Exercise training elicits superior metabolic effects when performed in the afternoon compared to morning in metabolically compromised humans

Rodrigo Mancilla, Bram Brouwers, Vera B Schrauwen-Hinderling, Matthijs K C Hesselink, Joris Hoeks, Patrick Schrauwen, Rodrigo Mancilla, Bram Brouwers, Vera B Schrauwen-Hinderling, Matthijs K C Hesselink, Joris Hoeks, Patrick Schrauwen

Abstract

The circadian clock and metabolism are tightly intertwined. Hence, the specific timing of interventions that target metabolic changes may affect their efficacy. Here we retrospectively compared the metabolic health effects of morning versus afternoon exercise training in metabolically compromised subjects enrolled in a 12-week exercise training program. Thirty-two adult males (58 ± 7 yrs) at risk for or diagnosed with type 2 diabetes performed 12 weeks of supervised exercise training either in the morning (8.00-10.00 a.m., N = 12) or in the afternoon (3.00-6.00 p.m., N = 20). Compared to participants who trained in the morning, participants who trained in the afternoon experienced superior beneficial effects of exercise training on peripheral insulin sensitivity (+5.2 ± 6.4 vs. -0.5 ± 5.4 μmol/min/kgFFM, p = .03), insulin-mediated suppression of adipose tissue lipolysis (-4.5 ± 13.7% vs. +5.9 ± 11%, p = .04), fasting plasma glucose levels (-0.3 ± 1.0 vs. +0.5 ± 0.8 mmol/l, p = .02), exercise performance (+0.40 ± 0.2 vs. +0.2 ± 0.1 W/kg, p = .05) and fat mass (-1.2 ± 1.3 vs. -0.2 ± 1.0 kg, p = .03). In addition, exercise training in the afternoon also tended to elicit superior effects on basal hepatic glucose output (p = .057). Our findings suggest that metabolically compromised subjects may reap more pronounced metabolic benefits from exercise training when this training is performed in the afternoon versus morning. CLINICALTRIALS.GOV ID: NCT01317576.

Keywords: adipose tissue insulin sensitivity; hyperinsulinemic-euglycemic clamp; skeletal muscle insulin sensitivity; timing of exercise.

Conflict of interest statement

The authors declare no competing interest.

© 2020 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

Figures

Figure 1
Figure 1
Changes in peripheral insulin sensitivity and glucose oxidation upon the timing of exercise training either in the morning (AM) or in the afternoon (PM). (a) Changes in peripheral insulin‐stimulated glucose disposal (from basal to insulin‐stimulated) were significantly greater in the PM group compared to the AM group. Data are expressed as means ± SD. *p < .05. n = 11 for the AM group and n = 15 for the PM group. (b) Changes in insulin‐stimulated glucose oxidation (from basal to insulin‐stimulated) were significantly greater in the PM group compared to the AM group. Data are expressed as means ± SD. *p < .05. n = 7 for the AM group and n = 16 for the PM group. (c) Changes in insulin‐mediated suppression of plasma‐free fatty acids (%) improved significantly more in the PM group compared to the AM group. Data are expressed as means ± SD. *p < .05. n = 12 for the AM group and n = 19 for the PM group
Figure 2
Figure 2
Fat mass (kg) and Wmax (W/kg) changes upon the timing of exercise training either in the morning (AM) or in the afternoon (PM). (a) Changes in Fat mass (kg) were significantly greater in the PM group compared to the AM group. Data are expressed as means ± SD. *p = .03. n = 12 for the AM group and n = 20 for the PM group. (b) Changes in Wmax (W/kg) were significantly greater in the PM group compared to the AM group. Data are expressed as means ± SD. *p = .05. n = 12 for the AM group and n = 20 for the PM group

