Changes in bone marrow lesions in response to weight-loss in obese knee osteoarthritis patients: a prospective cohort study

Henrik Gudbergsen, Mikael Boesen, Robin Christensen, Else Marie Bartels, Marius Henriksen, Bente Danneskiold-Samsøe, Henning Bliddal, Henrik Gudbergsen, Mikael Boesen, Robin Christensen, Else Marie Bartels, Marius Henriksen, Bente Danneskiold-Samsøe, Henning Bliddal

Abstract

Background: Patients are susceptible for knee osteoarthritis (KOA) with increasing age and obesity and KOA is expected to become a major disabling disease in the future. An important feature of KOA on magnetic resonance imaging (MRI) is changes in the subchondral bone, bone marrow lesions (BMLs), which are related to the future degeneration of the knee joint as well as prevalent clinical symptoms. The aim of this study was to investigate the changes in BMLs after a 16-week weight-loss period in obese subjects with KOA and relate changes in BMLs to the effects of weight-loss on clinical symptoms.

Methods: This prospective cohort study included patients with a body mass index ≥ 30 kg/m2, an age ≥ 50 years and primary KOA. Patients underwent a 16 weeks supervised diet program which included formula products and dietetic counselling (ClinicalTrials.gov: NCT00655941). BMLs in tibia and femur were assessed on MRI before and after the weight-loss using the Boston-Leeds Osteoarthritis Knee Score. Response to weight-loss in BML scores was dichotomised to patients experiencing a decrease in BML scores (responders) and patients who did not (non-responders). The association of BMLs to weight-loss was assessed by logistic regressions and correlation analyses.

Results: 39 patients (23%) were classified as responders in the sum of all BML size scores whereas 130 patients (77%) deteriorated or remained stable and were categorized as non-responders. Logistic regression analyses revealed no association between weight-loss < or ≥ 10% and response in BMLs in the most affected compartment (OR 1.86 [CI 0.66 to 5.26, p=0.24]). There was no association between weight-loss and response in maximum BML score (OR 1.13 [CI 0.39 to 3.28, p=0.81]). The relationship between changes in BMLs and clinical symptoms revealed that an equal proportion of patients classified as BML responders and non-responders experienced an OMERACT-OARSI response (69 vs. 71%, p=0.86).

Conclusions: Weight-loss did not improve the sum of tibiofemoral BML size scores or the maximum tibiofemoral BML score, suggesting that BMLs do not respond to a rapidly decreased body weight. The missing relationship between clinical symptoms and BMLs calls for further investigation.

Figures

Figure 1
Figure 1
The relationship between weight-loss and changes in medial tibiofemoral BML size scores.

