing how a multi-component intervention was developed including standardised descriptions of content aimed to support behaviour change will enable comparison with other similar interventions and support development of new interventions. Even in low-resource settings, funders and policy-makers should provide researchers with time and resources for intervention development work and encourage evaluation of the entire design and testing process.

Trial registration: The trial of the intervention is registered with South African National Clinical Trials Register number (SANCTR DOH-27-1212-386; 28/12/2012); Pan Africa Trial Register (PACTR201411000724141; 14/12/2013); ClinicalTrials.gov ( NCT02019823 ; 24/12/2013).

Keywords: Adherence; Behaviour modification; Health care; Intervention development; MRC framework; Self-management.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the Human Research Ethics Committee of the University of Cape Town (HREC UCT 418/211, 017/2014), the Oxford Tropical Research Ethics Committee (OXTREC 03–12, 13–14), and the Metro District Health Services, Western Cape (RP 141/2011). Trial conduct was overseen by a trial steering committee. All participants provided written informed consent. All the requirements of the Helsinki Declaration of 2008 were fulfilled.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Process of intervention development adapted from Smith et al. [20]
Fig. 2
Fig. 2
Hypothesised causal pathways and measures for evaluation for SMS text Adherence suppoRt (StAR) trial

References

    1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2224–2260. doi: 10.1016/S0140-6736(12)61766-8.
    1. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–1913. doi: 10.1016/S0140-6736(02)11911-8.
    1. Burnier M. Medication adherence and persistence as the cornerstone of effective antihypertensive therapy. Am J Hypertens. 2006;19(11):1190–1196. doi: 10.1016/j.amjhyper.2006.04.006.
    1. Viswanathan M, Golin CE, Jones CD, Ashok M, Blalock SJ, Wines RCM, et al. Interventions to improve adherence to self-administered medications for chronic diseases in the United States: a systematic review. Ann Intern Med. 2012;157(11):785–795. doi: 10.7326/0003-4819-157-11-201212040-00538.
    1. Gwadry-Sridhar FH, Manias E, Lal L, Salas M, Hughes DA, Ratzki-Leewing A, et al. Impact of interventions on medication adherence and blood pressure control in patients with essential hypertension: a systematic review by the ISPOR medication adherence and persistence special interest group. Value Health. 2013;16(5):863–871. doi: 10.1016/j.jval.2013.03.1631.
    1. Heron KE, Smyth JM. Ecological momentary interventions: incorporating mobile technology into psychosocial and health behaviour treatments. Br J Health Psychol. 2010;15(Pt 1):1–39. doi: 10.1348/135910709X466063.
    1. Free C, Phillips G, Galli L, Watson L, Felix L, Edwards P, et al. The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Med. 2013;10(1):e1001362. doi: 10.1371/journal.pmed.1001362.
    1. Beratarrechea A, Lee AG, Willner JM, Jahangir E, Ciapponi A, Rubinstein A. The impact of mobile health interventions on chronic disease outcomes in developing countries: a systematic review. Telemed J E Health. 2014;20(1):75–82. doi: 10.1089/tmj.2012.0328.
    1. Lester RT, Ritvo P, Mills EJ, Kariri A, Karanja S, Chung MH, et al. Effects of a mobile phone short message service on antiretroviral treatment adherence in Kenya (WelTel Kenya1): a randomised trial. Lancet. 2010;376(9755):1838–1845. doi: 10.1016/S0140-6736(10)61997-6.
    1. Mbuagbaw L, Thabane L, Ongolo-Zogo P, Lester RT, Mills EJ, Smieja M, et al. The Cameroon Mobile Phone SMS (CAMPS) Trial: A Randomized Trial of Text Messaging versus Usual Care for Adherence to Antiretroviral Therapy. PLoS ONE. 2012;7(12):e46909. 10.1371/journal.pone.0046909
    1. Yasmin F, Banu B, Zakir SM, Sauerborn R, Ali L, Souares A. Positive influence of short message service and voice call interventions on adherence and health outcomes in case of chronic disease care: a systematic review. BMC Med Inform Decis Mak. 2016;16(1):46. doi: 10.1186/s12911-016-0286-3.
    1. Adler AJ, Martin N, Mariani J, Tajer CD, Owolabi OO, Free C, et al. Mobile phone text messaging to improve medication adherence in secondary prevention of cardiovascular disease. In: The Cochrane Collaborationet al., editors. Cochrane database of systematic reviews. Chichester: Wiley; 2017.
    1. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ. 2014;348:g1687. doi: 10.1136/bmj.g1687.
    1. Michie S, Brown J, Geraghty AWA, Miller S, Yardley L, Gardner B, et al. Development of StopAdvisor. Transl Behav Med. 2012;2(3):263–275. doi: 10.1007/s13142-012-0135-6.
