Impaired autonomic function in adolescents born preterm

Kristin Haraldsdottir, Andrew M Watson, Kara N Goss, Arij G Beshish, David F Pegelow, Mari Palta, Laura H Tetri, Gregory P Barton, Melissa D Brix, Ryan M Centanni, Marlowe W Eldridge, Kristin Haraldsdottir, Andrew M Watson, Kara N Goss, Arij G Beshish, David F Pegelow, Mari Palta, Laura H Tetri, Gregory P Barton, Melissa D Brix, Ryan M Centanni, Marlowe W Eldridge

Abstract

Preterm birth temporarily disrupts autonomic nervous system (ANS) development, and the long-term impacts of disrupted fetal development are unclear in children. Abnormal cardiac ANS function is associated with worse health outcomes, and has been identified as a risk factor for cardiovascular disease. We used heart rate variability (HRV) in the time domain (standard deviation of RR intervals, SDRR; and root means squared of successive differences, RMSSD) and frequency domain (high frequency, HF; and low frequency, LF) at rest, as well as heart rate recovery (HRR) following maximal exercise, to assess autonomic function in adolescent children born preterm. Adolescents born preterm (less than 36 weeks gestation at birth) in 2003 and 2004 and healthy age-matched full-term controls participated. Wilcoxon Rank Sum tests were used to compare variables between control and preterm groups. Twenty-one adolescents born preterm and 20 term-born controls enrolled in the study. Preterm-born subjects had lower time-domain HRV, including SDRR (69.1 ± 33.8 vs. 110.1 ± 33.0 msec, respectively, P = 0.008) and RMSSD (58.8 ± 38.2 vs. 101.5 ± 36.2 msec, respectively, P = 0.012), with higher LF variability in preterm subjects. HRR after maximal exercise was slower in preterm-born subjects at 1 min (30 ± 12 vs. 39 ± 9 bpm, respectively, P = 0.013) and 2 min (52 ± 10 vs. 60 ± 10 bpm, respectively, P = 0.016). This study is the first report of autonomic dysfunction in adolescents born premature. Given prior association of impaired HRV with adult cardiovascular disease, additional investigations into the mechanisms of autonomic dysfunction in this population are warranted.

Keywords: Autonomic function; exercise physiology; heart rate recovery; heart rate variability.

© 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

Figures

Figure 1
Figure 1
Resting heart rate variability. Standard deviation of R‐R intervals, SDRR. B. Root means squared of successive differences, RMSSD. Percentage of differences higher than 50 msec in RR intervals, pRR50. Box and whisker plots describe the mean of the data for each group, with bars showing the max and min values. Data are from 13 control and 12 preterm subjects.
Figure 2
Figure 2
Heart rate recovery following maximal exercise. HRR in control (gray squares) and preterm (open squares) groups. Data are expressed as mean ± SEM. *P < 0.05 adjusted for pairwise comparison between control and preterm groups at each time point.

