Key Players and Biomarkers of the Adaptive Immune System in the Pathogenesis of Sarcoidosis

Emily-Rose Zhou, Sergio Arce, Emily-Rose Zhou, Sergio Arce

Abstract

Sarcoidosis is a systemic inflammatory disease characterized by development of granulomas in the affected organs. Sarcoidosis is often a diagnosis of exclusion, and traditionally used tests for sarcoidosis demonstrate low sensitivity and specificity. We propose that accuracy of diagnosis can be improved if biomarkers of altered lymphocyte populations and levels of signaling molecules involved in disease pathogenesis are measured for patterns suggestive of sarcoidosis. These distinctive biomarkers can also be used to determine disease progression, predict prognosis, and make treatment decisions. Many subsets of T lymphocytes, including CD8+ T-cells and regulatory T-cells, have been shown to be dysfunctional in sarcoidosis, and the predominant CD4+ T helper cell subset in granulomas appears to be a strong indicator of disease phenotype and outcome. Studies of altered B cell populations, B cell signaling molecules, and immune complexes in sarcoidosis patients reveal promising biomarkers as well as possible explanations of disease etiology. Furthermore, examined biomarkers raise questions about new treatment methods and sarcoidosis antigens.

Keywords: B cells; T-cells; chemokines; cytokines; fibrosis; granuloma; macrophages; plasma cells; sarcoidosis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
An overview of the serum and bronchoalveolar lavage (BAL) fluid biomarkers produced by cells of the innate and adaptive immune system during granuloma development in sarcoidosis. Granulomas are tightly packaged clusters of cells comprising a central core of macrophages, epithelioid histiocytes, multinucleated giant cells and unknown sarcoid antigens surrounded by a lymphocyte collar. The lymphocyte collar contains, mainly, CD4+ T-cells, but CD8+ T-cells, Treg cells, B cells, plasma cells and fibroblasts can also be found. During granuloma development, a number of biomarkers are produced and released by these cells. CD4+ T lymphocytes are key players in granuloma formation. They differentiate into specific TH cell subtypes (i.e., TH1, TH2, T follicular helper (Tfh), TH17, TH17.1 and Treg) depending mainly on the cytokine microenvironment. The TH1, TH17 and TH17.1 subtypes produce inflammatory markers (i.e., Interferon (IFN)-γ, IL-17A, and IFN-γ/IL-17A, respectively). Through IL-2 production the TH1 subtype helps CD8+ T-cells differentiate into cytotoxic effectors which produce biomarkers of inflammation (i.e., perforin and granzyme), while the TH17 subtype attracts neutrophils via IL-17A and C-X-C motif ligand 8 (CXCL8), further contributing to inflammatory marker production. The TH2 and TH17 subtypes can secrete IL-4 (Interleukin-4)/IL-13 and Transforming Growth Factor β1 (TGF-β1), respectively, which are biomarkers of fibrosis. JAK-STAT signaling is strongly implicated in sarcoidosis pathogenesis with Signal Transducer and Activator of Transcription 3 (STAT3) and STAT1/STAT4 playing important roles in TH17 and TH1 cell differentiation, respectively. Altered mammalian target of rapamycin (mTOR) signaling negatively affects TH17 differentiation and production of TH17-associated inflammatory biomarkers. Through expression of CD40 Ligand (CD40L) and Inducible Co-stimulator (ICOS), the Tfh subtype helps B cells differentiate into plasma cells which secrete antibodies to sarcoid antigens. Sarcoid antigens and their specific antibodies form immune complexes that can potentially be used as specific biomarkers of sarcoidosis. The Treg subtype negatively controls production of inflammatory markers by the above-mentioned TH cell subsets. Natural killer T (NKT) cells (not shown) also modulate the CD4+ T-cell immune response. Macrophages are also important for granuloma formation and produce different biomarkers depending on their polarization state. M1 macrophages release inflammatory biomarkers (i.e., Serum Amyloid A (SAA), Chitotriosidase (CTO), IL-12, CXCL9, CXCL10, and CXCL11), while M2 macrophages produce biomarkers of fibrosis (i.e., C-C motif ligand 18 (CCL18) and Transforming Growth Factor β1 (TGF-β1)). Image created using BioRender.

References

    1. Bergantini L., Bianchi F., Cameli P., Mazzei M.A., Fui A., Sestini P., Rottoli P., Bargagli E. Prognostic Biomarkers of Sarcoidosis: A Comparative Study of Serum Chitotriosidase, ACE, Lysozyme, and KL-6. Dis. Markers. 2019;2019:8565423. doi: 10.1155/2019/8565423.
    1. Tarasidis A., Arce S. Immune Response Biomarkers as Indicators of Sarcoidosis Presence, Prognosis, and Possible Treatment: An Immunopathogenic Perspective. Autoimmun. Rev. 2020;19:102462. doi: 10.1016/j.autrev.2020.102462.
