Immediate and long-term effects of BCI-based rehabilitation of the upper extremity after stroke: a systematic review and meta-analysis

Zhongfei Bai, Kenneth N K Fong, Jack Jiaqi Zhang, Josephine Chan, K H Ting, Zhongfei Bai, Kenneth N K Fong, Jack Jiaqi Zhang, Josephine Chan, K H Ting

Abstract

Background: A substantial number of clinical studies have demonstrated the functional recovery induced by the use of brain-computer interface (BCI) technology in patients after stroke. The objective of this review is to evaluate the effect sizes of clinical studies investigating the use of BCIs in restoring upper extremity function after stroke and the potentiating effect of transcranial direct current stimulation (tDCS) on BCI training for motor recovery.

Methods: The databases (PubMed, Medline, EMBASE, CINAHL, CENTRAL, PsycINFO, and PEDro) were systematically searched for eligible single-group or clinical controlled studies regarding the effects of BCIs in hemiparetic upper extremity recovery after stroke. Single-group studies were qualitatively described, but only controlled-trial studies were included in the meta-analysis. The PEDro scale was used to assess the methodological quality of the controlled studies. A meta-analysis of upper extremity function was performed by pooling the standardized mean difference (SMD). Subgroup meta-analyses regarding the use of external devices in combination with the application of BCIs were also carried out. We summarized the neural mechanism of the use of BCIs on stroke.

Results: A total of 1015 records were screened. Eighteen single-group studies and 15 controlled studies were included. The studies showed that BCIs seem to be safe for patients with stroke. The single-group studies consistently showed a trend that suggested BCIs were effective in improving upper extremity function. The meta-analysis (of 12 studies) showed a medium effect size favoring BCIs for improving upper extremity function after intervention (SMD = 0.42; 95% CI = 0.18-0.66; I2 = 48%; P < 0.001; fixed-effects model), while the long-term effect (five studies) was not significant (SMD = 0.12; 95% CI = - 0.28 - 0.52; I2 = 0%; P = 0.540; fixed-effects model). A subgroup meta-analysis indicated that using functional electrical stimulation as the external device in BCI training was more effective than using other devices (P = 0.010). Using movement attempts as the trigger task in BCI training appears to be more effective than using motor imagery (P = 0.070). The use of tDCS (two studies) could not further facilitate the effects of BCI training to restore upper extremity motor function (SMD = - 0.30; 95% CI = - 0.96 - 0.36; I2 = 0%; P = 0.370; fixed-effects model).

Conclusion: The use of BCIs has significant immediate effects on the improvement of hemiparetic upper extremity function in patients after stroke, but the limited number of studies does not support its long-term effects. BCIs combined with functional electrical stimulation may be a better combination for functional recovery than other kinds of neural feedback. The mechanism for functional recovery may be attributed to the activation of the ipsilesional premotor and sensorimotor cortical network.

Keywords: Brain-computer interface; Hemiparetic upper extremity function; Motor imagery; Movement attempt; Neural mechanism; Stroke.