References

    1. Armstrong, N. , Tomkinson G. R., and Ekelund U.. 2011. Aerobic fitness and its relationship to sport, exercise training and habitual physical activity during youth. Br. J. Sports Med. 45:849–858.
    1. Bates, M. L. , Farrell E. T., and Eldridge M. W.. 2014. Abnormal ventilatory responses in adults born prematurely. N. Engl. J. Med. 370:584–585.
    1. Baum, P. , Petroff D., Classen J., Kiess W., and Bluher S.. 2013. Dysfunction of autonomic nervous system in childhood obesity: a cross‐sectional study. PLoS ONE 8:e54546.
    1. Berntson, G. G. , Bigger J. T. Jr, Eckberg D. L., Grossman P., Kaufmann P. G., Malik M., et al. 1997. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34:623–648.
    1. Bertagnolli, M. , Luu T. M., Lewandowski A. J., Leeson P., and Nuyt A. M.. 2016. Preterm birth and hypertension: is there a link? Curr. Hypertens. Rep. 18:28.
    1. Bhutta, A. T. , Cleves M. A., Casey P. H., Cradock M. M., and Anand K. J. S.. 2002. Cognitive and behavioral outcomes of school‐aged children who were born preterm ‐ A meta‐analysis. JAMA 288:728–737.
    1. Bisgard, G. E. , Olson E. B., Wang Z. Y., Bavis R. W., Fuller D. D., and Mitchell G. S.. 2003. Adult carotid chemoafferent responses to hypoxia after 1, 2, and 4 wk of postnatal hyperoxia. J. Appl. Physiol. 95:946–952.
    1. Bonamy, A. K. E. , Mohlkert L. A., Hallberg J., Liuba P., Fellman V., Domellof M., et al. 2017. Blood pressure in 6‐year‐old children born extremely preterm. J. Am. Heart Assoc. 6:e005858.
    1. Calder, N. A. , Williams B. A., Smyth J., Boon A. W., Kumar P., and Hanson M. A.. 1994. Absence of ventilatory responses to alternating breaths of mild hypoxia and air in infants who have had bronchopulmonary dysplasia – implications for the risk of sudden infant death. Pediatr. Res. 35:677–681.
    1. Carnethon, M. R. , Jacobs D. R., Sidney S., Sternfeld B., Gidding S. S., Shoushtari C., et al. 2005. A longitudinal study of physical activity and heart rate recovery: CARDIA, 1987‐1993. Med. Sci. Sports Exerc. 37:606–612.
    1. Carnethon, M. R. , Sternfeld B., Liu K., Jacobs D. R. Jr, Schreiner P. J., Williams O. D., et al. 2012. Correlates of heart rate recovery over 20 years in a healthy population sample. Med. Sci. Sports Exerc. 44:273–279.
    1. Cohen, J. 1988. Statistical power analysis for the behavioral sciences. L. Erlbaum Associates, Hillsdale, NJ.
    1. Cole, C. R. , Blackstone E. H., Pashkow F. J., Snader C. E., and Lauer M. S.. 1999. Heart‐rate recovery immediately after exercise as a predictor of mortality. N. Engl. J. Med. 341:1351–1357.
    1. Crocker, P. R. E. , Bailey D. A., Faulkner R. A., Kowalski K. C., and McGrath R.. 1997. Measuring general levels of physical activity: preliminary evidence for the physical activity questionnaire for older children. Med. Sci. Sports Exerc. 29:1344–1349.
    1. DeGiorgio, C. M. , Miller P., Meymandi S., Chin A., Epps J., Gordon S., et al. 2010. RMSSD, a measure of vagus‐mediated heart rate variability, is associated with risk factors for SUDEP: the SUDEP‐7 inventory. Epilepsy Behav. 19:78–81.
    1. Dekker, J. M. , Crow R. S., Folsom A. R., Hannan P. J., Liao D., Swenne C. A., et al. 2000. Low heart rate variability in a 2‐minute rhythm strip predicts risk of coronary heart disease and mortality from several causes ‐ the ARIC study. Circulation 102:1239–1244.
    1. Evrengul, H. , Tanriverdi H., Kose S., Amasyali B., Kilic A., Celik T., et al. 2006. The relationship between heart rate recovery and heart rate variability in coronary artery disease. Ann. Noninvasive Electrocardiol. 11:154–162.
    1. Holm, S. 1979. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6:65–70.
    1. Jae, S. Y. , Carnethon M. R., Heffernan K. S., Choi Y. H., Lee M. K., Park W. H., et al. 2008. Slow heart rate recovery after exercise is associated with carotid atherosclerosis. Atherosclerosis 196:256–261.
    1. Kilbride, H. W. , Gelat M. C., and Sabath R. J.. 2003. Pulmonary function and exercise capacity for ELBW survivors in preadolescence: effect of neonatal chronic lung disease. J. Pediatr. 143:488–493.
    1. Kumar, A. , Jaryal A., Gulati S., Chakrabarty B., Singh A., Deepak K. K., et al. 2017. Cardiovascular autonomic dysfunction in children and adolescents with Rett syndrome. Pediatr. Neurol. 70:61–66.
    1. Landrot, I. D. , Roche F., Pichot V., Teyssier G., Gaspoz J. M., Barthelemy J. C., et al. 2007. Autonomic nervous system activity in premature and full‐term infants from theoretical term to 7 years. Auton. Neurosci. 136:105–109.
    1. Lewandowski, A. J. , Bradlow W. M., Augustine D., Davis E. F., Francis J., Singhal A., et al. 2013. Right ventricular systolic dysfunction in young adults born preterm. Circulation 128:713–720.