    1. Culver D.A., Baughman R.P. It’s Time to Evolve from Scadding: Phenotyping Sarcoidosis. Eur. Respir. J. 2018;51:1800050. doi: 10.1183/13993003.00050-2018.
    1. Shamaei M., Mortaz E., Pourabdollah M., Garssen J., Tabarsi P., Velayati A., Adcock I.M. Evidence for M2 Macrophages in Granulomas from Pulmonary Sarcoidosis: A New Aspect of Macrophage Heterogeneity. Hum. Immunol. 2018;79:63–69. doi: 10.1016/j.humimm.2017.10.009.
    1. Lee N.S., Barber L., Kanchwala A., Childs C.J., Kataria Y.P., Judson M.A., Mazer M.A., Arce S. Low Levels of NF-kappaB/p65 Mark Anergic CD4+ T Cells and Correlate with Disease Severity in Sarcoidosis. Clin. Vaccine Immunol. 2011;18:223–234. doi: 10.1128/CVI.00469-10.
    1. Welker L., Jörres R.A., Costabel U., Magnussen H. Predictive Value of Bal Cell Differentials in The Diagnosis of Interstitial Lung Diseases. Eur. Respir. J. 2004;24:1000–1006. doi: 10.1183/09031936.04.00101303.
    1. Shen Y., Pang C., Wu Y., Li D., Wan C., Liao Z., Yang T., Chen L., Wen F. Diagnostic Performance of Bronchoalveolar Lavage Fluid CD4/CD8 Ratio for Sarcoidosis: A Meta-Analysis. EBioMedicine. 2016;8:302–308. doi: 10.1016/j.ebiom.2016.04.024.
    1. Moller D.R., Forman J.D., Liu M.C., Noble P.W., Greenlee B.M., Vyas P., Holden D.A., Forrester J.M., Lazarus A., Wysocka M., et al. Enhanced Expression of IL-12 Associated with Th1 Cytokine Profiles in Active Pulmonary Sarcoidosis. J. Immunol. 1996;156:4952–4960.
    1. Wojtan P., Mierzejewski M., Osińska I., Domagała-Kulawik J. Macrophage Polarization in Interstitial Lung Diseases. Central Eur. J. Immunol. 2016;41:159–164. doi: 10.5114/ceji.2016.60990.
    1. Xaus J., Besalduch N., Comalada M., Marcoval J., Pujol R., Mañá J., Celada A. High Expression of p21 Waf1 in Sarcoid Granulomas: A Putative Role for Long-Lasting Inflammation. J. Leukoc. Biol. 2003;74:295–301. doi: 10.1189/jlb.1202628.
    1. Urbankowski T., Hoser G., Domagała-Kulawik J. Th1/Th2/Th17/-Related Cytokines in The Bronchoalveolar Lavage Fluid of Patients with Sarcoidosis: Association with Smoking. Pol. Arch. Intern. Med. 2012;122:320–325. doi: 10.20452/pamw.1341.
    1. Okamoto H., Mizuno K., Horio T. Monocyte-Derived Multinucleated Giant Cells and Sarcoidosis. J. Dermatol. Sci. 2003;31:119–128. doi: 10.1016/S0923-1811(02)00148-2.
    1. Nishioka Y., Manabe K., Kishi J., Wang W., Inayama M., Azuma M., Sone S. CXCL9 and 11 in Patients with Pulmonary Sarcoidosis: A Role of Alveolar Macrophages. Clin. Exp. Immunol. 2007;149:317–326. doi: 10.1111/j.1365-2249.2007.03423.x.
    1. Thi Hong Nguyen C., Kambe N., Kishimoto I., Ueda-Hayakawa I., Okamoto H. Serum Soluble Interleukin-2 Receptor Level is More Sensitive than Angiotensin-Converting Enzyme or Lysozyme for Diagnosis of Sarcoidosis and may be a Marker of Multiple Organ Involvement. J. Dermatol. 2017;44:789–797. doi: 10.1111/1346-8138.13792.
    1. Katchar K., Eklund A., Grunewald J. Expression of Th1 Markers by Lung Accumulated T Cells in Pulmonary Sarcoidosis. J. Intern. Med. 2003;254:564–571. doi: 10.1111/j.1365-2796.2003.01230.x.
    1. Oltmanns U., Schmidt B., Hoernig S., Witt C., John M. Increased Spontaneous Interleukin-10 Release from Alveolar Macrophages in Active Pulmonary Sarcoidosis. Exp. Lung Res. 2003;29:315–328. doi: 10.1080/01902140303786.
    1. Bonham C.A., Strek M.E., Patterson K.C. From Granuloma to Fibrosis. Curr. Opin. Pulm. Med. 2016;22:484–491. doi: 10.1097/MCP.0000000000000301.