Conflict of interest statement

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Figures

Fig. 1
Fig. 1
Flow chart of study selection
Fig. 2
Fig. 2
Comparison of the immediate effects of BCI interventions and control interventions on upper extremity motor function. The change in scores and standard deviations (SD) of both BCI and control groups in the 12 included studies were pooled and the overall effect of the BCIs was computed as a standard mean difference (SMD) with 95% confidence interval. The results indicated that BCI training was significantly effective at improving upper extremity function SMD = 0.42; 95% CI = 0.18–0.66; I2 = 48%; P < 0.001; fixed-effects model)
Fig. 3
Fig. 3
Meta-regression scatterplots show the relationship between the effect size (standardized mean difference) and number of sessions (a), and the cumulative training time (b). In each subplot, the straight line shows the regression line and the curves around it show the 95% confidence interval
Fig. 4
Fig. 4
A subgroup analysis for the effects of different BCI mental tasks. The 12 included studies were categorized into motor imagery-based BCIs (eight studies), movement attempt-based BCIs (two studies), and action observation-based BCIs (two studies), depending on the nature of the mental tasks. The results indicted that both movement attempt-based (SMD = 0.69; 95% CI = 0.16–1.22; I2 = 0%; P = 0.010; random-effects model) and action observation-based BCIs (SMD = 1.25; 95% CI = 0.0.05–2.45; I2 = 72%; P = 0.040; random-effects model) tended to show superior clinical effects, compared to MI-based BCIs (SMD = 0.16; 95% CI = − 0.13 – 0.45; I2 = 0%; P = 0.290; random-effects model) in regard to improving upper extremity function. However, the difference among subgroups was not significant (P = 0.070)
Fig. 5
Fig. 5
A subgroup analysis of the effects of different devices combined with BCIs. The results indicated that only BCIs triggering the stimulation of FES had a significantly large effect size on motor function recovery, compared with control interventions (SMD = 1.04; 95% CI = 0.47–1.62; I2 = 37%; P < 0.001; random-effects model), while both BCIs combined with robots (SMD = 0.04; 95% CI = − 0.30 – 0.38; I2 = 0%; P = 0.820; random-effects model) and with visual feedback (SMD = 0.46; 95% CI = − 0.03 – 0.95; I2 = 0%; P = 0.060; random-effects model) had no significant differential clinical effects with control interventions
Fig. 6
Fig. 6
A comparison of the long-term effects of BCI interventions and control interventions on upper extremity motor function. The inputted data consisted of the change in scores between baseline and follow-up. Five studies followed up with patients from between 6 weeks to six-to-12 months. Ang et al. followed up with subjects twice after the intervention, after 6 weeks and after 18 weeks [48]. Our meta-analysis indicated that BCIs did not show any significant differential effects compared with control interventions when we used the follow-up data from Ang et al.’s study at 6 weeks [48] (SMD = 0.12; 95% CI = − 0.28 – 0.52; I2 = 0%; P = 0.540; fixed-effects model)
Fig. 7
Fig. 7
The potentiating effects of tDCS on BCI training in regard to improving upper extremity function. The meta-analysis indicated that the tDCS could not further potentiate the clinical effects of BCIs in regard to improving upper extremity motor function in patients with stroke (SMD = − 0.30; 95% CI = − 0.96 – 0.36; I2 = 0%; P = 0.370; fixed-effects model)

References

    1. Wolfe CD. The impact of stroke. Br Med Bull. 2000;56:275–286. doi: 10.1258/0007142001903120.
    1. Cramer SC. Repairing the human brain after stroke: I. mechanisms of spontaneous recovery. Ann Neurol. 2008;63:272–287. doi: 10.1002/ana.21393.
    1. Jeon BJ, Kim WH, Park EY. Effect of task-oriented training for people with stroke: a meta-analysis focused on repetitive or circuit training. Top Stroke Rehabil. 2015;22:34–43. doi: 10.1179/1074935714Z.0000000035.
    1. Kwakkel G, Veerbeek JM, van Wegen EE, Wolf SL. Constraint-induced movement therapy after stroke. Lancet Neurol. 2015;14:224–234. doi: 10.1016/S1474-4422(14)70160-7.
    1. Sellers EW, Donchin E. A P300-based brain–computer interface: initial tests by ALS patients. Clin Neurophysiol. 2006;117:538–548. doi: 10.1016/j.clinph.2005.06.027.
    1. Li M, Liu Y, Wu Y, Liu S, Jia J, Zhang L. Neurophysiological substrates of stroke patients with motor imagery-based brain-computer Interface training. Int J Neurosci. 2014;124:403–415. doi: 10.3109/00207454.2013.850082.
    1. Ang KK, Chua KS, Phua KS, Wang C, Chin ZY, Kuah CW, Low W, Guan C. A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin EEG Neurosci. 2015;46:310–320. doi: 10.1177/1550059414522229.