References

    1. Ackermans, M. T. , Pereira Arias, A. M. , Bisschop, P. H. , Endert, E. , Sauerwein, H. P. , & Romijn, J. A. (2001). The quantification of gluconeogenesis in healthy men by (2)H2O and [2‐(13)C]glycerol yields different results: Rates of gluconeogenesis in healthy men measured with (2)H2O are higher than those measured with [2‐(13)C]glycerol. Journal of Clinical Endocrinology and Metabolism, 86, 2220–2226.
    1. Astorino, T. A. , Allen, R. P. , Roberson, D. W. , Jurancich, M. , Lewis, R. , McCarthy, K. , & Trost, E. (2011). Adaptations to high‐intensity training are independent of gender. European Journal of Applied Physiology, 111, 1279–1286. 10.1007/s00421-010-1741-y
    1. Bessot, N. , Nicolas, A. , Moussay, S. , Gauthier, A. , Sesboue, B. , & Davenne, D. (2006). The effect of pedal rate and time of day on the time to exhaustion from high‐intensity exercise. Chronobiology International, 23, 1009–1024. 10.1080/07420520600920726
    1. Blair, S. N. , Sallis, R. E. , Hutber, A. , & Archer, E. (2012). Exercise therapy ‐ the public health message. Scandinavian Journal of Medicine and Science in Sports, 22, e24–e28. 10.1111/j.1600-0838.2012.01462.x
    1. Brouwers, B. , Schrauwen‐Hinderling, V. B. , Jelenik, T. , Gemmink, A. , Havekes, B. , Bruls, Y. , …, Schrauwen, P. (2017). Metabolic disturbances of non‐alcoholic fatty liver resemble the alterations typical for type 2 diabetes. Clinical Science (Lond), 131, 1905–1917. 10.1042/CS20170261
    1. Brouwers, B. , Schrauwen‐Hinderling, V. B. , Jelenik, T. , Gemmink, A. , Sparks, L. M. , Havekes, B. , …, Schrauwen, P. (2018). Exercise training reduces intrahepatic lipid content in people with and people without nonalcoholic fatty liver. American Journal of Physiology. Endocrinology and Metabolism, 314, E165–e173. 10.1152/ajpendo.00266.2017
    1. Chaix, A. , Zarrinpar, A. , & Panda, S. (2016). The circadian coordination of cell biology. Journal of Cell Biology, 215, 15–25. 10.1083/jcb.201603076
    1. DeFronzo, R. A. , Tobin, J. D. , & Andres, R. (1979). Glucose clamp technique: A method for quantifying insulin secretion and resistance. American Journal of Physiology, 237, E214–223. 10.1152/ajpendo.1979.237.3.E214
    1. Dibner, C. , Schibler, U. , & Albrecht, U. (2010). The mammalian circadian timing system: Organization and coordination of central and peripheral clocks. Annual Review of Physiology, 72, 517–549. 10.1146/annurev-physiol-021909-135821
    1. Ezagouri, S. , Zwighaft, Z. , Sobel, J. , Baillieul, S. , Doutreleau, S. , Ladeuix, B. , …, Asher, G. (2019). Physiological and molecular dissection of daily variance in exercise capacity. Cell Metabolism, 30, 78–91.e74. 10.1016/j.cmet.2019.03.012
    1. Hey‐Mogensen, M. , Hojlund, K. , Vind, B. F. , Wang, L. , Dela, F. , Beck‐Nielsen, H. , …, Sahlin, K. (2010). Effect of physical training on mitochondrial respiration and reactive oxygen species release in skeletal muscle in patients with obesity and type 2 diabetes. Diabetologia, 53, 1976–1985. 10.1007/s00125-010-1813-x
    1. Kalsbeek, A. , la Fleur, S. , & Fliers, E. (2014). Circadian control of glucose metabolism. Molecular Metabolism, 3, 372–383. 10.1016/j.molmet.2014.03.002
    1. Kiehn, J. T. , Tsang, A. H. , Heyde, I. , Leinweber, B. , Kolbe, I. , Leliavski, A. , & Oster, H. (2017). Circadian rhythms in adipose tissue physiology. Comprehensive Physiology, 7, 383–427.
    1. Kjaer, M. , Hollenbeck, C. B. , Frey‐Hewitt, B. , Galbo, H. , Haskell, W. , & Reaven, G. M. (1990). Glucoregulation and hormonal responses to maximal exercise in non‐insulin‐dependent diabetes. Journal of Applied Physiology, 1985(68), 2067–2074. 10.1152/jappl.1990.68.5.2067
    1. Kuipers, H. , Verstappen, F. T. , Keizer, H. A. , Geurten, P. , & van Kranenburg, G. (1985). Variability of aerobic performance in the laboratory and its physiologic correlates. International Journal of Sports Medicine, 6, 197–201. 10.1055/s-2008-1025839
    1. Kuusmaa, M. , Schumann, M. , Sedliak, M. , Kraemer, W. J. , Newton, R. U. , Malinen, J. P. , …, Hakkinen, K. (2016). Effects of morning versus evening combined strength and endurance training on physical performance, muscle hypertrophy, and serum hormone concentrations. Applied Physiology, Nutrition and Metabolism, 41, 1285–1294. 10.1139/apnm-2016-0271