    1. Minshall E., Tsicopoulos A., Yasruel Z., Wallaert B., Akoum H., Vorng H., Tonnel A.-B., Hamid Q. Cytokine mRNA gene expression in active and nonactive pulmonary sarcoidosis. Eur. Respir. J. 1997;10:2034–2039. doi: 10.1183/09031936.97.10092034.
    1. Wahlström J., Katchar K., Wigzell H., Olerup O., Eklund A., Grunewald J. Analysis of Intracellular Cytokines in CD4 + and CD8 + Lung and Blood T Cells in Sarcoidosis. Am. J. Respir. Crit. Care Med. 2001;163:115–121. doi: 10.1164/ajrccm.163.1.9906071.
    1. Oswald-Richter K.A., Richmond B.W., Braun N.A., Isom J., Abraham S., Taylor T.R., Drake J.M., Culver D.A., Wilkes D.S., Drake W.P. Reversal of Global CD4+ Subset Dysfunction is Associated with Spontaneous Clinical Resolution of Pulmonary Sarcoidosis. J. Immunol. 2013;190:5446–5453. doi: 10.4049/jimmunol.1202891.
    1. Blank C.U., Haining W.N., Held W., Hogan P.G., Kallies A., Lugli E., Lynn R.C., Philip M., Rao A., Restifo N.P., et al. Defining ‘T Cell Exhaustion’. Nat. Rev. Immunol. 2019;19:665–674. doi: 10.1038/s41577-019-0221-9.
    1. Bronstein-Sitton N., Cohen-Daniel L., Vaknin I., Ezernitchi A.V., Leshem B., Halabi A., Houri-Hadad Y., Greenbaum E., Zakay-Rones Z., Shapira L., et al. Sustained Exposure to Bacterial Antigen Induces Interferon-Gamma-Dependent T Cell Receptor Zeta Down-Regulation and Impaired T Cell Function. Nat. Immunol. 2003;4:957–964. doi: 10.1038/ni975.
    1. Grewal I.S., Flavell R.A. CD40 and CD154 in Cell-Mediated Immunity. Annu. Rev. Immunol. 1998;16:111–135. doi: 10.1146/annurev.immunol.16.1.111.
    1. Braun N.A., Celada L.J., Herazo-Maya J.D., Abraham S., Shaginurova G., Sevin C.M., Grutters J., Culver D.A., Dworski R., Sheller J., et al. Blockade of the Programmed Death-1 Pathway Restores Sarcoidosis CD4(+) T-Cell Proliferative Capacity. Am. J. Respir. Crit. Care Med. 2014;190:560–571. doi: 10.1164/rccm.201401-0188OC.
    1. D’Ambrosio D., Iellem A., Bonecchi R., Mazzeo D., Sozzani S., Mantovani A., Sinigaglia F. Selective Up-Regulation of Chemokine Receptors CCR4 and CCR8 upon Activation of Polarized Human Type 2 Th cells. J. Immunol. 1998;161:5111–5115.
    1. Nguyen C.T.H., Kambe N., Ueda-Hayakawa I., Kishimoto I., Ly N.T.M., Mizuno K., Okamoto H. TARC Expression in the Circulation and Cutaneous Granulomas Correlates with Disease Severity and Indicates Th2-Mediated Progression in Patients with Sarcoidosis. Allergol. Int. 2018;67:487–495. doi: 10.1016/j.alit.2018.02.011.
    1. Gagliani N., Huber S. Basic Aspects of T Helper Cell Differentiation. Methods Mol. Biol. 2016;1514:19–30. doi: 10.1007/978-1-4939-6548-9_2.
    1. Milburn H.J., Poulter L.W., Dilmec A., Cochrane G.M., Kemeny D.M. Corticosteroids Restore the Balance between Locally Produced Th1 and Th2 Cytokines and Immunoglobulin Isotypes to Normal in Sarcoid Lung. Clin. Exp. Immunol. 1997;108:105–113. doi: 10.1046/j.1365-2249.1997.d01-979.x.
    1. Partida-Zavala N., Antonio Ponce-Gallegos M., Buendia-Roldan I., Falfan-Valencia R. Type 2 Macrophages and Th2 CD4+ Cells in Interstitial Lung Diseases (ILDs): An Overview. Sarcoidosis Vasc. Diffuse Lung Dis. 2018;35:98–108.
    1. Song E., Ouyang N., Hörbelt M., Antus B., Wang M., Exton M.S. Influence of Alternatively and Classically Activated Macrophages on Fibrogenic Activities of Human Fibroblasts. Cell. Immunol. 2000;204:19–28. doi: 10.1006/cimm.2000.1687.
    1. Ruytinx P., Proost P., Van Damme J., Struyf S. Chemokine-Induced Macrophage Polarization in Inflammatory Conditions. Front. Immunol. 2018;9:9. doi: 10.3389/fimmu.2018.01930.
