Effect of Biannual Mass Azithromycin Distributions to Preschool-Aged Children on Trachoma Prevalence in Niger: A Cluster Randomized Clinical Trial

Ahmed M Arzika, Dallas Mindo-Panusis, Amza Abdou, Boubacar Kadri, Beido Nassirou, Ramatou Maliki, Amer F Alsoudi, Tianyi Zhang, Sun Y Cotter, Elodie Lebas, Kieran S O'Brien, E Kelly Callahan, Robin L Bailey, Sheila K West, E Brook Goodhew, Diana L Martin, Benjamin F Arnold, Travis C Porco, Thomas M Lietman, Jeremy D Keenan, Macrolides Oraux pour Réduire les Décés Avec un Oeil sur la Resistance (MORDOR)–Niger Study Group, Paul M Emerson, Huub Gelderblom, P J Hooper, Jerusha Weaver, Sheila K West, Robin L Bailey, John Hart, Amza Abdou, Nassirou Beido, Boubacar Kadri, Maria M Ali, Mankara K Alio, Ahmed Arzika, Nameywa Boubacar, E Kelly Callahan, Sanoussi Elh Adamou, Nana Fatima Galo, Fatima Ibrahim, Salissou Kane, Mariama Kiemago, Ramatou Maliki, Aisha E Stewart, Cindi Chen, Catherine Cook, Sun Y Cotter, Thuy Doan, Bruce D Gaynor, Armin Hinterwirth, Jeremy D Keenan, Elodie Lebas, Thomas M Lietman, Ying Lin, Kieran S O'Brien, Catherine E Oldenburg, Travis C Porco, David A Ramirez, Kathryn J Ray, Philip J Rosenthal, George W Rutherford, Benjamin Vanderschelden, Nicole E Varnado, John P Whitcher, Dionna M Wittberg, Lee Worden, Lina Zhong, Zhaoxia Zhou, Ahmed M Arzika, Dallas Mindo-Panusis, Amza Abdou, Boubacar Kadri, Beido Nassirou, Ramatou Maliki, Amer F Alsoudi, Tianyi Zhang, Sun Y Cotter, Elodie Lebas, Kieran S O'Brien, E Kelly Callahan, Robin L Bailey, Sheila K West, E Brook Goodhew, Diana L Martin, Benjamin F Arnold, Travis C Porco, Thomas M Lietman, Jeremy D Keenan, Macrolides Oraux pour Réduire les Décés Avec un Oeil sur la Resistance (MORDOR)–Niger Study Group, Paul M Emerson, Huub Gelderblom, P J Hooper, Jerusha Weaver, Sheila K West, Robin L Bailey, John Hart, Amza Abdou, Nassirou Beido, Boubacar Kadri, Maria M Ali, Mankara K Alio, Ahmed Arzika, Nameywa Boubacar, E Kelly Callahan, Sanoussi Elh Adamou, Nana Fatima Galo, Fatima Ibrahim, Salissou Kane, Mariama Kiemago, Ramatou Maliki, Aisha E Stewart, Cindi Chen, Catherine Cook, Sun Y Cotter, Thuy Doan, Bruce D Gaynor, Armin Hinterwirth, Jeremy D Keenan, Elodie Lebas, Thomas M Lietman, Ying Lin, Kieran S O'Brien, Catherine E Oldenburg, Travis C Porco, David A Ramirez, Kathryn J Ray, Philip J Rosenthal, George W Rutherford, Benjamin Vanderschelden, Nicole E Varnado, John P Whitcher, Dionna M Wittberg, Lee Worden, Lina Zhong, Zhaoxia Zhou

Abstract

Importance: Because transmission of ocular strains of Chlamydia trachomatis is greatest among preschool-aged children, limiting azithromycin distributions to this age group may conserve resources and result in less antimicrobial resistance, which is a potential advantage in areas with hypoendemic trachoma and limited resources.

Objective: To determine the efficacy of mass azithromycin distributions to preschool-aged children as a strategy for trachoma elimination in areas with hypoendemic disease.

Design, setting, and participants: In this cluster randomized clinical trial performed from November 23, 2014, until July 31, 2017, thirty rural communities in Niger were randomized at a 1:1 ratio to biannual mass distributions of either azithromycin or placebo to children aged 1 to 59 months. Participants and study personnel were masked to treatment allocation. Data analyses for trachoma outcomes were performed from October 19, 2021, through June 10, 2022.

Interventions: Every 6 months, a single dose of either oral azithromycin (20 mg/kg using height-based approximation for children who could stand or weight calculation for small children) or oral placebo was provided to all children aged 1 to 59 months.

