No Dose Adjustment for Isavuconazole Based on Age or Sex

Amit V Desai, David Han, Donna L Kowalski, Christopher Lademacher, Helene Pearlman, Takao Yamazaki, Amit V Desai, David Han, Donna L Kowalski, Christopher Lademacher, Helene Pearlman, Takao Yamazaki

Abstract

This phase 1, open-label, single-dose, parallel-group study evaluated the pharmacokinetics (PK) of isavuconazole after a single oral dose of the prodrug isavuconazonium sulfate in healthy nonelderly (age, 18 to 45 years) and elderly (age, ≥65 years) males and females. Overall, 48 subjects were enrolled in the study (n =12 each in groups of nonelderly males and females and elderly males and females). All subjects received a single oral dose of 372 mg of isavuconazonium sulfate (equivalent to 200 mg isavuconazole). PK samples were collected for analysis of isavuconazole plasma concentrations from the predose time point up to 336 h postdose. Data were analyzed using population pharmacokinetic (PPK) analysis. The resulting PPK model included two compartments with Weibull absorption function as well as interindividual variability with respect to clearance, intercompartment clearance, volumes of central and peripheral compartments, and two Weibull absorption parameters, RA and KAMAX. The PPK analysis showed that elderly females had the highest exposure versus males (ratio of total area under the time-concentration curve [AUC], 138; 90% confidence interval [CI], 118 to 161) and versus nonelderly females (ratio of AUC, 147; 90% CI, 123 to 176). Higher exposures in elderly females were not associated with significant toxicity or treatment-emergent adverse events, as measured in this study. No dose adjustments appear to be necessary based on either age group or sex even with an increase in exposure for elderly females. (This study has been registered at ClinicalTrials.gov under registration no. NCT01657890.).

Keywords: age; isavuconazole; pharmacokinetics; sex.

Copyright © 2019 Desai et al.

Figures

FIG 1
FIG 1
Means ± standard deviations of plasma concentrations of isavuconazole by age group and sex in the pharmacokinetic analysis set. The inset shows an expanded 0-to-48-h interval.
FIG 2
FIG 2
Isavuconazole clearance values for the different groups based on age and sex in subjects from the pharmacokinetic analysis set. Boxes represent medians and 25th and 75th percentiles, whiskers represent 1.5× the interquartile range, solid gray circles represent means, and open circles represent outliers. CL, clearance.
FIG 3
FIG 3
Isavuconazole clearance values from the two-compartment model in the pharmacokinetic analysis set. Boxes represent medians and 25th and 75th percentiles, whiskers represent 1.5× the interquartile range, solid gray circles represent means, and open circles represent outliers. CL, clearance.