    1. Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RP. Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci U S A. 2010;107:4430–4435. doi: 10.1073/pnas.0913697107.
    1. Birbaumer N, Cohen LG. Brain-computer interfaces: communication and restoration of movement in paralysis. J Physiol. 2007;579:621–636. doi: 10.1113/jphysiol.2006.125633.
    1. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113:767–791. doi: 10.1016/S1388-2457(02)00057-3.
    1. Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842–1857. doi: 10.1016/S1388-2457(99)00141-8.
    1. Zhang JJQ, Fong KNK, Welage N, Liu KPY. The activation of the mirror neuron system during action observation and action execution with mirror visual feedback in stroke: a systematic review. Neural Plast. 2018. 10.1155/2018/2321045.
    1. Ma T, Li H, Deng L, Yang H, Lv X, Li P, Li F, Zhang R, Liu T, Yao D, et al. The hybrid BCI system for movement control by combining motor imagery and moving onset visual evoked potential. J Neural Eng. 2017;14. 10.1088/1741-2522/aa5d5f.
    1. Daly JJ, Cheng R, Rogers J, Litinas K, Hrovat K, Dohring M. Feasibility of a new application of noninvasive brain computer interface (BCI): a case study of training for recovery of volitional motor control after stroke. J Neurol Phys Ther. 2009;33:203–211. doi: 10.1097/NPT.0b013e3181c1fc0b.
    1. Ramos-Murguialday A, Broetz D, Rea M, Laer L, Yilmaz O, Brasil FL, Liberati G, Curado MR, Garcia-Cossio E, Vyziotis A, et al. Brain-machine interface in chronic stroke rehabilitation: a controlled study. Ann Neurol. 2013;74:100–108. doi: 10.1002/ana.23879.
    1. Biasiucci A, Leeb R, Iturrate I, Perdikis S, Al-Khodairy A, Corbet T, Schnider A, Schmidlin T, Zhang H, Bassolino M, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat Commun. 2018;9:2421. doi: 10.1038/s41467-018-04673-z.
    1. Pichiorri F, Morone G, Petti M, Toppi J, Pisotta I, Molinari M, Paolucci S, Inghilleri M, Astolfi L, Cincotti F, et al. Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 2015;77:851–865. doi: 10.1002/ana.24390.
    1. Laver KE, Lange B, George S, Deutsch JE, Saposnik G, Crotty M. Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev. 2017;11:CD008349.
    1. Thieme H, Mehrholz J, Pohl M, Behrens J, Dohle C. Mirror therapy for improving motor function after stroke. Cochrane Database Syst Rev. 2018;7:CD008449.
    1. Cervera MA, Soekadar SR, Ushiba J, Millan JDR, Liu M, Birbaumer N, Garipelli Brain-computer interfaces for post-stroke motor rehabilitation: a meta-analysis. Ann of Clin Transl Neurol. 2018;5:651–663. doi: 10.1002/acn3.544.
    1. Sharma N, Pomeroy VM, Baron JC. Motor imagery: a backdoor to the motor system after stroke? Stroke. 2006;37:1941–1952. doi: 10.1161/01.STR.0000226902.43357.fc.
    1. Hétu S, Grégoire M, Saimpont A, Coll MP, Eugène F, Michon PE, Jackson PL. The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev. 2013;37:930–949. doi: 10.1016/j.neubiorev.2013.03.017.
    1. Pfurtscheller G, Brunner C, Schlögl A, Lopes da Silva FH. Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage. 2006;31:153–159. doi: 10.1016/j.neuroimage.2005.12.003.
    1. Jeon Y, Nam CS, Kim YJ, Whang MC. Event-related (de) synchronization (ERD/ERS) during motor imagery tasks: implications for brain–computer interfaces. Int J Ind Ergonom. 2011;41:428–436. doi: 10.1016/j.ergon.2011.03.005.