Main outcomes and measures: Trachoma was a prespecified outcome of the trial, assessed as the community-level prevalence of trachomatous inflammation-follicular and trachomatous inflammation-intense through masked grading of conjunctival photographs from a random sample of 40 children per community each year during the 2-year study period. A secondary outcome was the seroprevalence of antibodies to C trachomatis antigens.

Results: At baseline, 4726 children in 30 communities were included; 1695 children were enrolled in 15 azithromycin communities and 3031 children were enrolled in 15 placebo communities (mean [SD] proportions of boys, 51.8% [4.7%] vs 52.0% [4.2%]; mean [SD] age, 30.8 [2.8] vs 30.6 [2.6] months). The mean coverage of study drug for the 4 treatments was 79% (95% CI, 75%-83%) in the azithromycin group and 82% (95% CI, 79%-85%) in the placebo group. The mean prevalence of trachomatous inflammation-follicular at baseline was 1.9% (95% CI, 0.5%-3.5%) in the azithromycin group and 0.9% (95% CI, 0-1.9%) in the placebo group. At 24 months, trachomatous inflammation-follicular prevalence was 0.2% (95% CI, 0-0.5%) in the azithromycin group and 0.8% (95% CI, 0.2%-1.6%) in the placebo group (incidence rate ratio adjusted for baseline: 0.18 [95% CI, 0.01-1.20]; permutation P = .07).

Conclusions and relevance: The findings of this trial do not show that biannual mass azithromycin distributions to preschool-aged children were more effective than placebo, although the underlying prevalence of trachoma was low. The sustained absence of trachoma even in the placebo group suggests that trachoma may have been eliminated as a public health problem in this part of Niger.

Trial registration: ClinicalTrials.gov Identifier: NCT02048007.

Conflict of interest statement

Conflict of Interest Disclosures: Dr West reported receiving grants from the Bill & Melinda Gates Foundation during the conduct of the study. Dr Arnold reported receiving grants from the Bill & Melinda Gates Foundation and the National Institutes of Health (NIH) during the conduct of the study. Dr Porco reported receiving grants from the NIH during the conduct of the study. Dr Lietman reported receiving grants from the Bill & Melinda Gates Foundation during the conduct of the study. No other disclosures were reported.

Figures

Figure 1.. Study Flow Diagram
Figure 1.. Study Flow Diagram
All communities in the Loga and Boboye departments of Niger were screened for eligibility, with 86 excluded because the population was not in the desired range (ie, 200-2000 people). Of the remaining eligible clusters, 1 was allocated for an ancillary trial on antibiotic resistance, 615 were randomly chosen for the main child mortality trial, and 30 were randomly selected for the present trial. The 30 communities were randomized to biannual mass administration with either azithromycin or placebo for 2 years. Repeated cross-sectional random samples of children were selected from the preceding study census at months 0, 12, and 24 for conjunctival photography.
Figure 2.. Longitudinal Prevalence of Trachoma
Figure 2.. Longitudinal Prevalence of Trachoma
Each thin line represents the prevalence of a study cluster over time, and the thick line represents the mean prevalence across all communities in the treatment group. A and B, Prevalence of trachomatous inflammation–follicular and trachomatous inflammation–intense among children aged 1 to 59 months; C and D, seroprevalence of pgp3 and CT694 antibodies among children aged 12 to 59 months.
Figure 3.. Chlamydia Antibody Responses Across Assessments
Figure 3.. Chlamydia Antibody Responses Across Assessments
Immunoglobulin G responses to CT694 and pgp3 are shown separately as smoothed curves of the continuous antibody response across ages, with the antibody response expressed as the log10 median fluorescence intensity minus background. Shaded bars represent approximate simultaneous CIs. Children in the azithromycin group are shown in blue and children in the placebo group are shown in orange.