References

    1. Midlöv P. 2013. Pharmacokinetics and pharmacodynamics in the elderly. OA Elderly Med 1:1.
    1. Kauffman CA. 2001. Fungal infections in older adults. Clin Infect Dis 33:550–555. doi:10.1086/322685.
    1. Lass-Florl C. 2011. Triazole antifungal agents in invasive fungal infections: a comparative review. Drugs 71:2405–2419. doi:10.2165/11596540-000000000-00000.
    1. Livermore J, Hope W. 2012. Evaluation of the pharmacokinetics and clinical utility of isavuconazole for treatment of invasive fungal infections. Expert Opin Drug Metab Toxicol 8:759–765. doi:10.1517/17425255.2012.683859.
    1. Miceli MH, Kauffman CA. 2015. Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin Infect Dis 61:1558–1565. doi:10.1093/cid/civ571.
    1. Maertens JA, Raad II, Marr KA, Patterson TF, Kontoyiannis DP, Cornely OA, Bow EJ, Rahav G, Neofytos D, Aoun M, Baddley JW, Giladi M, Heinz WJ, Herbrecht R, Hope W, Karthaus M, Lee DG, Lortholary O, Morrison VA, Oren I, Selleslag D, Shoham S, Thompson GR III, Lee M, Maher RM, Schmitt-Hoffmann AH, Zeiher B, Ullmann AJ. 2016. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. Lancet 387:760–769. doi:10.1016/S0140-6736(15)01159-9.
    1. Marty FM, Ostrosky-Zeichner L, Cornely OA, Mullane KM, Perfect JR, Thompson GR, Alangaden GJ, Brown JM, Fredricks DN, Heinz WJ, Herbrecht R, Klimko N, Klyasova G, Maertens JA, Melinkeri SR, Oren I, Pappas PG, Ráčil Z, Rahav G, Santos R, Schwartz S, Vehreschild JJ, Young J-AH, Chetchotisakd P, Jaruratanasirikul S, Kanj SS, Engelhardt M, Kaufhold A, Ito M, Lee M, Sasse C, Maher RM, Zeiher B, Vehreschild MJGT; VITAL and FungiScope Mucormycosis Investigators. 2016. Isavuconazole treatment for mucormycosis: a single-arm open-label trial and case-control analysis. Lancet Infect Dis 16:828–837. doi:10.1016/S1473-3099(16)00071-2.
    1. Astellas US Pharma Inc. 2015. CRESEMBA (isavuconazonium sulfate) prescribing information, on US FDA. . Accessed 23 February 2016.
    1. European Medicines Agency. 2015. Cresemba (isavuconazole). . Accessed 23 February 2016.
    1. Desai A, Kovanda L, Kowalski D, Lu Q, Townsend R, Bonate PL. 2016. Population pharmacokinetics of isavuconazole from phase 1 and phase 3 (SECURE) trials in adults and target attainment in patients with invasive infections due to Aspergillus and other filamentous fungi. Antimicrob Agents Chemother 60:5483–5491. doi:10.1128/AAC.02819-15.
    1. Desai A, Schmitt-Hoffmann AH, Mujais S, Townsend R. 2016. Population pharmacokinetics of isavuconazole in subjects with mild or moderate hepatic impairment. Antimicrob Agents Chemother 60:3025–3031. doi:10.1128/AAC.02942-15.
    1. Kovanda LL, Desai AV, Lu Q, Townsend RW, Akhtar S, Bonate P, Hope WW. 2016. Isavuconazole population pharmacokinetic analysis using nonparametric estimation in patients with invasive fungal disease (results from the VITAL study). Antimicrob Agents Chemother 60:4568–4576. doi:10.1128/AAC.00514-16.
    1. Townsend RW, Akhtar S, Alcorn H, Berg JK, Kowalski DL, Mujais S, Desai AV. 2017. Phase I trial to investigate the effect of renal impairment on isavuconazole pharmacokinetics. Eur J Clin Pharmacol 73:669–678. doi:10.1007/s00228-017-2213-7.
    1. Theuretzbacher U, Ihle F, Derendorf H. 2006. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet 45:649–663. doi:10.2165/00003088-200645070-00002.
    1. Lepak AJ, Andes DR. 2014. Antifungal pharmacokinetics and pharmacodynamics. Cold Spring Harb Perspect Med 5:a019653. doi:10.1101/cshperspect.a019653.
    1. Lestner J, Hope WW. 2013. Itraconazole: an update on pharmacology and clinical use for treatment of invasive and allergic fungal infections. Expert Opin Drug Metab Toxicol 9:911–926. doi:10.1517/17425255.2013.794785.
    1. Dolton MJ, McLachlan AJ. 2014. Voriconazole pharmacokinetics and exposure-response relationships: assessing the links between exposure, efficacy and toxicity. Int J Antimicrob Agents 44:183–193. doi:10.1016/j.ijantimicag.2014.05.019.
    1. Bellmann R. 2013. Pharmacodynamics and pharmacokinetics of antifungals for treatment of invasive aspergillosis. Curr Pharm Des 19:3629–3647. doi:10.2174/13816128113199990332.
    1. Liu P, Mould DR. 2014. Population pharmacokinetic-pharmacodynamic analysis of voriconazole and anidulafungin in adult patients with invasive aspergillosis. Antimicrob Agents Chemother 58:4727–4736. doi:10.1128/AAC.02809-13.
    1. Dolton MJ, Bruggemann RJ, Burger DM, McLachlan AJ. 2014. Understanding variability in posaconazole exposure using an integrated population pharmacokinetic analysis. Antimicrob Agents Chemother 58:6879–6885. doi:10.1128/AAC.03777-14.
    1. Sansone-Parsons A, Krishna G, Simon J, Soni P, Kantesaria B, Herron J, Stoltz R. 2007. Effects of age, gender, and race/ethnicity on the pharmacokinetics of posaconazole in healthy volunteers. Antimicrob Agents Chemother 51:495–502. doi:10.1128/AAC.00472-06.

Source: PubMed

3
Předplatit