    1. Ruffino C, Papaxanthis C, Lebon F. Neural plasticity during motor learning with motor imagery practice: review and perspectives. Neuroscience. 2017;341:61–78. doi: 10.1016/j.neuroscience.2016.11.023.
    1. Prasad G, Herman P, Coyle D, McDonough S, Crosbie J. Applying a brain-computer interface to support motor imagery practice in people with stroke for upper limb recovery: a feasibility study. J Neuroeng Rehabil. 2010;7:60. doi: 10.1186/1743-0003-7-60.
    1. Shoham S, Halgren E, Maynard EM, Normann RA. Motor-cortical activity in tetraplegics. Nature. 2001;413:793. doi: 10.1038/35101651.
    1. Bi G, Poo M. Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci. 2001;24:139–166. doi: 10.1146/annurev.neuro.24.1.139.
    1. Lisman J. Glutamatergic synapses are structurally and biochemically complex because of multiple plasticity processes: long-term potentiation, long-term depression, short-term potentiation and scaling. Philos Trans R Soc Lond Ser B Biol Sci. 2017;372:20160260. 10.1098/rstb.2016.0260.
    1. Muralidharan A, Chae J, Taylor DM. Taylor, Extracting attempted hand movements from EEGs in people with complete hand paralysis following stroke. Front Neurosci. 2011;5:39. doi: 10.3389/fnins.2011.00039.
    1. Blokland Y, Vlek R, Karaman B, Özin F, Thijssen D, Eijsvogels T, Colier W, Floor-Westerdijk M, Bruhn J, Farquhar J. Detection of event-related desynchronization during attempted and imagined movements in tetraplegics for brain switch control. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:3967–3969.
    1. Popović DB. Advances in functional electrical stimulation (FES) J Electromyogr Kinesiol. 2014;24:795–802. doi: 10.1016/j.jelekin.2014.09.008.
    1. Hu XL, Tong RK, Ho NS, Xue JJ, Rong W, Li LS. Wrist rehabilitation assisted by an electromyography-driven neuromuscular electrical stimulation robot after stroke. Neurorehabil Neural Repair. 2015;29:767–776. doi: 10.1177/1545968314565510.
    1. Rodgers H, Bosomworth H, Krebs HI, van Wijck F, Howel D, Wilson N, Aird L, Alvarado N, Andole S, Cohen DL, et al. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 2019;394:51–62. doi: 10.1016/S0140-6736(19)31055-4.
    1. Mihara M, Hattori N, Hatakenaka M, Yagura H, Kawano T, Hino T, Miyai I. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study. Stroke. 2013;44:1091–1098. doi: 10.1161/STROKEAHA.111.674507.
    1. van Dokkum LEH, Ward T, Laffont I. Brain computer interfaces for neurorehabilitation: its current status as a rehabilitation strategy post-stroke. Ann Phys Rehabil Med. 2015;58:3–8. doi: 10.1016/j.rehab.2014.09.016.
    1. Ono T, Shindo K, Kawashima K, Ota N, Ito M, Ota T, Mukaino M, Fujiwara T, Kimura A, Liu M, et al. Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front Neuroeng. 2014;7:19. doi: 10.3389/fneng.2014.00019.
    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527:633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.
    1. Matsumoto J, Fujiwara T, Takahashi O, Liu M, Kimura A, Ushiba J. Modulation of mu rhythm desynchronization during motor imagery by transcranial direct current stimulation. J Neuroeng Rehabil. 2010;7:27. doi: 10.1186/1743-0003-7-27.
    1. Wei P, He W, Zhou Y, Wang L. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation. IEEE Trans Neural Syst Rehabil Eng. 2013;21:404–415. doi: 10.1109/TNSRE.2013.2249111.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151:264–269. doi: 10.7326/0003-4819-151-4-200908180-00135.
