Validation of mDurance, A Wearable Surface Electromyography System for Muscle Activity Assessment

Alejandro Molina-Molina, Emilio J Ruiz-Malagón, Francisco Carrillo-Pérez, Luis E Roche-Seruendo, Miguel Damas, Oresti Banos, Felipe García-Pinillos, Alejandro Molina-Molina, Emilio J Ruiz-Malagón, Francisco Carrillo-Pérez, Luis E Roche-Seruendo, Miguel Damas, Oresti Banos, Felipe García-Pinillos

Abstract

The mDurance® system is an innovative digital tool that combines wearable surface electromyography (sEMG), mobile computing and cloud analysis to streamline and automatize the assessment of muscle activity. The tool is particularly devised to support clinicians and sport professionals in their daily routines, as an assessment tool in the prevention, monitoring rehabilitation and training field. This study aimed at determining the validity of the mDurance system for measuring muscle activity by comparing sEMG output with a reference sEMG system, the Delsys® system. Fifteen participants were tested during isokinetic knee extensions at three different speeds (60, 180, and 300 deg/s), for two muscles (rectus femoris [RF] and vastus lateralis [VL]) and two different electrodes locations (proximal and distal placement). The maximum voluntary isometric contraction was carried out for the normalization of the signal, followed by dynamic isokinetic knee extensions for each speed. The sEMG output for both systems was obtained from the raw sEMG signal following mDurance's processing and filtering. Mean, median, first quartile, third quartile and 90th percentile was calculated from the sEMG amplitude signals for each system. The results show an almost perfect ICC relationship for the VL (ICC > 0.81) and substantial to almost perfect for the RF (ICC > 0.762) for all variables and speeds. The Bland-Altman plots revealed heteroscedasticity of error for mean, quartile 3 and 90th percentile (60 and 300 deg/s) for RF and at mean and 90th percentile for VL (300 deg/s). In conclusion, the results indicate that the mDurance® sEMG system is a valid tool to measure muscle activity during dynamic contractions over a range of speeds. This innovative system provides more time for clinicians (e.g., interpretation patients' pathologies) and sport trainers (e.g., advising athletes), thanks to automatic processing and filtering of the raw sEMG signal and generation of muscle activity reports in real-time.

Keywords: EMG; electromyography; knee extension; mHealth; muscle contraction; validity; wearable.

Conflict of interest statement

MD and OB were affiliated with the company mDurance Solutions S.L. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Molina-Molina, Ruiz-Malagón, Carrillo-Pérez, Roche-Seruendo, Damas, Banos and García-Pinillos.

Figures

Figure 1
Figure 1
Representation for the placement of the mDurance muscle electrodes (filled circles), and Delsys sensors (bottomless rectangles) to either sides of the SENIAM recommendation (dashed line). Randomized proximal and distal position for mDurance and Delsys in each leg. The mDurance reference electrodes are represented by bottomless circles.
Figure 2
Figure 2
Overview diagram of the validation testing.
Figure 3
Figure 3
Representation of the 10% threshold (gray horizontal solid bar) applied to an exemplary set, with a root mean square (RMS) signal normalized by the maximum voluntary isometric contraction (MVIC). Besides, representation of the muscle activity parameters for an exemplary muscle contraction. sEMG amplitude parameters: 90th percentile (PERC 90), third quartile (Q3), mean and median, and first quartile (Q1).
Figure 4
Figure 4
Bland-Altman plots for the measurement of muscle activity parameters (i.e., mean, median, first quartile, third quartile, and 90th percentile) for the RF muscle at different speeds of movement: (A) 60 deg/s, (B) 180 deg/s, and (C) at 300 deg/s. The plots includes the mean difference (dotted line) and 95% limits of agreement (dashed lined), along with the regression line (solid line).
Figure 5
Figure 5
Bland-Altman plots for the measurement of muscle activity parameters (i.e., mean, median, first quartile, third quartile, and 90th percentile) for the VL muscle at different speeds of movement: (A) 60 deg/s, (B) 180 deg/s, and (C) at 300 deg/s. The plots includes the mean difference (dotted line) and 95% limits of agreement (dashed lined), along with the regression line (solid line).