References

    1. Dillon CF, Rasch EK, Gu Q, Hirsch R. Prevalence of knee osteoarthritis in the United States: arthritis data from the Third National Health and Nutrition Examination Survey 1991–94. J Rheumatol. 2006;33:2271–2279.
    1. Lohmander LS, Gerhardsson D, Rollof J, Nilsson PM, Engstrom G. Incidence of severe knee and hip osteoarthritis in relation to different measures of body mass: a population-based prospective cohort study. Ann Rheum Dis. 2009;68:490–496. doi: 10.1136/ard.2008.089748.
    1. Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ. 2003;81:646–656.
    1. Blagojevic M, Jinks C, Jeffery A, Jordan KP. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthr Cartil. 2010;18:24–33. doi: 10.1016/j.joca.2009.08.010.
    1. Felson DT, Zhang Y, Anthony JM, Naimark A, Anderson JJ. Weight loss reduces the risk for symptomatic knee osteoarthritis in women. The Framingham Study. Ann Intern Med. 1992;116:535–539.
    1. Jinks C, Jordan K, Croft P. Disabling knee pain–another consequence of obesity: results from a prospective cohort study. BMC Publ Health. 2006;6:258. doi: 10.1186/1471-2458-6-258.
    1. Messier SP, Loeser RF, Miller GD, Morgan TM, Rejeski WJ, Sevick MA. Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: the Arthritis, Diet, and Activity Promotion Trial. Arthritis Rheum. 2004;50:1501–1510. doi: 10.1002/art.20256.
    1. Christensen R, Astrup A, Bliddal H. Weight loss: the treatment of choice for knee osteoarthritis? A randomized trial. Osteoarthr Cartil. 2005;13:20–27. doi: 10.1016/j.joca.2004.10.008.
    1. Gudbergsen H, Boesen M, Christensen R, Astrup A, Bliddal H. Radiographs and low field MRI (0.2T) as predictors of efficacy in a weight loss trial in obese women with knee osteoarthritis. BMC Musculoskelet Disord. 2011;12:56. doi: 10.1186/1471-2474-12-56.
    1. Gudbergsen H, Boesen M, Lohmander LS, Christensen R, Henriksen M, Bartels EM. Weight loss is effective for symptomatic relief in obese subjects with knee osteoarthritis independently of joint damage severity assessed by high-field MRI and radiography. Osteoarthr Cartil. 2012;20:495–502. doi: 10.1016/j.joca.2012.02.639.
    1. Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score) Ann Rheum Dis. 2008;67:206–211. doi: 10.1136/ard.2006.066183.
    1. Hill CL, Hunter DJ, Niu J, Clancy M, Guermazi A, Genant H. Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis. 2007;66:1599–1603. doi: 10.1136/ard.2006.067470.
    1. Felson DT, Chaisson CE, Hill CL, Totterman SM, Gale ME, Skinner KM. The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med. 2001;134:541–549.
    1. Hunter DJ, March L, Sambrook PN. The association of cartilage volume with knee pain. Osteoarthr Cartil. 2003;11:725–729. doi: 10.1016/S1063-4584(03)00160-2.
    1. Cicuttini FM, Jones G, Forbes A, Wluka AE. Rate of cartilage loss at two years predicts subsequent total knee arthroplasty: a prospective study. Ann Rheum Dis. 2004;63:1124–1127. doi: 10.1136/ard.2004.021253.
    1. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000;133:635–646.
    1. McAlindon TE, Cooper C, Kirwan JR, Dieppe PA. Determinants of disability in osteoarthritis of the knee. Ann Rheum Dis. 1993;52:258–262. doi: 10.1136/ard.52.4.258.
    1. Dore D, Martens A, Quinn S, Ding CH, Winzenberg T, Zhai GJ. Bone marrow lesions predict site-specific cartilage defect development and volume loss: a prospective study in older adults. Arthritis Res Ther. 2010. p. 12.
    1. Felson DT, McLaughlin S, Goggins J, LaValley MP, Gale ME, Totterman S. Bone marrow edema and its relation to progression of knee osteoarthritis. Ann Intern Med. 2003;139:330–336.
    1. Yusuf E, Kortekaas MC, Watt I, Huizinga TW, Kloppenburg M. Do knee abnormalities visualised on MRI explain knee pain in knee osteoarthritis? A systematic review. Ann Rheum Dis. 2011;70:60–67. doi: 10.1136/ard.2010.131904.