    1. Moseley AM, Herbert RD, Sherrington C, Maher CG. Evidence for physiotherapy practice: a survey of the physiotherapy evidence database (PEDro) Aust J Physiother. 2002;48:43–49. doi: 10.1016/S0004-9514(14)60281-6.
    1. Foley NC, Teasell RW, Bhogal SK, Speechley MR. Stroke rehabilitation evidence-based review: methodology. Top Stroke Rehabil. 2003;10:1–7.
    1. Chhatbar PY, Ramakrishnan V, Kautz S, George MS, Adams RJ, Feng W. Transcranial direct current stimulation post-stroke upper extremity motor recovery studies exhibit a dose-response relationship. Brain Stimul. 2016;9:16–26. doi: 10.1016/j.brs.2015.09.002.
    1. Higgins J, Green S. Cochrane handbook for systematic reviews of interventions version 5.1. 0 (updated March 2011) 2011.
    1. Jang YY, Kim TH, Lee BH. Effects of brain–computer interface-controlled functional electrical stimulation training on shoulder subluxation for patients with stroke: a randomized controlled trial. Occup Ther Int. 2016;23:175–185. doi: 10.1002/oti.1422.
    1. Rayegani SM, Raeissadat SA, Sedighipour L, Rezazadeh IM, Bahrami MH, Eliaspour D, Khosrawi S. Effect of neurofeedback and electromyographic-biofeedback therapy on improving hand function in stroke patients. Top Stroke Rehabil. 2014;21:137–151. doi: 10.1310/tsr2102-137.
    1. Review Manager (RevMan) [Computer Program] Version 5.3 Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration. 2014.
    1. Varkuti B, Guan C, Pan Y, Phua KS, Ang KK, Kuah CWK, Chua K, Ang BT, Birbaumer N, Sitaram R. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil Neural Repair. 2013;27:53–62. doi: 10.1177/1545968312445910.
    1. Ang KK, Guan C, Phua KS, Wang C, Zhou L, Tang KY, Ephraim Joseph GJ, Kuah CW, Chua KS. Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front Neuroeng. 2014;7:30. doi: 10.3389/fneng.2014.00030.
    1. Kim T, Kim S, Lee B. Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial. Occup Ther Int. 2016;23:39–47. doi: 10.1002/oti.1403.
    1. Frolov AA, Mokienko O, Lyukmanov R, Biryukova E, Kotov S, Turbina L, Nadareyshvily G, Bushkova Y. Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Front Neurosci. 2017;11:400. doi: 10.3389/fnins.2017.00400.
    1. Ramos-Murguialday A, Curado MR, Broetz D, Yilmaz Ö, Brasil FL, Liberati G, Garcia-Cossio E, Cho W, Caria A, Cohen LG, et al. Brain-machine interface in chronic stroke: randomized trial long-term follow-up. Neurorehabil Neural Repair. 2019;33:188–198. doi: 10.1177/1545968319827573.
    1. Ang KK, Guan C, Phua KS, Wang C, Zhao L, Teo WP, Chen C, Ng YS, Chew E. Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Arch Phys Med Rehabil. 2015;96:S79–S87. doi: 10.1016/j.apmr.2014.08.008.
    1. Kasashima-Shindo Y, Fujiwara T, Ushiba J, Matsushika Y, Kamatani D, Oto M, Ono T, Nishimoto A, Shindo K, Kawakami M. Brain-computer interface training combined with transcranial direct current stimulation in patients with chronic severe hemiparesis: proof of concept study. J Rehabil Med. 2015;47:318–324. doi: 10.2340/16501977-1925.
    1. Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A. Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke. 2008;39:910–917. doi: 10.1161/STROKEAHA.107.505313.
    1. Tung SW, Guan C, Ang KK, Phua KS, Wang C, Zhao L, Teo WP, Chew E. Motor imagery BCI for upper limb stroke rehabilitation: an evaluation of the EEG recordings using coherence analysis. . 2013:261–4.