References

    1. Ahamed N., Sundaraj K., Ahmad R., Rahman M., Islam A., Ali A. (2012). Analysis of the effect on electrode placement on an adolescent's biceps brachii during muscle contractions using a wireless EMG sensor. J. Phys. Ther. Sci. 24, 609–611. 10.1589/jpts.24.609
    1. Alschuler K. N., Neblett R., Wiggert E., Haig A. J., Geisser M. E. (2009). Flexion-relaxation and clinical features associated with chronic low back pain. Clin. J. Pain 25, 760–766. 10.1097/AJP.0b013e3181b56db6
    1. Athos (2020). Live Athos. Available online at: (accessed February 28, 2020).
    1. Atkinson G., Nevill A. M. (1998). Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sport. Med. 26, 217–238. 10.2165/00007256-199826040-00002
    1. Banos O., Moral-Munoz J. A., Diaz-Reyes I., Arroyo-Morales M., Damas M., Herrera-Viedma E., et al. . (2015). MDurance: a novel mobile health system to support trunk endurance assessment. Sensors 15, 13159–13183. 10.3390/s150613159
    1. Barbero M., Merletti R., Rainoldi A. (2012). Atlas of Muscle Innervation Zones: Understanding Surface Electromyography and Its Applications. Milan.
    1. Bioengineering B. (2020). FREEEMG. Available online at: (accessed June 18, 2020).
    1. BioZen (2020). NeuroSky®. Body and Mind. Quantified. Available online at: (accessed February 28, 2020).
    1. Blanc Y., Dimanico U. (2014). Electrode placement in surface electromyography (sEMG) Minimal crosstalk area (MCA). Open Rehabil. J. 3, 110–126. 10.2174/1874943701003010110
    1. Bland J. M., Altman D. G. (1995). Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet 346, 1085–1087. 10.1016/S0140-6736(95)91748-9
    1. Bolanos A. A., Colizza W. A., McCann P. D., Gotlin R. S., Wootten M. E., Kahn B. A., et al. . (1998). A comparison of isokinetic strength testing and gait analysis in patients with posterior cruciate-retaining and substituting knee arthroplasties. J. Arthroplasty 13, 906–915. 10.1016/S0883-5403(98)90198-X
    1. Burden A. (2010). How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. J. Electromyogr. Kinesiol. 20, 1023–1035. 10.1016/j.jelekin.2010.07.004
    1. Burns A., Doheny E. P., Greene B. R., Foran T., Leahy D., O'Donovan K., et al. . (2010a). SHIMMER™: an extensible platform for physiological signal capture, in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC'10. Buenos: Aires, 3759–3762. 10.1109/IEMBS.2010.5627535
    1. Burns A., Greene B. R., McGrath M. J., O'Shea T. J., Kuris B., Ayer S. M., et al. (2010b). SHIMMERTM–a wireless sensor platform for noninvasive biomedical research. IEEE Sens. J. 10, 1527–1534. 10.1109/JSEN.2010.2045498
    1. Carrillo-Perez F., Diaz-Reyes I., Damas M., Banos O., Soto-Hermoso V. M., Molina-Molina A. (2018). A novel automated algorithm for computing lumbar flexion test ratios enhancing athletes objective assessment of low back pain, in Proceedings of the 6th International Congress on Sport Sciences Research and Technology Support (Seville: SCITEPRESS–Science and Technology Publications; ), 34–39. 10.5220/0006922600340039
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York, NY.
    1. CSMi Solutions (2013). HUMAC NORM User Manual. Available online at: (accessed August 11, 2020).
    1. De Luca C. J. (1997). The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163.
    1. De Luca C. J., Donald Gilmore L., Kuznetsov M., Roy S. H. (2010). Filtering the surface EMG signal: movement artifact and baseline noise contamination. J. Biomech. 43, 1573–1579. 10.1016/j.jbiomech.2010.01.027
    1. De Ste Croix M. B. A., Priestley A. M., Lloyd R. S., Oliver J. L. (2015). ACL injury risk in elite female youth soccer: changes in neuromuscular control of the knee following soccer-specific fatigue. Scand. J. Med. Sci. Sport. 25, e531–e538. 10.1111/sms.12355
    1. Delsys Inc. (2020). Wearable Sensors for Movement Sciences. Delsys Trigno. Available online at: (Accessed June 18, 2020).
    1. Elsais W. M., Preece S. J., Jones R. K., Herrington L. (2020). Between-day repeatability of lower limb EMG measurement during running and walking. J. Electromyogr. Kinesiol. 55:102473. 10.1016/j.jelekin.2020.102473
    1. Filter A., Olivares-Jabalera J., Santalla A., Morente-Sánchez J., Robles-Rodríguez J., Requena B., et al. . (2020). Curve sprinting in soccer: kinematic and neuromuscular analysis. Int. J. Sports Med. 41, 744–750. 10.1055/a-1144-3175
    1. Fuentes del Toro S., Wei Y., Olmeda E., Ren L., Guowu W., Díaz V. (2019). Validation of a low-cost electromyography (EMG) system via a commercial and accurate EMG device: pilot study. Sensors 19:5214. 10.3390/s19235214