    1. Lakshman R, Griffin S, Hardeman W, Schiff A, Kinmonth AL, Ong KK. Using the Medical Research Council framework for the development and evaluation of complex interventions in a theory-based infant feeding intervention to prevent childhood obesity: the baby milk intervention and trial. J Obes. 2014;2014:646504. doi: 10.1155/2014/646504.
    1. Nhavoto JA, Grönlund Å, Chaquilla WP. SMSaúde: design, development, and implementation of a remote/mobile patient management system to improve retention in care for HIV/AIDS and tuberculosis patients. JMIR MHealth UHealth. 2015;3(1):e26. doi: 10.2196/mhealth.3854.
    1. Modi D, Gopalan R, Shah S, Venkatraman S, Desai G, Desai S, et al. Development and formative evaluation of an innovative mHealth intervention for improving coverage of community-based maternal, newborn and child health services in rural areas of India. Glob Health Action. 2015;8:26769. doi: 10.3402/gha.v8.26769.
    1. Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. BMJ. 2008;337:a1655. 10.1136/bmj.a1655.
    1. Paul G, Smith SM, Whitford D, O’Kelly F, O’Dowd T. Development of a complex intervention to test the effectiveness of peer support in type 2 diabetes. BMC Health Serv Res. 2007;7(1):136. doi: 10.1186/1472-6963-7-136.
    1. Smith SM, Murchie P, Devereux G, Johnston M, Lee AJ, Macleod U, et al. Developing a complex intervention to reduce time to presentation with symptoms of lung cancer. Br J Gen Pract. 2012;62(602):e605–e615. doi: 10.3399/bjgp12X654579.
    1. Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W, et al. Process evaluation of complex interventions: Medical Research Council guidance. BMJ. 2015;350:h1258. doi: 10.1136/bmj.h1258.
    1. Nieuwlaat R, Wilczynski N, Navarro T, Hobson N, Jeffery R, Keepanasseril A, et al. Interventions for enhancing medication adherence. Cochrane Database Syst Rev. 2014;11:CD000011.
    1. Márquez Contreras E, de la Figuera von Wichmann M, Gil Guillén V, Ylla-Catalá A, Figueras M, Balaña M, et al. Effectiveness of an intervention to provide information to patients with hypertension as short text messages and reminders sent to their mobile phone (HTA-Alert) Atencion Primaria. 2004;34(8):399–405. doi: 10.1016/S0212-6567(04)78922-2.
    1. Márquez Contreras E, Vegazo García O, Martel Claros N, Gil Guillén V, de la Figuera v, Wichmann M, Casado Martínez JJ, et al. Efficacy of telephone and mail intervention in patient compliance with antihypertensive drugs in hypertension. ETECUM-HTA study. Blood Press. 2005;14(3):151–158. doi: 10.1080/08037050510008977.
    1. Morikawa N, Yamasue K, Tochikubo O, Mizushima S. Effect of salt reduction intervention program using an electronic salt sensor and cellular phone on blood pressure among hypertensive workers. Clin Exp Hypertens. 2011;33(4):216–222. doi: 10.3109/10641963.2011.583966.
    1. de Jongh T, Gurol-Urganci I, Vodopivec-Jamsek V, Car J, Atun R. Mobile phone messaging for facilitating self-management of long-term illnesses. Cochrane Database Syst Rev. 2012;12:CD007459.
    1. Buhi ER, Trudnak TE, Martinasek MP, Oberne AB, Fuhrmann HJ, McDermott RJ. Mobile phone-based behavioural interventions for health: a systematic review. Health Educ J. 2012; 10.1177/0017896912452071.
    1. Carrasco MP, Salvador CH, Sagredo PG, Márquez-Montes J, González de Mingo MA, Fragua JA, et al. Impact of patient-general practitioner short-messages-based interaction on the control of hypertension in a follow-up service for low-to-medium risk hypertensive patients: a randomized controlled trial. IEEE Trans Inf Technol Biomed. 2008;12(6):780–791. doi: 10.1109/TITB.2008.926429.
    1. Blasco A, Carmona M, Fernández-Lozano I, Salvador CH, Pascual M, Sagredo PG, et al. Evaluation of a telemedicine service for the secondary prevention of coronary artery disease. J Cardiopulm Rehabil Prev. 2012;32(1):25–31. doi: 10.1097/HCR.0b013e3182343aa7.
    1. Logan AG, Irvine MJ, McIsaac WJ, Tisler A, Rossos PG, Easty A, et al. Effect of home blood pressure telemonitoring with self-care support on uncontrolled systolic hypertension in diabetics. Hypertension. 2012;60(1):51–57. doi: 10.1161/HYPERTENSIONAHA.111.188409.
    1. McKinstry B, Hanley J, Wild S, Pagliari C, Paterson M, Lewis S, et al. Telemonitoring based service redesign for the management of uncontrolled hypertension: multicentre randomised controlled trial. BMJ. 2013;346:f3030. doi: 10.1136/bmj.f3030.
    1. Mayosi BM, Lawn JE, van Niekerk A, Bradshaw D, Abdool Karim SS, Coovadia HM. Health in South Africa: changes and challenges since 2009. Lancet. 2012;380(9858):2029–2043. doi: 10.1016/S0140-6736(12)61814-5.