    1. Hayashi D, Englund M, Roemer FW, Niu J, Sharma L, Felson DT. Knee malalignment is associated with an increased risk for incident and enlarging bone marrow lesions in the more loaded compartments: the MOST study. Osteoarthr Cartil. 2012;20:1227–1233. doi: 10.1016/j.joca.2012.07.020.
    1. Riecke BF, Christensen R, Christensen P, Leeds AR, Boesen M, Lohmander LS. Comparing two low-energy diets for the treatment of knee osteoarthritis symptoms in obese patients: a pragmatic randomized clinical trial. Osteoarthr Cartil. 2010.
    1. Altman RD. Criteria for the classification of osteoarthritis of the knee and hip. Scand J Rheumatol Suppl. 1987;65:31–39.
    1. Crema MD, Roemer FW, Marra MD, Guermazi A. Magnetic resonance imaging assessment of subchondral bone and soft tissues in knee osteoarthritis. Rheum Dis Clin North Am. 2009;35:557–577. doi: 10.1016/j.rdc.2009.08.003.
    1. Eckstein F, Sittek H, Milz S, Putz R, Reiser M. The morphology of articular cartilage assessed by magnetic resonance imaging (MRI). Reproducibility and anatomical correlation. Surg Radiol Anat. 1994;16:429–438. doi: 10.1007/BF01627667.
    1. Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology. 1996;198:209–212.
    1. Rosset A, Spadola L, Ratib O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J Digit Imaging. 2004;17:205–216. doi: 10.1007/s10278-004-1014-6.
    1. Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthr Cartil. 2007;15:A1–56.
    1. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502. doi: 10.1136/ard.16.4.494.
    1. Hart DJ, Spector TD. The classification and assessment of osteoarthritis. Baillieres Clin Rheumatol. 1995;9:407–432. doi: 10.1016/S0950-3579(05)80198-0.
    1. Mundermann A, Dyrby CO, Andriacchi TP. A comparison of measuring mechanical axis alignment using three-dimensional position capture with skin markers and radiographic measurements in patients with bilateral medial compartment knee osteoarthritis. Knee. 2008;15:480–485. doi: 10.1016/j.knee.2008.07.002.
    1. Lund H, Sondergaard K, Zachariassen T, Christensen R, Bulow P, Henriksen M. Learning effect of isokinetic measurements in healthy subjects, and reliability and comparability of Biodex and Lido dynamometers. Clin Physiol Funct Imaging. 2005;25:75–82. doi: 10.1111/j.1475-097X.2004.00593.x.
    1. Gudbergsen H, Bartels EM, Krusager P, Waehrens EE, Christensen R, Nneskiold-Samsoe B. Test-retest of computerized health status questionnaires frequently used in the monitoring of knee osteoarthritis: a randomized crossover trial. BMC Musculoskelet Disord. 2011;12:190. doi: 10.1186/1471-2474-12-190.
    1. Pham T, der HD V, Altman RD, Anderson JJ, Bellamy N, Hochberg M. OMERACT-OARSI initiative: Osteoarthritis Research Society International set of responder criteria for osteoarthritis clinical trials revisited. Osteoarthr Cartil. 2004;12:389–399. doi: 10.1016/j.joca.2004.02.001.
    1. Roos EM, Roos HP, Ekdahl C, Lohmander LS. Knee injury and Osteoarthritis Outcome Score (KOOS)–validation of a Swedish version. Scand J Med Sci Sports. 1998;8:439–448.
    1. Nguyen TV, Eisman JA. Assessment of significant change in BMD: a new approach. J Bone Miner Res. 2000;15:369–372.
    1. Dore D, Quinn S, Ding CH, Winzenberg T, Zhai GJ, Cicuttini F. Natural history and clinical significance of MRI-detected bone marrow lesions at the knee: a prospective study in community dwelling older adults. Arthritis Res Ther. 2010. p. 12.
    1. Hayes CW, Conway WF, Sundaram M. Misleading aggressive MR imaging appearance of some benign musculoskeletal lesions. RadioGraphics. 1992;12:1119–1134.
    1. Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology. 2000;215:835–840.
    1. Lo GH, McAlindon TE, Niu J, Zhang Y, Beals C, Dabrowski C. Bone marrow lesions and joint effusion are strongly and independently associated with weight-bearing pain in knee osteoarthritis: data from the osteoarthritis initiative. Osteoarthr Cartil. 2009.
    1. Torres L, Dunlop DD, Peterfy C, Guermazi A, Prasad P, Hayes KW. The relationship between specific tissue lesions and pain severity in persons with knee osteoarthritis. Osteoarthr Cartil. 2006;14:1033–1040. doi: 10.1016/j.joca.2006.03.015.