    1. Larsen, J. J. , Dela, F. , Kjaer, M. , & Galbo, H. (1997). The effect of moderate exercise on postprandial glucose homeostasis in NIDDM patients. Diabetologia, 40, 447–453. 10.1007/s001250050699
    1. McQuaid, S. E. , Hodson, L. , Neville, M. J. , Dennis, A. L. , Cheeseman, J. , Humphreys, S. M. , …, Karpe, F. (2011). Downregulation of adipose tissue fatty acid trafficking in obesity: A driver for ectopic fat deposition? Diabetes, 60, 47–55. 10.2337/db10-0867
    1. Meex, R. C. , Schrauwen‐Hinderling, V. B. , Moonen‐Kornips, E. , Schaart, G. , Mensink, M. , Phielix, E. , …, Hesselink, M. K. (2010). Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes, 59, 572–579. 10.2337/db09-1322
    1. Menshikova, E. V. , Ritov, V. B. , Dube, J. J. , Amati, F. , Stefanovic‐Racic, M. , Toledo, F. G. S. , …, Goodpaster, B. H. (2017). Calorie restriction‐induced weight loss and exercise have differential effects on skeletal muscle mitochondria despite similar effects on insulin sensitivity. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 73, 81–87. 10.1093/gerona/glw328
    1. Morris, C. J. , Yang, J. N. , Garcia, J. I. , Myers, S. , Bozzi, I. , Wang, W. , …, Scheer, F. A. (2015). Endogenous circadian system and circadian misalignment impact glucose tolerance via separate mechanisms in humans. Proceedings of the National Academy of Sciences of the United States of America, 112, E2225–E2234. 10.1073/pnas.1418955112
    1. Peronnet, F. , & Massicotte, D. (1991). Table of nonprotein respiratory quotient: An update. Canadian Journal of Sport Science, 16, 23–29.
    1. Rao, M. N. , Neylan, T. C. , Grunfeld, C. , Mulligan, K. , Schambelan, M. , & Schwarz, J. M. (2015). Subchronic sleep restriction causes tissue‐specific insulin resistance. Journal of Clinical Endocrinology and Metabolism, 100, 1664–1671. 10.1210/jc.2014-3911
    1. Sato, S. , Basse, A. L. , Schonke, M. , Chen, S. , Samad, M. , Altintas, A. , …, Sassone‐Corsi, P. (2019). Time of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis. Cell Metabolism, 30, 92–110.e114. 10.1016/j.cmet.2019.03.013
    1. Savikj, M. , Gabriel, B. M. , Alm, P. S. , Smith, J. , Caidahl, K. , Bjornholm, M. , …, Wallberg‐Henriksson, H. (2019). Afternoon exercise is more efficacious than morning exercise at improving blood glucose levels in individuals with type 2 diabetes: A randomised crossover trial. Diabetologia, 62, 233–237. 10.1007/s00125-018-4767-z
    1. Scheer, F. A. , Hilton, M. F. , Mantzoros, C. S. , & Shea, S. A. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proceedings of the National Academy of Sciences of the United States of America, 106, 4453–4458. 10.1073/pnas.0808180106
    1. Shulman, G. I. , Rothman, D. L. , Jue, T. , Stein, P. , DeFronzo, R. A. , & Shulman, R. G. (1990). Quantitation of muscle glycogen synthesis in normal subjects and subjects with non‐insulin‐dependent diabetes by 13C nuclear magnetic resonance spectroscopy. New England Journal of Medicine, 322, 223–228.
    1. Sparks, L. M. , Ukropcova, B. , Smith, J. , Pasarica, M. , Hymel, D. , Xie, H. , …, Smith, S. R. (2009). Relation of adipose tissue to metabolic flexibility. Diabetes Research and Clinical Practice, 83, 32–43. 10.1016/j.diabres.2008.09.052
    1. Steele, R. (1959). Influences of glucose loading and of injected insulin on hepatic glucose output. Annals of the New York Academy of Sciences, 82, 420–430. 10.1111/j.1749-6632.1959.tb44923.x
    1. Van Cauter, E. , Blackman, J. D. , Roland, D. , Spire, J. P. , Refetoff, S. , & Polonsky, K. S. (1991). Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep. Journal of Clinical Investigation, 88, 934–942. 10.1172/JCI115396
    1. Verrillo, A. , De Teresa, A. , Martino, C. , Di Chiara, G. , Pinto, M. , Verrillo, L. , …, Gattoni, A. (1989). Differential roles of splanchnic and peripheral tissues in determining diurnal fluctuation of glucose tolerance. American Journal of Physiology, 257, E459–E465. 10.1152/ajpendo.1989.257.4.E459
    1. Wefers, J. , van Moorsel, D. , Hansen, J. , Connell, N. J. , Havekes, B. , Hoeks, J. , …, Schrauwen, P. (2018). Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 115, 7789–7794. 10.1073/pnas.1722295115
    1. West, A. C. , Smith, L. , Ray, D. W. , Loudon, A. S. I. , Brown, T. M. , & Bechtold, D. A. (2017). Misalignment with the external light environment drives metabolic and cardiac dysfunction. Nature Communications, 8, 417 10.1038/s41467-017-00462-2

Source: PubMed

3
Předplatit