    1. Hauber H.-P., Gholami D., Meyer A., Pforte A. Increased Interleukin-13 Expression in Patients with Sarcoidosis. Thorax. 2003;58:519–524. doi: 10.1136/thorax.58.6.519.
    1. Prasse A., Pechkovsky D.V., Toews G.B., Jungraithmayr W., Kollert F., Goldmann T., Vollmer E., Müller-Quernheim J., Zissel G.A. Vicious Circle of Alveolar Macrophages and Fibroblasts Perpetuates Pulmonary Fibrosis Via CCL18. Am. J. Respir. Crit. Care Med. 2006;173:781–792. doi: 10.1164/rccm.200509-1518OC.
    1. Bargagli E., Magi B., Olivieri C., Bianchi N., Landi C., Rottoli P. Analysis of Serum Amyloid A in Sarcoidosis Patients. Respir. Med. 2011;105:775–780. doi: 10.1016/j.rmed.2010.12.010.
    1. Chen E.S., Song Z., Willett M.H., Heine S., Yung R.C., Liu M.C., Groshong S.D., Zhang Y., Tuder R.M., Moller D.R. Serum Amyloid A Regulates Granulomatous Inflammation in Sarcoidosis through Toll-like Receptor-2. Am. J. Respir. Crit. Care Med. 2010;181:360–373. doi: 10.1164/rccm.200905-0696OC.
    1. Dinarello C.A., Novick D., Kim S., Kaplanski G. Interleukin-18 and IL-18 Binding Protein. Front. Immunol. 2013;4:289. doi: 10.3389/fimmu.2013.00289.
    1. Lee J.-Y., Hall J.A., Kroehling L., Wu L., Najar T., Nguyen H.H., Lin W.-Y., Yeung S.T., Silva H.M., Li D., et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79–91.e16. doi: 10.1016/j.cell.2019.11.026.
    1. Elmonem M.A., van den Heuvel L.P., Levtchenko E.N. Immunomodulatory Effects of Chitotriosidase Enzyme. Enzym. Res. 2016;2016:2682680. doi: 10.1155/2016/2682680.
    1. Bennett D., Cameli P., Lanzarone N., Carobene L., Bianchi N., Fui A., Rizzi L., Bergantini L., Cillis G., d’Alessandro M., et al. Chitotriosidase: A Biomarker of Activity and Severity in Patients with Sarcoidosis. Respir. Res. 2020;21:6–19. doi: 10.1186/s12931-019-1263-z.
    1. Popević S., Šumarac Z., Jovanović D., Babić D., Stjepanović M., Jovičić S., Šobić-Šaranović D., Filipović S., Gvozdenović B., Omčikus M., et al. Verifying Sarcoidosis Activity: Chitotriosidase Versus ACE in Sarcoidosis—A Case-Control Study. J. Med Biochem. 2016;35:390–400. doi: 10.1515/jomb-2016-0017.
    1. Wiesner D.L., Specht C.A., Lee C.K., Smith K.D., Mukaremera L., Lee S.T., Lee C.-G., Elias J.A., Nielsen J.N., Boulware D.R., et al. Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection. PLoS Pathog. 2015;11:e1004701. doi: 10.1371/journal.ppat.1004701.
    1. Lee G.R. The Balance of Th17 versus Treg Cells in Autoimmunity. Int. J. Mol. Sci. 2018;19:730. doi: 10.3390/ijms19030730.
    1. Ramstein J., Broos C.E., Simpson L.J., Ansel K.M., Sun S.A., Ho M.E., Woodruff P.G., Bhakta N.R., Christian L., Nguyen C.P., et al. IFN-γ–Producing T-Helper 17.1 Cells are Increased in Sarcoidosis and are More Prevalent than T-Helper Type 1 Cells. Am. J. Respir. Crit. Care Med. 2016;193:1281–1291. doi: 10.1164/rccm.201507-1499OC.
    1. Broos C.E., Koth L.L., van Nimwegen M., In ‘t Veen J.C.M., Paulissen S.M.J., van Hamburg J.P., Annema J.T., Heller-Baan R., Kleinjan A., Hoogsteden H.C., et al. Increased T-helper 17.1 Cells in Sarcoidosis Mediastinal Lymph Nodes. Eur. Respir. J. 2018;51:1701124. doi: 10.1183/13993003.01124-2017.
    1. Crouser E.D. Role of imbalance between Th17 and regulatory T-cells in sarcoidosis. Curr. Opin. Pulm. Med. 2018;24:521–526. doi: 10.1097/MCP.0000000000000498.
    1. Georas S.N., Chapman T.J., Crouser E.D. Sarcoidosis and T-Helper Cells. Th1, Th17, or Th17.1? Am. J. Respir. Crit. Care Med. 2016;193:27248588. doi: 10.1164/rccm.201512-2419ED.
