DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI

Yan Chao-Gan, Zang Yu-Feng, Yan Chao-Gan, Zang Yu-Feng

Abstract

Resting-state functional magnetic resonance imaging (fMRI) has attracted more and more attention because of its effectiveness, simplicity and non-invasiveness in exploration of the intrinsic functional architecture of the human brain. However, user-friendly toolbox for "pipeline" data analysis of resting-state fMRI is still lacking. Based on some functions in Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST), we have developed a MATLAB toolbox called Data Processing Assistant for Resting-State fMRI (DPARSF) for "pipeline" data analysis of resting-state fMRI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), and fractional ALFF. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest.

Keywords: DPARSF; REST; SPM; data analysis; resting-state fMRI.

Figures

Figure 1
Figure 1
Graphical user interface of DPARSF.
Figure 2
Figure 2
Pictures for checking normalization. The normalized functional image was overlaid on a high resolution 3D anatomical image (the opaque one with skull. From “Colin Holmes,” http://imaging.mrc-cbu.cam.ac.uk/downloads/Colin/, also distributed with MRIcroN as ch2) in the MNI space. Users can easily check the accuracy of spatial normalization by visual inspection.
Figure 3.
Figure 3.
Within-condition patterns of ReHo (A), ALFF (B), fALFF (C) and PCC-FC (D). All these methods revealed the pattern of the default mode network. The numbers below the images refer to the MNI z coordinates. The statistical threshold was set at t > 3.89 (P < 0.0001) for one-tailed t-tests (for ReHo, ALFF and fALFF) and |t| > 4. 08 (P < 0.0001) for two-tailed t-test (for FC) and cluster size >135 mm3, which corresponds to a corrected P < 0.0001. LH, left hemisphere; RH, right hemisphere.