    1. Hermens H. J., Freriks B., Disselhorst-Klug C., Rau G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10, 361–374. 10.1016/S1050-6411(00)00027-4
    1. Hibbs A. E., Thompson K. G., French D. N., Hodgson D., Spears I. R. (2011). Peak and average rectified EMG measures: which method of data reduction should be used for assessing core training exercises? J. Electromyogr. Kinesiol. 21, 102–111. 10.1016/j.jelekin.2010.06.001
    1. Hogrel J. Y., Duchêne J., Marini J. F. (1998). Variability of some SEMG parameter estimates with electrode location. J. Electromyogr. Kinesiol. 8, 305–315. 10.1016/S1050-6411(97)00043-6
    1. Hopkins W. G., Marshall S. W., Batterham A. M., Hanin J. (2009). Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41, 3–13. 10.1249/MSS.0b013e31818cb278
    1. Ibrahim A. F. T., Gannapathy V. R., Chong L. W., Isa I. S. M. (2016). Analysis of Electromyography (EMG) Signal for Human Arm Muscle: A Review. Cham.
    1. Kay A. D., Blazevich A. J. (2009). Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J. Appl. Physiol. 106, 1249–1256. 10.1152/japplphysiol.91476.2008
    1. Koo T. K., Li M. Y. (2016). A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15, 155–63. 10.1016/j.jcm.2016.02.012
    1. Landis J. R., Koch G. G., Landis J. R., Koch G. G. (1977). The measurement of observer agreement for categorical data. Biometrics 33, 159–174.
    1. Luc B. A., Harkey M. H., Arguelles G. D., Blackburn J. T., Ryan E. D., Pietrosimone B. (2016). Measuring voluntary quadriceps activation: effect of visual feedback and stimulus delivery. J. Electromyogr. Kinesiol. 26, 73–81. 10.1016/j.jelekin.2015.10.006
    1. Lynn S. K., Watkins C. M., Wong M. A., Balfany K., Feeney D. F. (2018). Validity and reliability of surface electromyography measurements from a wearable athlete performance system. J. Sport. Sci. Med. 17, 205–215.
    1. McKinney W. (2010). Data structures for statistical computing in python, in Proceedings of the 9th Python in Science Conference, 51–56. Available online at:
    1. mDurance (2020). mDurance Solition S.L. Available online at: (accessed February 28, 2020).
    1. Myo (2020). MyoTM Blog. Available online at: (accessed February 28, 2020).
    1. Myontec (2020). Myontec, Intelligent Clothing. Available online at: (accessed February 28, 2020).
    1. Randy Neblett M. A., Emily Brede R. N., Tom G. Mayer M. D., Gatchel R. J. (2014). What is the best surface EMG measure of lumbar flexion-relaxation for distinguishing chronic low back pain patients from pain-free controls? Natl. Inst. Health 29, 334–340. 10.1097/AJP.0b013e318267252d
    1. Roberts D., Kuenze C., Saliba S., Hart J. M. (2012). Accessory muscle activation during the superimposed burst technique. J. Electromyogr. Kinesiol. 22, 540–545. 10.1016/j.jelekin.2012.01.008
    1. Shimmer (2020). Realtime Technologies Ltd. Available online at: (accessed February 28, 2020).
    1. Sole G., Hamrén J., Milosavljevic S., Nicholson H., Sullivan S. J. (2007). Test-retest reliability of isokinetic knee extension and flexion. Arch. Phys. Med. Rehabil. 88, 626–631. 10.1016/j.apmr.2007.02.006
    1. Van Der Walt S., Colbert S. C., Varoquaux G. (2011). The NumPy array: a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30. 10.1109/MCSE.2011.37
    1. Virtanen P., Gommers R., Oliphant T. E., Haberland M., Reddy T., Cournapeau D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272. 10.1038/s41592-019-0686-2
    1. Wakeling J. M., Pascual S. A., Nigg B. M. (2002). Altering muscle activity in the lower extremities by running with different shoes [Alteration de l' activite musculaire dans les extremites des membres inferieurs, en courant avec differentes chaussures]. Med. Sci. Sport. Exerc. 34, 1529–1532. 10.1249/01.MSS.0000027714.70099.08
    1. Watanabe K., Kouzaki M., Moritani T. (2014). Regional neuromuscular regulation within human rectus femoris muscle during gait. J. Biomech. 47, 3502–3508. 10.1016/j.jbiomech.2014.09.001
    1. Yilmaz O. O., Senocak O., Sahin E., Baydar M., Gulbahar S., Bircan C., et al. . (2010). Efficacy of EMG-biofeedback in knee osteoarthritis. Rheumatol. Int. 30, 887–892. 10.1007/s00296-009-1070-9
    1. Yip S. L. M., Ng G. Y. F. (2006). Biofeedback supplementation to physiotherapy exercise programme for rehabilitation of patellofemoral pain syndrome: a randomized controlled pilot study. Clin. Rehabil. 20, 1050–1057. 10.1177/0269215506071259

Source: PubMed

3
Předplatit