    1. Nistala K., Adams S., Cambrook H., Ursu S., Olivito B., de Jager W., Evans J.G., Cimaz R., Bajaj-Elliott M., Wedderburn L.R. Th17 Plasticity in Human Autoimmune Arthritis is Driven by the Inflammatory Environment. Proc. Natl. Acad. Sci. USA. 2010;107:14751–14756. doi: 10.1073/pnas.1003852107.
    1. Celada L.J., Kropski J.A., Herazo-Maya J.D., Luo W., Creecy A., Abad A.T., Chioma O.S., Lee G., Hassell N.E., Shaginurova G., et al. PD-1 Up-Regulation on CD4+ T Cells Promotes Pulmonary Fibrosis through STAT3-Mediated IL-17A and TGF-β1 Production. Sci. Transl. Med. 2018;10:eaar8356. doi: 10.1126/scitranslmed.aar8356.
    1. Kaiser Y., Lepzien R., Kullberg S., Eklund A., Smed-Sorensen A., Grunewald J. Expanded Lung T-bet+RORgammaT+ CD4+ T-Cells in Sarcoidosis Patients with a Favourable Disease Phenotype. Eur. Respir. J. 2016;48:484–494. doi: 10.1183/13993003.00092-2016.
    1. Pelletier M., Maggi L., Micheletti A., Lazzeri E., Tamassia N., Costantini C., Cosmi L., Lunardi C., Annunziato F., Romagnani S., et al. Evidence for a Cross-Talk between Human Neutrophils and Th17 Cells. Blood. 2010;115:335–343. doi: 10.1182/blood-2009-04-216085.
    1. Ocal N., Dogan D., Ocal R., Tozkoparan E., Deniz O., Ucar E., Gumus S., Tasci C., Yildiz B., Taskin G., et al. Effects of Radiological Extent on Neutrophil/Lymphocyte Ratio in Pulmonary Sarcoidosis. Eur. Rev. Med. Pharmacol. Sci. 2016;20:709–714.
    1. Ziegenhagen M.W., Rothe M.E., Schlaak M., Müller-Quernheim J. Bronchoalveolar and Serological Parameters Reflecting the Severity of Sarcoidosis. Eur. Respir. J. 2003;21:407–413. doi: 10.1183/09031936.03.00010403.
    1. Mirsaeidi M., Mortaz E., Omar H.R., Camporesi E.M., Sweiss N. Association of Neutrophil to Lymphocyte Ratio and Pulmonary Hypertension in Sarcoidosis Patients. Tanaffos. 2016;15:44–47.
    1. Arakelyan A., Kriegova E., Kubištova Z., Mrazek F., Kverka M., du Bois R.M., Kolek V., Petrek M. Protein Levels of CC Chemokine Ligand (CCL)15, CCL16 and Macrophage Stimulating Protein in Patients with Sarcoidosis. Clin. Exp. Immunol. 2009;155:457–465. doi: 10.1111/j.1365-2249.2008.03832.x.
    1. Ramesh R., Kozhaya L., McKevitt K., Djuretic I.M., Carlson T.J., Quintero M.A., McCauley J.L., Abreu M.T., Unutmaz D., Sundrud M.S. Pro-Inflammatory Human Th17 Cells Selectively Express P-Glycoprotein and are Refractory to Glucocorticoids. J. Exp. Med. 2014;211:89–104. doi: 10.1084/jem.20130301.
    1. Broos C.E., van Nimwegen M., Kleinjan A., ten Berge B., Muskens F., In ‘t Veen J.C.M., Annema J.T., Lambrecht B.N., Hoogsteden H.C., Hendriks R.W., et al. Impaired Survival of Regulatory T Cells in Pulmonary Sarcoidosis. Respir. Res. 2015;16:108. doi: 10.1186/s12931-015-0265-8.
    1. Ozdemir O.K., Celik G., Dalva K., Ulger F., Elhan A., Beksac M. High CD95 Expression of BAL Lymphocytes Predicts Chronic Course in Patients with Sarcoidosis. Respirology. 2007;12:869–873. doi: 10.1111/j.1440-1843.2007.01151.x.
    1. Kachamakova-Trojanowska N., Jazwa-Kusior A., Szade K., Kasper Ł., Soja J., Andrychiewicz A., Jakiela B., Plutecka H., Sanak M., Jozkowicz A., et al. Molecular Profiling of Regulatory T Cells in Pulmonary Sarcoidosis. J. Autoimmun. 2018;94:56–69. doi: 10.1016/j.jaut.2018.07.012.
    1. Broos C.E., van Nimwegen M., In ‘t Veen J.C.M., Hoogsteden H.C., Hendriks R., van den Blink B., Kool M. Decreased Cytotoxic T-Lymphocyte Antigen 4 Expression on Regulatory T Cells and Th17 Cells in Sarcoidosis: Double Trouble? Am. J. Respir. Crit. Care Med. 2015;192:763–765. doi: 10.1164/rccm.201503-0635LE.