References

    1. Solomon AW, Holland MJ, Burton MJ, et al. . Strategies for control of trachoma: observational study with quantitative PCR. Lancet. 2003;362(9379):198-204. doi:10.1016/S0140-6736(03)13909-8
    1. Solomon AW, Holland MJ, Alexander ND, et al. . Mass treatment with single-dose azithromycin for trachoma. N Engl J Med. 2004;351(19):1962-1971. doi:10.1056/NEJMoa040979
    1. West ES, Munoz B, Mkocha H, et al. . Mass treatment and the effect on the load of Chlamydia trachomatis infection in a trachoma-hyperendemic community. Invest Ophthalmol Vis Sci. 2005;46(1):83-87. doi:10.1167/iovs.04-0327
    1. Keenan JD, Arzika AM, Maliki R, et al. . Longer-term assessment of azithromycin for reducing childhood mortality in Africa. N Engl J Med. 2019;380(23):2207-2214. doi:10.1056/NEJMoa1817213
    1. Keenan JD, Bailey RL, West SK, et al. ; MORDOR Study Group . Azithromycin to reduce childhood mortality in sub-Saharan Africa. N Engl J Med. 2018;378(17):1583-1592. doi:10.1056/NEJMoa1715474
    1. Keenan JD, Arzika AM, Maliki R, et al. ; MORDOR-Niger Study Group . Cause-specific mortality of children younger than 5 years in communities receiving biannual mass azithromycin treatment in Niger: verbal autopsy results from a cluster-randomised controlled trial. Lancet Glob Health. 2020;8(2):e288-e295. doi:10.1016/S2214-109X(19)30540-6
    1. Coles CL, Seidman JC, Levens J, Mkocha H, Munoz B, West S. Association of mass treatment with azithromycin in trachoma-endemic communities with short-term reduced risk of diarrhea in young children. Am J Trop Med Hyg. 2011;85(4):691-696. doi:10.4269/ajtmh.2011.11-0046
    1. Coles CL, Levens J, Seidman JC, Mkocha H, Munoz B, West S. Mass distribution of azithromycin for trachoma control is associated with short-term reduction in risk of acute lower respiratory infection in young children. Pediatr Infect Dis J. 2012;31(4):341-346. doi:10.1097/INF.0b013e31824155c9
    1. Skalet AH, Cevallos V, Ayele B, et al. . Antibiotic selection pressure and macrolide resistance in nasopharyngeal Streptococcus pneumoniae: a cluster-randomized clinical trial. PLoS Med. 2010;7(12):e1000377. doi:10.1371/journal.pmed.1000377
    1. Keenan JD, Chin SA, Amza A, et al. ; Rapid Elimination of Trachoma (PRET) Study Group . The effect of antibiotic selection pressure on the nasopharyngeal macrolide resistome: a cluster-randomized trial. Clin Infect Dis. 2018;67(11):1736-1742. doi:10.1093/cid/ciy339
    1. Melo JS, Aragie S, Chernet A, et al. . Targeted antibiotics for trachoma: a cluster-randomized trial. Clin Infect Dis. 2021;73(6):979-986. doi:10.1093/cid/ciab193
    1. Holm SO, Jha HC, Bhatta RC, et al. . Comparison of two azithromycin distribution strategies for controlling trachoma in Nepal. Bull World Health Organ. 2001;79(3):194-200.
    1. Atik B, Thanh TT, Luong VQ, Lagree S, Dean D. Impact of annual targeted treatment on infectious trachoma and susceptibility to reinfection. JAMA. 2006;296(12):1488-1497. doi:10.1001/jama.296.12.1488
    1. Schémann JF, Guinot C, Traore L, et al. . Longitudinal evaluation of three azithromycin distribution strategies for treatment of trachoma in a sub-Saharan African country, Mali. Acta Trop. 2007;101(1):40-53. doi:10.1016/j.actatropica.2006.12.003
    1. Amza A, Kadri B, Nassirou B, et al. . A cluster-randomized trial to assess the efficacy of targeting trachoma treatment to children. Clin Infect Dis. 2017;64(6):743-750. doi:10.1093/cid/ciw810
    1. Mortality reduction after oral azithromycin: mortality study (MORDORIMort). identifier: NCT01047981. Accessed March 1, 2022.
    1. Arzika AM, Maliki R, Boubacar N, et al. ; MORDOR Study Group . Biannual mass azithromycin distributions and malaria parasitemia in pre-school children in Niger: a cluster-randomized, placebo-controlled trial. PLoS Med. 2019;16(6):e1002835. doi:10.1371/journal.pmed.1002835
    1. Doan T, Arzika AM, Hinterwirth A, et al. ; MORDOR Study Group . Macrolide resistance in MORDOR I—a cluster-randomized trial in Niger. N Engl J Med. 2019;380(23):2271-2273. doi:10.1056/NEJMc1901535
    1. Arzika AM, Maliki R, Ali MM, et al. ; MORDOR-Niger Study Group . Effect of mass azithromycin distributions on childhood growth in Niger: a cluster-randomized trial. JAMA Netw Open. 2021;4(12):e2139351. doi:10.1001/jamanetworkopen.2021.39351
