Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures

Ralitsa Georgieva, Lyubomira Yocheva, Lilia Tserovska, Galina Zhelezova, Nina Stefanova, Akseniya Atanasova, Antonia Danguleva, Gergana Ivanova, Nikolay Karapetkov, Nevenka Rumyan, Elena Karaivanova, Ralitsa Georgieva, Lyubomira Yocheva, Lilia Tserovska, Galina Zhelezova, Nina Stefanova, Akseniya Atanasova, Antonia Danguleva, Gergana Ivanova, Nikolay Karapetkov, Nevenka Rumyan, Elena Karaivanova

Abstract

Antimicrobial activity and antibiotic susceptibility were tested for 23 Lactobacillus and three Bifidobacterium strains isolated from different ecological niches. Agar-well diffusion method was used to test the antagonistic effect (against Staphylococcus aureus, Escherichia coli, Bacillus cereus and Candida albicans) of acid and neutralized (pH 5.5) lyophilized concentrated supernatants (cell-free supernatant; CFS) and whey (cell-free whey fractions; CFW) from de Man-Rogosa-Sharpe/trypticase-phytone-yeast broth and skim milk. Acid CFS and CFW showed high acidification rate-dependent bacterial inhibition; five strains were active against C. albicans. Neutralized CFS/CFW assays showed six strains active against S. aureus (L. acidophilus L-1, L. brevis 1, L. fermentum 1, B. animalis subsp. lactis L-3), E. coli (L. bulgaricus 6) or B. cereus (L. plantarum 24-4В). Inhibition of two pathogens with neutralized CFS (L. bulgaricus 6, L. helveticus 3, L. plantarum 24-2L, L. fermentum 1)/CFW (L. plantarum 24-5D, L. plantarum 24-4В) was detected. Some strains maintained activity after pH neutralization, indicating presence of active substances. The antibiotics minimum inhibitory concentrations (MICs) were determined by the Epsilometer test method. All strains were susceptible to ampicillin, gentamicin, erythromycin and tetracycline. Four lactobacilli were resistant to one antibiotic (L. rhamnosus Lio 1 to streptomycin) or two antibiotics (L. acidophilus L-1 and L. brevis 1 to kanamycin and clindamycin; L. casei L-4 to clindamycin and chloramphenicol). Vancomycin MICs > 256 μg/mL indicated intrinsic resistance for all heterofermentative lactobacilli. The antimicrobially active strains do not cause concerns about antibiotic resistance transfer and could be used as natural biopreservatives in food and therapeutic formulations.

Keywords: MIC; antagonistic effect; lactic acid bacteria.

Figures

Figure 1.
Figure 1.
Antimicrobial activity of Lactobacillus and Bifidobacterium strains against Staphylococcus aureus NBIMCC 3703: (A) aCFS and nCFS; (B) aCFW and nCFW. *pH values of acid CFSs and acid CFWs.
Figure 2.
Figure 2.
Antimicrobial activity of Lactobacillus and Bifidobacterium strains against Bacillus cereus NBIMCC 1085: (A) aCFS and nCFS; (B) aCFW and nCFW. *pH values of acid CFSs and acid CFWs.
Figure 3.
Figure 3.
Antimicrobial activity of Lactobacillus and Bifidobacterium strains against Escherichia coli NBIMCC 3702: (A) aCFS and nCFS; (B) aCFW and nCFW. *pH values of acid CFSs and acid CFWs.