    1. Liu Y., Qiu L., Wang Y., Aimurola H., Zhao Y., Li S., Xu Z. The Circulating Treg/Th17 Cell Ratio is Correlated with Relapse and Treatment Response in Pulmonary Sarcoidosis Patients after Corticosteroid Withdrawal. PLoS ONE. 2016;11:e0148207. doi: 10.1371/journal.pone.0148207.
    1. Basdeo S.A., Cluxton D., Sulaimani J., Moran B., Canavan M., Orr C., Veale D.J., Fearon U., Fletcher J.M. Ex-Th17 (Nonclassical Th1) Cells Are Functionally Distinct from Classical Th1 and Th17 Cells and are Not Constrained by Regulatory T Cells. J. Immunol. 2017;198:2249–2259. doi: 10.4049/jimmunol.1600737.
    1. Sakthivel P., Grunewald J., Eklund A., Bruder D., Wahlström J. Pulmonary Sarcoidosis is Associated with High-Level Inducible Co-Stimulator (ICOS) Expression on Lung Regulatory T Cells—Possible Implications for the ICOS/ICOS-Ligand Axis in Disease Course and Resolution. Clin. Exp. Immunol. 2016;183:294–306. doi: 10.1111/cei.12715.
    1. Strauss L., Bergmann C., Szczepanski M.J., Lang S., Kirkwood J.M., Whiteside T.L. Expression of ICOS on Human Melanoma-Infiltrating CD4+CD25highFoxp3+ T Regulatory Cells: Implications and Impact on Tumor-Mediated Immune Suppression. J. Immunol. 2008;180:2967–2980. doi: 10.4049/jimmunol.180.5.2967.
    1. Korosec P., Rijavec M., Silar M., Kern I., Kosnik M., Osolnik K. Deficiency of Pulmonary Valpha24 Vbeta11 Natural Killer T Cells in Corticosteroid-Naive Sarcoidosis Patients. Respir. Med. 2010;104:571–577. doi: 10.1016/j.rmed.2009.11.008.
    1. Rijavec M., Volarevic S., Osolnik K., Kosnik M., Korošec P. Natural Killer T Cells in Pulmonary Disorders. Respir. Med. 2011;105(Suppl. S1):S20–S25. doi: 10.1016/S0954-6111(11)70006-3.
    1. Katchar K., Soderstrom K., Wahlstrom J., Eklund A., Grunewald J. Characterisation of Natural Killer Cells and CD56+ T-Cells in Sarcoidosis Patients. Eur. Respir. J. 2005;26:77–85. doi: 10.1183/09031936.05.00030805.
    1. Parasa V.R., Forsslund H., Enger T., Lorenz D., Kullberg S., Eklund A., Sköld M., Wahlström J., Grunewald J., Brighenti S. Enhanced CD8+ Cytolytic T Cell Responses in the Peripheral Circulation of Patients with Sarcoidosis and Non-Löfgren’s Disease. Respir. Med. 2018;138:S38–S44. doi: 10.1016/j.rmed.2017.10.006.
    1. Movafagh A., Heydary H., Mortazavi-Tabatabaei S.A., Azargashb E. The Significance Application of Indigenous Phytohemagglutinin (PHA) Mitogen on Metaphase and Cell Culture Procedure. Iran. J. Pharm. Res. 2011;10:895–903.
    1. Ross S.H., Cantrell D.A. Signaling and Function of Interleukin-2 in T Lymphocytes. Annu. Rev. Immunol. 2018;36:411–433. doi: 10.1146/annurev-immunol-042617-053352.
    1. Saraiva D., Jacinto A., Borralho P., Braga S., Cabral M.G. HLA-DR in Cytotoxic T Lymphocytes Predicts Breast Cancer Patients’ Response to Neoadjuvant Chemotherapy. Front. Immunol. 2018;9:2605. doi: 10.3389/fimmu.2018.02605.
    1. Tøndell A., Rø A.D., Åsberg A., Børset M., Moen T., Sue-Chu M. Activated CD8+ T Cells and NKT Cells in BAL Fluid Improve Diagnostic Accuracy in Sarcoidosis. Lung. 2013;192:133–140. doi: 10.1007/s00408-013-9527-8.
    1. Heaps A., Varney V., Bhaskaran S., Ford B., Mosley A., Sadler R., Ayers L., Evans J., Warner A., Hayman G., et al. Patients with Chronic Sarcoidosis have Reduced CD27+IgM+IgD+ Unswitched Memory B cells and an Expanded Population of Terminal Effector CD8+CD27-CD28- T cells. J. Clin. Cell. Immunol. 2012;3:132. doi: 10.4172/2155-9899.1000132.