    1. Kornaat PR, Kloppenburg M, Sharma R, Botha-Scheepers SA, Le Graverand MP, Coene LN. Bone marrow edema-like lesions change in volume in the majority of patients with osteoarthritis; associations with clinical features. Eur Radiol. 2007;17:3073–3078. doi: 10.1007/s00330-007-0711-1.
    1. Hunter DJ, Zhang Y, Niu J, Goggins J, Amin S, LaValley MP. Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 2006;54:1529–1535. doi: 10.1002/art.21789.
    1. Felson DT, Parkes MJ, Marjanovic EJ, Callaghan M, Gait A, Cootes T. Bone marrow lesions in knee osteoarthritis change in 6–12 weeks. Osteoarthr Cartil. 2012;20:1514–1518. doi: 10.1016/j.joca.2012.08.020.
    1. Zhang Y, Nevitt M, Niu J, Lewis C, Torner J, Guermazi A. Fluctuation of knee pain and changes in bone marrow lesions, effusions, and synovitis on magnetic resonance imaging. Arthritis Rheum. 2011;63:691–699. doi: 10.1002/art.30148.
    1. Orita S, Koshi T, Mitsuka T, Miyagi M, Inoue G, Arai G. Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee. BMC Musculoskelet Disord. 2011;12:144. doi: 10.1186/1471-2474-12-144.
    1. Griffin TM, Fermor B, Huebner JL, Kraus VB, Rodriguiz RM, Wetsel WC. Diet-induced obesity differentially regulates behavioral, biomechanical, and molecular risk factors for osteoarthritis in mice. Arthritis Res Ther. 2010;12:R130. doi: 10.1186/ar3068.
    1. Bennell K, Creaby M, Wrigley T, Bowles K-A, Hinman R, Cicuttini F. The relation of dynamic mechanical loading to bone marrow lesions in medial knee osteoarthritis. QC Canada: Osteoarthritis and Cartilage Conference: 2009 World Congress on Osteoarthritis Montreal; 2009. pp. S86–S87.
    1. McDougall JJ. Arthritis and pain. Neurogenic origin of joint pain. Arthritis Res Ther. 2006;8:220. doi: 10.1186/ar2069.
    1. Gwilym SE, Keltner JR, Warnaby CE, Carr AJ, Chizh B, Chessell I. Psychophysical and functional imaging evidence supporting the presence of central sensitization in a cohort of osteoarthritis patients. Arthritis Rheum. 2009;61:1226–1234. doi: 10.1002/art.24837.
    1. Keefe FJ, Somers TJ. Psychological approaches to understanding and treating arthritis pain. Nat Rev Rheumatol. 2010;6:210–216. doi: 10.1038/nrrheum.2010.22.
    1. Wager TD. Expectations and anxiety as mediators of placebo effects in pain. Pain. 2005;115:225–226. doi: 10.1016/j.pain.2005.03.018.
    1. Hunter DJ, Guermazi A, Lo GH, Grainger AJ, Conaghan PG, Boudreau RM. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score) Osteoarthr Cartil. 2011.
    1. Reichmann WM, Maillefert JF, Hunter DJ, Katz JN, Conaghan PG, Losina E. Responsiveness to change and reliability of measurement of radiographic joint space width in osteoarthritis of the knee: a systematic review. Osteoarthr Cartil. 2011.
    1. Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthr Cartil. 2008.
    1. Lynch JA, Roemer FW, Nevitt MC, Felson DT, Niu J, Eaton CB. Comparison of BLOKS and WORMS scoring systems part I. Cross sectional comparison of methods to assess cartilage morphology, meniscal damage and bone marrow lesions on knee MRI: Data from the osteoarthritis initiative. Osteoarthr Cartil. 2010;18:1393–1401. doi: 10.1016/j.joca.2010.08.017.
    1. Dore D, De HJ, Giles G, Ding C, Cicuttini F, Jones G. A longitudinal study of the association between dietary factors, serum lipids, and bone marrow lesions of the knee. Arthritis Res Ther. 2012;14:R13. doi: 10.1186/ar3689.
    1. Meredith DS, Losina E, Neumann G, Yoshioka H, Lang PK, Katz JN. Empirical evaluation of the inter-relationship of articular elements involved in the pathoanatomy of knee osteoarthritis using magnetic resonance imaging. BMC Musculoskelet Disord. 2009;10:133. doi: 10.1186/1471-2474-10-133.
    1. Hernandez-Molina G, Neogi T, Hunter DJ, Niu J, Guermazi A, Reichenbach S. The association of bone attrition with knee pain and other MRI features of osteoarthritis. Ann Rheum Dis. 2008;67:43–47. doi: 10.1136/ard.2007.070565.

Source: PubMed

3
Předplatit