    1. Solomon AW, Kello AB, Bangert M, et al. . The simplified trachoma grading system, amended. Bull World Health Organ. 2020;98(10):698-705. doi:10.2471/BLT.19.248708
    1. Cromwell EA, Amza A, Kadri B, et al. . Trachoma prevalence in Niger: results of 31 district-level surveys. Trans R Soc Trop Med Hyg. 2014;108(1):42-48. doi:10.1093/trstmh/trt101
    1. Chidambaram JD, Lee DC, Porco TC, Lietman TM. Mass antibiotics for trachoma and the Allee effect. Lancet Infect Dis. 2005;5(4):194-196. doi:10.1016/S1473-3099(05)70032-3
    1. Doan T, Arzika AM, Ray KJ, et al. . Gut microbial diversity in antibiotic-naive children after systemic antibiotic exposure: a randomized controlled trial. Clin Infect Dis. 2017;64(9):1147-1153. doi:10.1093/cid/cix141
    1. Basilion EV, Kilima PM, Mecaskey JW. Simplification and improvement of height-based azithromycin treatment for paediatric trachoma. Trans R Soc Trop Med Hyg. 2005;99(1):6-12. doi:10.1016/j.trstmh.2004.01.014
    1. Oldenburg CE, Arzika AM, Maliki R, et al. ; MORDOR Study Group . Safety of azithromycin in infants under six months of age in Niger: a community randomized trial. PLoS Negl Trop Dis. 2018;12(11):e0006950. doi:10.1371/journal.pntd.0006950
    1. Nesemann JM, Seider MI, Snyder BM, et al. . Comparison of smartphone photography, single-lens reflex photography, and field-grading for trachoma. Am J Trop Med Hyg. 2020;103(6):2488-2491. doi:10.4269/ajtmh.20-0386
    1. Snyder BM, Sié A, Tapsoba C, et al. . Smartphone photography as a possible method of post-validation trachoma surveillance in resource-limited settings. Int Health. 2019;11(6):613-615. doi:10.1093/inthealth/ihz035
    1. Gwyn S, Aragie S, Wittberg DM, et al. . Precision of serologic testing from dried blood spots using a multiplex bead assay. Am J Trop Med Hyg. 2021;105(3):822-827. doi:10.4269/ajtmh.21-0140
    1. Migchelsen SJ, Martin DL, Southisombath K, et al. . Defining seropositivity thresholds for use in trachoma elimination studies. PLoS Negl Trop Dis. 2017;11(1):e0005230. doi:10.1371/journal.pntd.0005230
    1. Arnold BF, Kanyi H, Njenga SM, et al. . Fine-scale heterogeneity in Schistosoma mansoni force of infection measured through antibody response. Proc Natl Acad Sci U S A. 2020;117(37):23174-23181. doi:10.1073/pnas.2008951117
    1. World Health Organization . Validation of elimination of trachoma as a public health problem. Document No. WHO/HTM/NTD/2016.8 2016. Accessed March 1, 2022.
    1. Taylor HR, Burton MJ, Haddad D, West S, Wright H. Trachoma. Lancet. 2014;384(9960):2142-2152. doi:10.1016/S0140-6736(13)62182-0
    1. Goodhew EB, Morgan SM, Switzer AJ, et al. . Longitudinal analysis of antibody responses to trachoma antigens before and after mass drug administration. BMC Infect Dis. 2014;14:216. doi:10.1186/1471-2334-14-216
    1. Martin DL, Wiegand R, Goodhew B, et al. . Serological measures of trachoma transmission intensity. Sci Rep. 2015;5:18532. doi:10.1038/srep18532
    1. Kim JS, Oldenburg CE, Cooley G, et al. . Community-level chlamydial serology for assessing trachoma elimination in trachoma-endemic Niger. PLoS Negl Trop Dis. 2019;13(1):e0007127. doi:10.1371/journal.pntd.0007127
    1. Aiemjoy K, Aragie S, Wittberg DM, et al. . Seroprevalence of antibodies against Chlamydia trachomatis and enteropathogens and distance to the nearest water source among young children in the Amhara Region of Ethiopia. PLoS Negl Trop Dis. 2020;14(9):e0008647. doi:10.1371/journal.pntd.0008647
    1. Gwyn S, Awoussi MS, Bakhtiari A, et al. . Comparison of platforms for testing antibodies to Chlamydia trachomatis antigens in the Democratic Republic of the Congo and Togo. Sci Rep. 2021;11(1):7225. doi:10.1038/s41598-021-86639-8
    1. Doan T, Hinterwirth A, Worden L, et al. . Post-antibiotic ocular surface microbiome in children: a cluster-randomized trial. Ophthalmology. 2020;127(8):1127-1130. doi:10.1016/j.ophtha.2020.02.014
    1. Maamari RN, Ausayakhun S, Margolis TP, Fletcher DA, Keenan JD. Novel telemedicine device for diagnosis of corneal abrasions and ulcers in resource-poor settings. JAMA Ophthalmol. 2014;132(7):894-895. doi:10.1001/jamaophthalmol.2014.335

Source: PubMed

3
Předplatit