    1. Morone G, Pisotta I, Pichiorri F, Kleih S, Paolucci S, Molinari M, Cincotti F, Kübler A, Mattia D. Proof of principle of a brain-computer interface approach to support poststroke arm rehabilitation in hospitalized patients: design, acceptability, and usability. Arch Phys Med Rehabil. 2015;96:S71–S78. doi: 10.1016/j.apmr.2014.05.026.
    1. Kawakami M, Fujiwara T, Ushiba J, Nishimoto A, Abe K, Honaga K, Nishimura A, Mizuno K, Kodama M, Masakado Y. A new therapeutic application of brain-machine interface (BMI) training followed by hybrid assistive neuromuscular dynamic stimulation (HANDS) therapy for patients with severe hemiparetic stroke: a proof of concept study. Restor Neurol Neurosci. 2016;34:789–797.
    1. Kotov SV, Turbina LG, Bobrov PD, Frolov AA, Pavlova OG, Kurganskaya ME, Biryukova EV. Rehabilitation of stroke patients with a bioengineered “brain–computer interface with exoskeleton” system. Neurosci Behav Physiol. 2016;46:518–522. doi: 10.1007/s11055-016-0270-5.
    1. Bundy DT, Souders L, Baranyai K, Leonard L, Schalk G, Coker R, Moran DW, Huskey T, Leuthardt EC. Contralesional brain-computer interface control of a powered exoskeleton for motor recovery in chronic stroke survivors. Stroke. 2017;48:1908–1915. doi: 10.1161/STROKEAHA.116.016304.
    1. Ibáñez J, Monge-Pereira E, Molina-Rueda F, Serrano JI, Del Castillo MD, Cuesta-Gómez A, Carratalá-Tejada M, Cano-de-la-Cuerda R, Alguacil-Diego IM, Miangolarra-Page JC, et al. Low latency estimation of motor intentions to assist reaching movements along multiple sessions in chronic stroke patients: a feasibility study. Front Neurosci. 2017;11:126.
    1. Sullivan JL, Bhagat NA, Yozbatiran N, Paranjape R, Losey CG, Grossman RG, Contreras-Vidal JL, Francisco GE, O’Malley MK. Improving robotic stroke rehabilitation by incorporating neural intent detection: preliminary results from a clinical trial. IEEE Int Conf Rehabil Robot. 2017;2017:122–7. 10.1109/ICORR.2017.8009233.
    1. Nishimoto A, Kawakami M, Fujiwara T, Hiramoto M, Honaga K, Abe K, Mizuno K, Ushiba J, Liu M. Feasibility of task-specific brain-computer interface training for upper-extremity paralysis in patients with chronic hemiparetic stroke. J Rehabil Med. 2018;50:52–58. doi: 10.2340/16501977-2275.
    1. Chowdhury A, Meena YK, Raza H, Bhushan B, Uttam AK, Pandey N, Hashmi AA, Bajpai A, Dutta A, Prasad G. Active physical practice followed by mental practice using BCI-driven hand exoskeleton: a pilot trial for clinical effectiveness and usability. IEEE J Biomed Health Inform. 2018;22:1786–1795. doi: 10.1109/JBHI.2018.2863212.
    1. Norman SL, McFarland DJ, Miner A, Cramer SC, Wolbrecht ET, Wolpaw JR, Reinkensmeyer DJ. Controlling pre-movement sensorimotor rhythm can improve finger extension after stroke. . 2018;15. 10.1088/1741-2552/aad724.
    1. Remsik AB, Dodd K, Williams L, Jr, Thoma J, Jacobson T, Allen JD, Advani H, Mohanty R, McMillan M, Rajan S, et al. Behavioral outcomes following brain-computer interface intervention for upper extremity rehabilitation in stroke: a randomized controlled trial. Front Neurosci. 2018;12:752. doi: 10.3389/fnins.2018.00752.