References

    1. Saarela M. Lähteenmäki L. Crittenden R. Salminen S. Mattila-Sandholm T. Gut bacteria and health foods – the European perspective. Int J Food Microbiol. 2002;78(1–2):99–117.
    1. De Vuyst L. Leroy F. Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol. 2007;13(4):194–199.
    1. Teuber M. Meile L. Schwarz F. Acquired antibiotic resistance in lactic acid bacteria from food. Antonie van Leeuwenhoek. 1999;769(1–4):115–137.
    1. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012;10(6):2740–2750.
    1. Tagg JR. McGiven AR. Assay system for bacteriocins. Appl Microbiol. 1971;21(5):943–949.
    1. Klare I. Konstabel C. Werner G. Huys G. Vankerckhoven V. Kahlmeter G. Hildebrandt B. Müller-Bertling S. Witte W. Goossens H. Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use. J Antimicrob Chemother. 2007;59:900–912.
    1. Kivanç M. Yilmaz M. Çakir E. Isolation and identification of lactic acid bacteria from boza, and their microbial activity against several reporter strains. Turkish J Biol. 2011;35(3):313–324.
    1. Goel MC. Kulshrestha DC. Marth EH. Francis DW. Bradshaw JG. Read RB. Fate of coliforms in yogurt, buttermilk, sour cream and cottage cheese during refrigerated storage. J Milk Food Technol. 1971;34:54–58.
    1. Atanassova M. Choiset Y. Dalgalarrondo M. Chobert JM. Dousset X. Ivanova I. Haertlé T. Isolation and partial biochemical characterization of a proteinaceous anti-bacteria and anti-yeast compound produced by Lactobacillus paracasei subsp. paracasei strain M3. Int J Food Microbiol. 2003;87(1-2):63–73.
    1. Makras L. De Vuyst L. The in vitro inhibition of Gram-negative pathogenic bacteria by bifidobacteria is caused by the production of organic acids. Int Dairy J. 2006;16(9):1049–1057.
    1. Makras L. Triantafyllou V. Fayol-Messaoudi D. Adriany T. Zoumpopoulou G. Tsakalidou E. Servin A. De Vuyst L. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol. 2006;157(3):241–247.
    1. Gong HS. Meng XC. Wang H. Plantaricin MG active against Gram-negative bacteria produced by Lactobacillus plantarum KLDS1.0391 isolated from “Jiaoke”, a traditional fermented cream from China. Food Control. 2010;21(1):89–96.
    1. Simova ED. Beshkova DB. Dimitrov ZhP. Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. J Appl Microbiol. 2009;106(2):692–701.
    1. Mentes Ö. Ercan R. Akçelik M. Inhibitor activities of two Lactobacillus strains, isolated from sourdough, against rope-forming Bacillus strains. Food Control. 2007;18(4):359–363.
    1. Denkova R. Ilieva S. Denkova Z. Georgieva L. Krastanov A. Examination of the technological properties of newly isolated strains of the genus Lactobacillus and possibilities for their application in the composition of starters. Biotechnol Biotechnol Equipment. 2014;28(3):487–494.
    1. Stapleton AE. Au-Yeung M. Hooton TM. Fredricks DN. Roberts PL. Czaja CA. Yarova-Yarovaya Y. Fiedler T. Cox M. Stamm WE. Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin Infect Dis. 2011;52(10):1212–1217.
    1. Oksanen PJ. Salminen S. Saxelin M. Hämäläinen P. Ihantola-Vormisto A. Muurasniemi-Isoviita L. Nikkari S. Oksanen T. Pörsti I. Salminen E. Siitonen S. Stuckey H. Toppila A. Vapaatalo H. Prevention of travelers diarrhea by Lactobacillus GG. Ann Med. 1990;22(1):53–56.
    1. Grozdanov L. Karaivanova E. Pimentel-Elardo S. Dobrindt U. Rumyan N. Taxonomy and in vitro probiotic potential of novel Lactobacillus isolates. Poster session presented at: The 9th International Symposium on Lactic Acid Bacteria: Health, Evolution and Systems Biology; 2008 Aug 31–Sep 5; Egmond aan Zee, Netherlands.
    1. Rönnqvist D. Forsgren-Brusk U. Husmark U. Grahn-Håkansson E. Lactobacillus fermentum Ess-1 with unique growth inhibition of vulvo-vaginal candidiasis pathogens. J Med Microbiol. 2007;56(11):1500–1504.
    1. Falagas ME. Betsi GI. Athanasiou S. Probiotics for prevention of recurrent vulvovaginal candidiasis: a review. J Antimicrob Chemother. 2006;58(2):266–272.
    1. Ammor MS. Flórez AB. van Hoek AH. de Los Reyes-Gavilán CG. Aarts HJ. Margolles A. Mayo B. Molecular characterization of intrinsic and acquired antibiotic resistance in lactic acid bacteria and bifidobacteria. J Mol Microbiol Biotechnol. 2008;14(1–3):6–15.
    1. Charteris WP. Kelly PM. Morelli L. Collins JK. Gradient diffusion antibiotic susceptibility testing of potentially probiotic lactobacilli. J Food Prot. 2001;64(12):2007–2014.
    1. Danielsen M. Wind A. Susceptibility of Lactobacillus spp. to antimicrobial agents. Int J Food Microbiol. 2003;82(1):1–11.
    1. Zhou JS. Pillidge CJ. Gopal PK. Gill HS. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. Int J Food Microbiol. 2005;98(2):211–217.
    1. Ammor MS. Florez AB. Mayo B. Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 2007;24(6):559–570.
    1. Cataloluk O. Gogebakan B. Presence of drug resistance in intestinal lactobacilli of dairy and human origin in Turkey. FEMS Microbiol Lett. 2004;236(1):7–12.
    1. Lin CF. Fung ZF. Wu CL. Chung TC. Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-TC) from Lactobacillus reuteri G4. Plasmid. 1996;36(2):116–124.
    1. Curragh HJ. Collins MA. High levels of spontaneous drug resistance in Lactobacillus . J Appl Bacteriol. 1992;73(1):31–36.
    1. Ocaña V. Silva C. Nader-Macías ME. Antibiotic susceptibility of potentially probiotic vaginal lactobacilli. Infect Dis Obstet Gynecol. 2006;2006, ID 18182:1–6.

Source: PubMed

3
Předplatit