    1. Heron M., Claessen A.M., Grutters J.C., van den Bosch J.M. T-Cell Activation Profiles in Different Granulomatous Interstitial Lung Diseases—A Role for CD8+CD28(Null) Cells? Clin. Exp. Immunol. 2010;160:256–265. doi: 10.1111/j.1365-2249.2009.04076.x.
    1. Kamphuis L.S., van Zelm M.C., Lam K.H., Rimmelzwaan G.F., Baarsma G.S., Dik W.A., Thio H.B., van Daele P.L., van Velthoven M.E., Batstra M.R., et al. Perigranuloma Localization and Abnormal Maturation of B Cells. Am. J. Respir. Crit. Care Med. 2013;187:406–416. doi: 10.1164/rccm.201206-1024OC.
    1. Kudryavtsev I., Serebriakova M., Starshinova A., Zinchenko Y., Basantsova N., Malkova A., Soprun L., Churilov L.P., Toubi E., Yablonskiy P., et al. Imbalance in B cell and T Follicular Helper Cell Subsets in Pulmonary Sarcoidosis. Sci. Rep. 2020;10:1–10. doi: 10.1038/s41598-020-57741-0.
    1. Morita R., Schmitt N., Bentebibel S.E., Ranganathan R., Bourdery L., Zurawski G., Foucat E., Dullaers M., Oh S., Sabzghabaei N., et al. Human Blood CXCR5(+) CD4(+) T Cells are Counterparts of T Follicular Cells and Contain Specific Subsets that Differentially Support Antibody Secretion. Immunity. 2011;34:108–121. doi: 10.1016/j.immuni.2010.12.012.
    1. Saussine A., Tazi A., Feuillet S., Rybojad M., Juillard C., Bergeron A., Dessirier V., Bouhidel F., Janin A., Bensussan A., et al. Active Chronic Sarcoidosis is Characterized by Increased Transitional Blood B Cells, Increased IL-10-Producing Regulatory B Cells and High BAFF Levels. PLoS ONE. 2012;7:e43588. doi: 10.1371/journal.pone.0043588.
    1. León B., Ballesteros-Tato A., Misra R.S., Wojciechowski W., Lund F.E. Unraveling Effector Functions of B Cells during Infection: The Hidden World Beyond Antibody Production. Infect. Disord. Drug Targets. 2012;12:213–221. doi: 10.2174/187152612800564437.
    1. Ando M., Goto A., Takeno Y., Yamasue M., Komiya K., Umeki K., Nureki S.-I., Miyazaki E., Kadota J.-I. Significant Elevation of the Levels of B-Cell Activating Factor (BAFF) in Patients with Sarcoidosis. Clin. Rheumatol. 2018;37:2833–2838. doi: 10.1007/s10067-018-4183-2.
    1. Johnson N.M., NcNicol M.W., Burton-Kee J.E., Mowbray J.F. Circulating Immune Complexes in Sarcoidosis. Thorax. 1980;35:286–289. doi: 10.1136/thx.35.4.286.
    1. Suzuki Y., Uchida K., Takemura T., Sekine M., Tamura T., Furukawa A., Hebisawa A., Sakakibara Y., Awano N., Amano T., et al. Propionibacterium Acnes-Derived Insoluble Immune Complexes in Sinus Macrophages of Lymph Nodes Affected by Sarcoidosis. PLoS ONE. 2018;13:e0192408. doi: 10.1371/journal.pone.0192408.
    1. Goyal B., Sheikh J.A., Agarwal R., Verma I. Levels of Circulating Immune Complexes Containing Mycobacterium Tuberculosis-Specific Antigens in Pulmonary Tuberculosis and Sarcoidosis Patients. Indian J. Med. Microbiol. 2017;35:290–292.
    1. Hua Z., Hou B. TLR Signaling in B-Cell Development and Activation. Cell. Mol. Immunol. 2012;10:103–106. doi: 10.1038/cmi.2012.61.
    1. Lee N.-S., Barber L., Akula S.M., Sigounas G., Kataria Y.P., Arce S. Disturbed Homeostasis and Multiple Signaling Defects in the Peripheral Blood B-Cell Compartment of Patients with Severe Chronic Sarcoidosis. Clin. Vaccine Immunol. 2011;18:1306–1316. doi: 10.1128/CVI.05118-11.
    1. Martinez G.J., Hu J.K., Pereira R.M., Crampton J.S., Togher S., Bild N., Crotty S., Rao A. Cutting Edge: NFAT Transcription Factors Promote the Generation of Follicular Helper T Cells in Response to Acute Viral Infection. J. Immunol. 2016;196:2015–2019. doi: 10.4049/jimmunol.1501841.