    1. Ataguba JE-O, Day C, McIntyre D. Explaining the role of the social determinants of health on health inequality in South Africa. Glob Health Action. 2015;8:28665. 10.3402/gha.v8.28865.
    1. Wilkinson D, Gouws E, Sach M, Karim SS. Effect of removing user fees on attendance for curative and preventive primary health care services in rural South Africa. Bull World Health Organ. 2001;79(7):665–671.
    1. Seedat Y, Rayner B, Veriava Y. South African hypertension practice guideline 2014. Cardiovasc J Afr. 2014;25(6):288–294. doi: 10.5830/CVJA-2014-062.
    1. Essential Drugs Programme (EDP) [Internet]. [cited 2017 Jun 21]. Available from:
    1. de Josselin de Jong S, Candel M, Segaar D, Cremers H-P, de Vries H. Efficacy of a web-based computer-tailored smoking prevention intervention for Dutch adolescents: randomized controlled trial. J Med Internet Res. 2014;16(3):e82. 10.2196/jmir.2469.
    1. Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):81–95. doi: 10.1007/s12160-013-9486-6.
    1. Healthcare 2030: A Future Health Service for the Western Cape [Internet]. Western Cape Government. [cited 2017 Jun 21]. Available from:
    1. Chronic Care [Internet]. Western Cape Government. [cited 2017 Jun 21]. Available from:
    1. Stewart S, Carrington MJ, Pretorius S, Ogah OS, Blauwet L, Antras-Ferry J, et al. Elevated risk factors but low burden of heart disease in urban African primary care patients: a fundamental role for primary prevention. Int J Cardiol. 2012;158(2):205–210. doi: 10.1016/j.ijcard.2011.01.022.
    1. Schroeder K, Fahey T, Ebrahim S. Interventions for improving adherence to treatment in patients with high blood pressure in ambulatory settings. Cochrane Database Syst Rev. 2004. .
    1. Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA, et al. Blood pressure, stroke, and coronary heart disease. Part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet. 1990;335(8693):827–838. doi: 10.1016/0140-6736(90)90944-Z.
    1. Tibazarwa K, Ntyintyane L, Sliwa K, Gerntholtz T, Carrington M, Wilkinson D, et al. A time bomb of cardiovascular risk factors in South Africa: results from the heart of Soweto study ‘heart awareness days’. Int J Cardiol. 2009;132(2):233–239. doi: 10.1016/j.ijcard.2007.11.067.
    1. Finitsis DJ, Pellowski JA, Johnson BT. Text message intervention designs to promote adherence to antiretroviral therapy (ART): a meta-analysis of randomized controlled trials. PLoS One. 2014;9(2):e88166. doi: 10.1371/journal.pone.0088166.
    1. Free C, Knight R, Robertson S, Whittaker R, Edwards P, Zhou W, et al. Smoking cessation support delivered via mobile phone text messaging (txt2stop): a single-blind, randomised trial. Lancet. 2011;378(9785):49–55. doi: 10.1016/S0140-6736(11)60701-0.
    1. Leon N, Surender R, Bobrow K, Muller J, Farmer A. Improving treatment adherence for blood pressure lowering via mobile phone SMS-messages in South Africa: a qualitative evaluation of the SMS-text Adherence SuppoRt (StAR) trial. BMC Fam Pract. 2015;16(1):80. doi: 10.1186/s12875-015-0289-7.
    1. Bobrow K, Brennan T, Springer D, Levitt NS, Rayner B, Namane M, et al. Efficacy of a text messaging (SMS) based intervention for adults with hypertension: protocol for the StAR (SMS Text-message Adherence suppoRt trial) randomised controlled trial. BMC Public Health. 2014;14(1):28. doi: 10.1186/1471-2458-14-28.
    1. Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health. 1999;89(9):1322–1327. doi: 10.2105/AJPH.89.9.1322.
    1. Spoth R, Rohrbach LA, Greenberg M, Leaf P, Brown CH, Fagan A, et al. Addressing Core challenges for the next generation of type 2 translation research and systems: the translation science to population impact (TSci impact) framework. Prev Sci. 2013;14(4):319–351. doi: 10.1007/s11121-012-0362-6.
    1. Crosby R, Noar SM. What is a planning model? An introduction to PRECEDE-PROCEED. J Public Health Dent. 2011;71(Suppl 1):S7–15. doi: 10.1111/j.1752-7325.2011.00235.x.
    1. Rubinstein A, Miranda JJ, Beratarrechea A, Diez-Canseco F, Kanter R, Gutierrez L, et al. Effectiveness of an mHealth intervention to improve the cardiometabolic profile of people with prehypertension in low-resource urban settings in Latin America: a randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4(1):52–63. doi: 10.1016/S2213-8587(15)00381-2.
    1. Lau YK, Cassidy T, Hacking D, Brittain K, Haricharan HJ, Heap M. Antenatal health promotion via short message service at a midwife obstetrics unit in South Africa: a mixed methods study. BMC Pregnancy Childbirth. 2014;14:284. doi: 10.1186/1471-2393-14-284.

Source: PubMed

3
Předplatit