    1. Liao, D. P. , Cai J. W., Rosamond W. D., Barnes R. W., Hutchinson R. G., Whitsel E. A., et al. 1997. Cardiac autonomic function and incident coronary heart disease: a population‐based case‐cohort study ‐ the ARIC study. Am. J. Epidemiol. 145:696–706.
    1. Lowe, J. , Watkins W. J., Kotecha S. J., and Kotecha S.. 2016. Physical activity and sedentary behavior in preterm‐born 7‐year old children. PLoS ONE 11:e0155229.
    1. Mathewson, K. J. , Van Lieshout R. J., Saigal S., Morrison K. M., Boyle M. H., and Schmidt L. A.. 2015. Autonomic functioning in young adults born at extremely low birth weight. Glob. Pediatr. Health 2:2333794X15589560.
    1. Midgley, A. W. , McNaughton L. R., Polman R., and Marchant D.. 2007. Criteria for determination of maximal oxygen uptake ‐ a brief critique and recommendations for future research. Sports Med. 37:1019–1028.
    1. Palta, M. , and Sadek‐Badawi M.. 2008. PedsQL relates to function and behavior in very low and normal birth weight 2‐and 3‐year‐olds from a regional cohort. Qual. Life Res. 17:691–700.
    1. Palta, M. , Sadek‐Badawi M., and Carlton D. P.. 2008. Association of BPD and IVH with early neutrophil and white counts in VLBW neonates with gestational age <32 weeks. J. Perinatol. 28:604–610.
    1. Patural, H. , Barthelemy J. C., Pichot V., Mazzocchi C., Teyssier G., Damon G., et al. 2004. Birth prematurity determines prolonged autonomic nervous system immaturity. Clin. Auton. Res. 14:391–395.
    1. Pierpont, G. L. , and Voth E. J.. 2004. Assessing autonomic function by analysis of heart rate recovery from exercise in healthy subjects. Am. J. Cardiol. 94:64–68.
    1. Purves, D. , Augustine G., and Fitzpatrick D.. 2001. Autonomic regulation of cardiovascular function Pp. 491–493 in Purves D., Augustine G. J., Fitzpatrick D., Katz L. C., LaMantia A.‐S., McNamara J. O., and Mark Williams S. eds. Neuroscience, 2nd edn Sinauer Associates, Sunderland, MA.
    1. Rakow, A. , Katz‐Salamon M., Ericson M., Edner A., and Vanpee M.. 2013. Decreased heart rate variability in children born with low birth weight. Pediatr. Res. 74:339–343.
    1. Rogers, M. , Fay T. B., Whitfield M. F., Tomlinson J., and Grunau R. E.. 2005. Aerobic capacity, strength, flexibility, and activity level in unimpaired extremely low birth weight (<=800 g) survivors at 17 years of age compared with term‐born control subjects. Pediatrics 116:E58–E65.
    1. Rowell, L. B . (ed.) 1993. Control of regional blood flow during dynamic exercise Pp. 204–254 in Human cardiovascular control. Oxford University Press, NY.
    1. Ruegger, C. , Hegglin M., Adams M., Bucher H. U., and Swiss Neonatal N. . 2012. Population based trends in mortality, morbidity and treatment for very preterm‐ and very low birth weight infants over 12 years. BMC Pediatr. 12:17.
    1. Savin, W. M. , Davidson D. M., and Haskell W. L.. 1982. Autonomic contribution to heart‐rate recovery from exercise in humans. J. Appl. Physiol. 53:1572–1575.
    1. Schneider, U. , Schleussner E., Fiedler A., Jaekel S., Liehr M., Haueisen J., et al. 2009. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system. Physiol. Meas. 30:215–226.
    1. Singh, T. P. , Rhodes J., and Gauvreau K.. 2008. Determinants of heart rate recovery following exercise in children. Med. Sci. Sports Exerc. 40:601–605.
    1. Smith, L. J. , van Asperen P. P., McKay K. O., Selvadurai H., and Fitzgerald D. A.. 2008. Reduced exercise capacity in children born very preterm. Pediatrics 122:E287–E293.
    1. South, A. M. , Nixon P. A., Chappell M. C., Diz D. I., Russell G. B., Jensen E. T., et al. 2017. Influence of sex and obesity on the effect of preterm birth on the Renin‐angiotensin system in adolescents. Hypertension 70:A051.
    1. Takken, T. , van Haastert I. C., Scholman W. L., Block A. J., Eijsermans M. J. C., deVries L. S. , et al. 2010. Aerobic exercise capacity and its relationship with pulmonary function, muscle strength, physical activity and motor competence in preterm born children: the PREMAFIT‐pilot study. Aerobic Exercise and Athletic Performance: Types, Duration and Health Benefits, 293–306.
    1. Thayer, J. F. , Yamamoto S. S., and Brosschot J. F.. 2010. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 141:122–131.
    1. Whipp, B. J. , Higgenbotham M. B., and Cobb F. C.. 1996. Estimating exercise stroke volume from asymptotic oxygen pulse in humans. J. Appl. Physiol. 81:2674–2679.
    1. Witcombe, N. B. , Yiallourou S. R., Sands S. A., Walker A. M., and Horne R. S. C.. 2012. Preterm birth alters the maturation of baroreflex sensitivity in sleeping infants. Pediatrics 129:E89–E96.

Source: PubMed

3
Předplatit