    1. Tabernig CB, Lopez CA, Carrere LC, Spaich EG, Ballario CH. Neurorehabilitation therapy of patients with severe stroke based on functional electrical stimulation commanded by a brain computer interface. J Rehabil Assist Technol Eng. 2018;5. 10.1177/2055668318789280.
    1. Carino-Escobar RI, Carrillo-Mora P, Valdés-Cristerna R, Rodriguez-Barragan MA, Hernandez-Arenas C, Quinzaños-Fresnedo J, Galicia-Alvarado MA, Cantillo-Negrete J. Longitudinal analysis of stroke patients’ brain rhythms during an intervention with a brain-computer interface. . 2019. 10.1155/2019/7084618.
    1. Foong R, Ang KK, Quek C, Guan C, Phua KS, Kuah CWK, Deshmukh VA, Yam LHL, Rajeswaran DK, Tang N, et al. Assessment of the efficacy of EEG-based MI-BCI with visual feedback and EEG correlates of mental fatigue for upper-limb stroke rehabilitation. IEEE Trans Biomed Eng. 2019. 10.1109/TBME.2019.2921198.
    1. Rathee D, Chowdhury A, Meena YK, Dutta A, McDonough S, Prasad G. Brain-machine interface-driven post-stroke upper-limb functional recovery correlates with beta-band mediated cortical networks. IEEE Trans Neural Syst Rehabil Eng. 2019;27:1020–1031. doi: 10.1109/TNSRE.2019.2908125.
    1. Acciarresi M, Bogousslavsky J, Paciaroni M. Post-stroke fatigue: epidemiology, clinical characteristics and treatment. Eur Neurol. 2014;72:255–261. doi: 10.1159/000363763.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2. New York: Lawrence Erlbaum Associates; 1988.
    1. Frolov AA, Mokienko O, Lyukmanov RKH, Chernikova LA, Kotov SV, Turbina LG, Bobrov PD, Biryukova EV, Kondur AA, Icanova GE, et al. Preliminary results of a controlled study of BCI–exoskeleton technology efficacy in patients with poststroke arm paresis. Bulletin Of RSMU. 2016;2:16–23. doi: 10.24075/brsmu.2016-02-02.
    1. Guerra ZF, Lucchetti ALG, Lucchetti G. Motor imagery training after stroke: a systematic review and meta-analysis of randomized controlled trials. J Neurol Phys. 2017;41:205–214. doi: 10.1097/NPT.0000000000000200.
    1. Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev. 2018;9:CD006876.
    1. Howlett OA, Lannin NA, Ada L, McKinstry C. Functional electrical stimulation improves activity after stroke: a systematic review with meta-analysis. Arch Phys Med Rehabil. 2015;96:934–943. doi: 10.1016/j.apmr.2015.01.013.
    1. Wu CW, van Gelderen P, Hanakawa T, Yaseen Z, Cohen LG. Enduring representational plasticity after somatosensory stimulation. Neuroimage. 2005;27:872–884. doi: 10.1016/j.neuroimage.2005.05.055.
    1. Petrof I, Viaene AN, Sherman SM. Properties of the primary somatosensory cortex projection to the primary motor cortex in the mouse. J Neurophysiol. 2015;113:2400–2407. doi: 10.1152/jn.00949.2014.
    1. Fink AJ, Croce KR, Huang ZJ, Abbott LF, Jessell TM, Azim E. Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature. 2014;509:43–48. doi: 10.1038/nature13276.
    1. Asai T. Feedback control of one’s own action: self-other sensory attribution in motor control. Conscious Cogn. 2015;38:118–129. doi: 10.1016/j.concog.2015.11.002.
    1. Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E, et al. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci. 2016;18:86–100. doi: 10.1038/nrn.2016.164.
    1. Daly JJ, Wolpaw JR. Brain–computer interfaces in neurological rehabilitation. Lancet Neurol. 2008;7:1032–1043. doi: 10.1016/S1474-4422(08)70223-0.