    1. Gharib S.A., Malur A., Huizar I., Barna B.P., Kavuru M.S., Schnapp L.M., Thomassen M.J. Sarcoidosis Activates Diverse Transcriptional Programs in Bronchoalveolar Lavage Cells. Respir. Res. 2016;17:93–104. doi: 10.1186/s12931-016-0411-y.
    1. Christophi G.P., Caza T., Curtiss C., Gumber D., Massa P.T., Landas S.K. Gene Expression Profiles in Granuloma Tissue Reveal Novel Diagnostic Markers in Sarcoidosis. Exp. Mol. Pathol. 2014;96:393–399. doi: 10.1016/j.yexmp.2014.04.006.
    1. Damsky W., Thakral D., Emeagwali N., Galan A., King B. Tofacitinib Treatment and Molecular Analysis of Cutaneous Sarcoidosis. New Engl. J. Med. 2018;379:2540–2546. doi: 10.1056/NEJMoa1805958.
    1. Calender A., Weichhart T., Valeyre D., Pacheco Y. Current Insights in Genetics of Sarcoidosis: Functional and Clinical Impacts. J. Clin. Med. 2020;9:2633. doi: 10.3390/jcm9082633.
    1. Calender A., Lim C.X., Weichhart T., Buisson A., Besnard V., Rollat-Farnier P.A., Bardel C., Roy P., Cottin V., Devouassoux G., et al. Exome Sequencing and Pathogenicity-Network Analysis of Five French Families Implicate mTOR Signalling and Autophagy in Familial Sarcoidosis. Eur. Respir. J. 2019;54:1900430. doi: 10.1183/13993003.00430-2019.
    1. Zhang Q., Huang H., Wang N., Fang C.L., Jing X.Y., Guo J., Sun W., Yu C., Yang X.Y., Xu Z.J. Whole exome sequencing and analysis of a Chinese family with familial pulmonary sarcoidosis. Chin. J. Tuberc. Respir. Dis. 2020;43:525–531.
    1. Celada L.J., Drake W.P. Targeting CD4+ T Cells for the Treatment of Sarcoidosis: A Promising Strategy? Immunotherapy. 2015;7:57–66. doi: 10.2217/imt.14.103.
    1. Marmor M.F. Modern Management of Antimalarial Usage and Retinopathy. J. Curr. Ophthalmol. 2017;29:143–144. doi: 10.1016/j.joco.2017.07.001.
    1. Zella S., Kneiphof J., Haghikia A., Gold R., Woitalla D., Thöne J. Successful Therapy with Rituximab in Three Patients with Probable Neurosarcoidosis. Ther. Adv. Neurol. Disord. 2018;11:1756286418805732. doi: 10.1177/1756286418805732.
    1. Galimberti F., Fernandez A.P. Sarcoidosis Following Successful Treatment of Pemphigus Vulgaris with Rituximab: A Rituximab-Induced Reaction Further Supporting B-cell Contribution to Sarcoidosis Pathogenesis? Clin. Exp. Dermatol. 2016;41:413–416. doi: 10.1111/ced.12793.
    1. Colliou N., Picard D., Caillot F., Calbo S., Le Corre S., Lim A., Lemercier B., Le Mauff B., Maho-Vaillant M., Jacquot S., et al. Long-Term Remissions of Severe Pemphigus After Rituximab Therapy are Associated with Prolonged Failure of Desmoglein B Cell Response. Sci. Transl. Med. 2013;5:175ra30. doi: 10.1126/scitranslmed.3005166.
    1. Eberhardt C., Thillai M., Parker R., Siddiqui N., Potiphar L., Goldin R., Timms J.F., Wells A.U., Kon O.M., Wickremasinghe M., et al. Proteomic Analysis of Kveim Reagent Identifies Targets of Cellular Immunity in Sarcoidosis. PLoS ONE. 2017;12:e0170285. doi: 10.1371/journal.pone.0170285.
    1. Rotsinger J.E., Celada L.J., Polosukhin V.V., Atkinson J.B., Drake W.P. Molecular Analysis of Sarcoidosis Granulomas Reveals Antimicrobial Targets. Am. J. Respir. Cell Mol. Biol. 2016;55:128–134. doi: 10.1165/rcmb.2015-0212OC.
    1. Sia J.K., Rengarajan J. Immunology of Mycobacterium Tuberculosis Infections. Microbiol. Spectr. 2019;7 doi: 10.1128/microbiolspec.GPP3-0022-2018.
    1. Song Z., Marzilli L., Greenlee B.M., Chen E.S., Silver R.F., Askin F.B., Teirstein A.S., Zhang Y., Cotter R.J., Moller D.R. Mycobacterial Catalase–Peroxidase is a Tissue Antigen and Target of the Adaptive Immune Response in Systemic Sarcoidosis. J. Exp. Med. 2005;201:755–767. doi: 10.1084/jem.20040429.

Source: PubMed

3
Předplatit