References

    1. Ashburner J., Friston K. J. (1999). Nonlinear spatial normalization using basis functions. Hum. Brain Mapp. 7, 254–26610.1002/(SICI)1097-0193(1999)7:4<254::AID-HBM4>;2-G
    1. Ashburner J., Friston K. J. (2005). Unified segmentation. Neuroimage 26, 839–85110.1016/j.neuroimage.2005.02.018
    1. Binder J. R., Frost J. A., Hammeke T. A., Bellgowan P. S., Rao S. M., Cox R. W. (1999). Conceptual processing during the conscious resting state. A functional MRI study. J. Cogn. Neurosci. 11, 80–9510.1162/089892999563265
    1. Birn R. M., Diamond J. B., Smith M. A., Bandettini P. A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31, 1536–154810.1016/j.neuroimage.2006.02.048
    1. Biswal B., Yetkin F. Z., Haughton V. M., Hyde J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–54110.1002/mrm.1910340409
    1. Buzsáki G., Draguhn A. (2004). Neuronal oscillations in cortical networks. Science 304, 1926–192910.1126/science.1099745
    1. Cordes D., Haughton V. M., Arfanakis K., Carew J. D., Turski P. A., Moritz C. H., Quigley M. A., Meyerand M. E. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am. J. Neuroradiol. 22, 1326–1333
    1. Cordes D., Haughton V. M., Arfanakis K., Wendt G. J., Turski P. A., Moritz C. H., Quigley M. A., Meyerand M. E. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol. 21, 1636–1644
    1. Cox R., Ashburner J., Breman H., Fissell K., Haselgrove C., Holmes C., Lancaster J., Rex D., Smith S., Woodward J., Strother S. (2004). “A (sort of) new image data format standard: Nifti-1,” in 10th Annual Meeting of the Organization for Human Brain Mapping (OHBM 2004), Vol. 25, Budapest, Hungary, June 13–17. Available at:
    1. Cox R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res. 29, 162–17310.1006/cbmr.1996.0014
    1. Fox M., Corbetta M., Snyder A., Vincent J., Raichle M. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. U.S.A. 103, 10046–1005110.1073/pnas.0604187103
    1. Fox M. D., Raichle M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–71110.1038/nrn2201
    1. Fox M. D., Snyder A. Z., Vincent J. L., Corbetta M., Van Essen D. C., Raichle M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102, 9673–967810.1073/pnas.0504136102
    1. Fransson P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–2910.1002/hbm.20113
    1. Friston K. J., Frith C. D., Liddle P. F., Frackowiak R. S. (1993). Functional connectivity: the principal- component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13, 5–14
    1. Ghosh A., Rho Y., McIntosh A. R., Kotter R., Jirsa V. K. (2008). Noise during rest enables the exploration of the brain's dynamic repertoire. PLoS Comput. Biol. 4, e1000196.10.1371/journal.pcbi.1000196
    1. Greicius M., Krasnow B., Reiss A., Menon V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–25810.1073/pnas.0135058100
    1. He Y., Wang L., Zang Y., Tian L., Zhang X., Li K., Jiang T. (2007). Regional coherence changes in the early stages of Alzheimer's disease: a combined structural and resting-state functional MRI study. Neuroimage 35, 488–50010.1016/j.neuroimage.2006.11.042
    1. Honey C. J., Sporns O., Cammoun L., Gigandet X., Thiran J. P., Meuli R., Hagmann P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. U.S.A. 106, 2035–204010.1073/pnas.0811168106
    1. Hoptman M. J., Zuo X. N., Butler P. D., Javitt D. C., D'Angelo D., Mauro C. J., Milham M. P. (2010). Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophr. Res. 117, 13–2010.1016/j.schres.2009.09.030
    1. Horwitz B. (2003). The elusive concept of brain connectivity. Neuroimage 19, 466–47010.1016/S1053-8119(03)00112-5
    1. Huettel S., Song A., McCarthy G. (2004). Functional Magnetic Resonance Imaging Sunderland, MA: Sinauer Associates
    1. Kelly A. M., Uddin L. Q., Biswal B. B., Castellanos F. X., Milham M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage 39, 527–53710.1016/j.neuroimage.2007.08.008
    1. Kendall M., Gibbons J. D. R. (1990). Correlation Methods Oxford: Oxford University Press
    1. Kiviniemi V., Jauhiainen J., Tervonen O., Pääkkö E., Oikarinen J., Vainionpää V., Rantala H., Biswal B. (2000). Slow vasomotor fluctuation in fMRI of anesthetized child brain. Magn. Reson. Med. 44, 373–37810.1002/1522-2594(200009)44:3<373::AID-MRM5>;2-P
    1. Ledberg A., Akerman S., Roland P. E. (1998). Estimation of the probabilities of 3D clusters in functional brain images. Neuroimage 8, 113–12810.1006/nimg.1998.0336
    1. Long X. Y., Zuo X. N., Kiviniemi V., Yang Y., Zou Q. H., Zhu C. Z., Jiang T. Z., Yang H., Gong Q. Y., Wang L., Li K. C., Xie S., Zang Y. F. (2008). Default mode network as revealed with multiple methods for resting-state functional MRI analysis. J. Neurosci. Methods 171, 349–35510.1016/j.jneumeth.2008.03.021
    1. Lowe M. J., Mock B. J., Sorenson J. A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 7, 119–13210.1006/nimg.1997.0315
    1. Lowe M. J., Russell D. P. (1999). Treatment of baseline drifts in fMRI time series analysis. J. Comput. Assist. Tomogr. 23, 463–47310.1097/00004728-199905000-00025
    1. Lu H., Zuo Y., Gu H., Waltz J. A., Zhan W., Scholl C. A., Rea W., Yang Y., Stein E. A. (2007). Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proc. Natl. Acad. Sci. U.S.A. 104, 18265–1826910.1073/pnas.0705791104
    1. Mazoyer B., Zago L., Mellet E., Bricogne S., Etard O., Houde O., Crivello F., Joliot M., Petit L., Tzourio-Mazoyer N. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res. Bull. 54, 287–29810.1016/S0361-9230(00)00437-8
    1. Murphy K., Birn R. M., Handwerker D. A., Jones T. B., Bandettini P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44, 893–90510.1016/j.neuroimage.2008.09.036
    1. Penttonen M., Buzsáki G. (2003). Natural logarithmic relationship between brain oscillators. Thalamus Relat. Syst. 2, 145–152
    1. Raichle M. E., MacLeod A. M., Snyder A. Z., Powers W. J., Gusnard D. A., Shulman G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. U.S.A. 98, 676–68210.1073/pnas.98.2.676
    1. Rosner B. A. (2006). Fundamentals of Biostatistics, 6th Edn Belmont, CA: Thomson-Brooks/Cole
    1. Shulman G. L., Fiez J. A., Corbetta M., Buckner R. L., Miezin F. M., Raichle M. E., Petersen S. E. (1997). Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–66310.1162/jocn.1997.9.5.648
    1. Smith A. M., Lewis B. K., Ruttimann U. E., Ye F. Q., Sinnwell T. M., Yang Y., Duyn J. H., Frank J. A. (1999). Investigation of low frequency drift in fMRI signal. Neuroimage 9, 526–53310.1006/nimg.1999.0435
    1. Turner R., Howseman A., Rees G., Josephs O. (1997). “Functional imaging with magnetic resonance,” in Human Brain Function, ed. Frackowiak R. S. J. (San Diego: Academic Press; ), 467–486
    1. Vincent J. L., Snyder A. Z., Fox M. D., Shannon B. J., Andrews J. R., Raichle M. E., Buckner R. L. (2006). Coherent spontaneous activity identifies a hippocampal-parietal memory network. J. Neurophysiol. 96, 3517–353110.1152/jn.00048.2006
    1. Xiong J., Parsons L. M., Gao J. H., Fox P. T. (1999). Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum. Brain Mapp. 8, 151–15610.1002/(SICI)1097-0193(1999)8:2/3<151::AID-HBM13>;2-5
    1. Yan C., Liu D., He Y., Zou Q., Zhu C., Zuo X., Long X., Zang Y. (2009). Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PLoS ONE 4, e5743.10.1371/journal.pone.0005743
    1. Zang Y. F., He Y., Zhu C. Z., Cao Q. J., Sui M. Q., Liang M., Tian L. X., Jiang T. Z., Wang Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 29, 83–9110.1016/j.braindev.2006.07.002
    1. Zang Y. F., Jiang T. Z., Lu Y. L., He Y., Tian L. X. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage 22, 394–40010.1016/j.neuroimage.2003.12.030
    1. Zhang Z., Lu G., Zhong Y., Tan Q., Chen H., Liao W., Tian L., Li Z., Shi J., Liu Y. (in press). fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Hum. Brain Mapp. [Epub ahead of print].
    1. Zou Q. H., Zhu C. Z., Yang Y., Zuo X. N., Long X. Y., Cao Q. J., Wang Y. F., Zang Y. F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J. Neurosci. Methods 172, 137–14110.1016/j.jneumeth.2008.04.012
    1. Zuo X. N., Di Martino A., Kelly C., Shehzad Z. E., Gee D. G., Klein D. F., Castellanos F. X., Biswal B. B., Milham M. P. (2010). The oscillating brain: complex and reliable. Neuroimage 49, 1432–144510.1016/j.neuroimage.2009.09.037

Source: PubMed

3
Předplatit