    1. Thibaut A, Chatelle C, Ziegler E, Bruno MA, Laureys S, Gosseries O. Spasticity after stroke: physiology, assessment and treatment. Brain Inj. 2013;27:1093–1105. doi: 10.3109/02699052.2013.804202.
    1. Hsieh YW, Wang CH, Wu SC, Chen PC, Sheu CF, Hsieh CL. Establishing the minimal clinically important difference of the Barthel index in stroke patients. Neurorehabil Neural Repair. 2007;21:233–238. doi: 10.1177/1545968306294729.
    1. Wieloch T, Nikolich K. Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol. 2006;16:258–264. doi: 10.1016/j.conb.2006.05.011.
    1. Pekna M, Pekny M, Nilsson M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke. 2012;43:2819–2828. doi: 10.1161/STROKEAHA.112.654228.
    1. Wander JD, Blakely T, Miller KJ, Weaver KE, Johnson LA, Olson JD, Fetz EE, Rao RP, Ojemann JG. Distributed cortical adaptation during learning of a brain–computer interface task. Proc Natl Acad Sci U S A. 2013;110:10818–10823. doi: 10.1073/pnas.1221127110.
    1. Halder S, Agorastos D, Veit R, Hammer EM, Lee S, Varkuti B, Bogdan M, Rosenstiel W, Birbaumer N, Kübler A. Neural mechanisms of brain-computer interface control. Neuroimage. 2011;55:1779–1790. doi: 10.1016/j.neuroimage.2011.01.021.
    1. Sugawara K, Onishi H, Yamashiro K, Kirimoto H, Tsubaki A, Suzuki M, Tamaki H, Murakami H, Kameyama S. Activation of the human premotor cortex during motor preparation in visuomotor tasks. Brain Topogr. 2013;26:581–590. doi: 10.1007/s10548-013-0299-5.
    1. Dean PJ, Seiss E, Sterr A. Motor planning in chronic upper-limb hemiparesis: evidence from movement-related potentials. PLoS One. 2012;7:e44558. doi: 10.1371/journal.pone.0044558.
    1. McDonnell MN, Stinear CM. TMS measures of motor cortex function after stroke: a meta-analysis. Brain Stimul. 2017;10:721–734. doi: 10.1016/j.brs.2017.03.008.
    1. Bestmann S, Krakauer JW. The uses and interpretations of the motor-evoked potential for understanding behaviour. Exp Brain Res. 2015;233:679–689. doi: 10.1007/s00221-014-4183-7.
    1. Bembenek JP, Kurczych K, Karli Nski M, Czlonkowska A. The prognostic value of motor-evoked potentials in motor recovery and functional outcome after stroke: a systematic review of the literature. Funct Neurol. 2012;27:79–84.
    1. Mrachacz-Kersting N, Jiang N, Stevenson AJ, Niazi IK, Kostic V, Pavlovic A, Radovanovic S, Djuric-Jovicic M, Agosta F, Dremstrup K, et al. Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J Neurophysiol. 2016;115:1410–1421. doi: 10.1152/jn.00918.2015.
    1. Pichiorri F, De Vico FF, Cincotti F, Babiloni F, Molinari M, Kleih SC, Neuper C, Kübler A, Mattia D. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness. J Neural Eng. 2011;8:025020. doi: 10.1088/1741-2560/8/2/025020.
    1. Young BM, Nigogosyan Z, Walton LM, Song J, Nair VA, Grogan SW, Tyler ME, Edwards DF, Caldera K, Sattin JA, et al. Changes in functional brain organization and behavioral correlations after rehabilitative therapy using a brain-computer interface. Front Neuroeng. 2014;7:26.
    1. Xu J, Branscheidt M, Schambra H, Steiner L, Widmer M, Diedrichsen J, Goldsmith J, Lindquist M, Kitago T, Luft AR, et al. Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation. Ann Neurol. 2019;85:502–513. doi: 10.1002/ana.25452.

Source: PubMed

3
Předplatit