Biomarkers in the Diagnosis and Prognosis of Sarcoidosis: Current Use and Future Prospects

Raisa Kraaijvanger, Montse Janssen Bonás, Adriane D M Vorselaars, Marcel Veltkamp, Raisa Kraaijvanger, Montse Janssen Bonás, Adriane D M Vorselaars, Marcel Veltkamp

Abstract

Sarcoidosis is a heterogeneous disease in terms of presentation, duration, and severity. Due to this heterogeneity, it is difficult to align treatment decisions. Biomarkers have proved to be useful for the diagnosis and prognosis of many diseases, and over the years, many biomarkers have been proposed to facilitate diagnosis, prognosis, and treatment decisions. Unfortunately, the ideal biomarker for sarcoidosis has not yet been discovered. The most commonly used biomarkers are serum and bronchoalveolar lavage biomarkers, but these lack the necessary specificity and sensitivity. In sarcoidosis, therefore, a combination of these biomarkers is often used to establish a proper diagnosis or detect possible progression. Other potential biomarkers include imaging tools and cell signaling pathways. Fluor-18-deoxyglucose positron emission tomography and high-resolution computed tomography have been proven to be more sensitive for the diagnosis and prognosis of both pulmonary and cardiac sarcoidosis than the serum biomarkers ACE and sIL-2R. There is an upcoming role for exploration of signaling pathways in sarcoidosis pathogenesis. The JAK/STAT and mTOR pathways in particular have been investigated because of their role in granuloma formation. The activation of these signaling pathways also proved to be a specific biomarker for the prognosis of sarcoidosis. Furthermore, both imaging and cell signaling biomarkers also enable patients who might benefit from a particular type of treatment to be distinguished from those who will not. In conclusion, the diagnostic and prognostic path of sarcoidosis involves many different types of existing and new biomarker. Research addressing biomarkers and disease pathology is ongoing in order to find the ideal sensitive and specific biomarker for this disease.

Keywords: biomarkers; bronchoalveolar lavage; future biomarkers; imaging biomarkers; sarcoidosis; serum.

Copyright © 2020 Kraaijvanger, Janssen Bonás, Vorselaars and Veltkamp.

Figures

Figure 1
Figure 1
An integrated overview of serum and bronchoalveolar lavage fluid biomarkers produced by cells of the innate and adaptive immune system, involved in the formation of granulomas in sarcoidosis. The sarcoidosis granuloma consists of a tightly formed core of epithelioid and multinucleated-giant cells (MGCs) encircled especially by T helper (Th) cells, but also by B cells, macrophages and dendritic cells (DCs). During this granuloma formation a variety of biomarkers is released by these inflammatory cells. Macrophages are key players in granuloma formation and produce a number of inflammatory biomarkers [e.g., serum angiotensin-converting enzyme (sACE), lysozyme, neopterin, CD163, C-C motive chemokine ligand 18 (CCL18), serum amyloid A (SAA)]. Macrophages activate T-cells by presenting a triggering antigen, which results in an upregulated expression of soluble interleukin 2 receptor (sIL-2R). Apart from T-cells, B-cells also have shown to play a role in granuloma formation. Crucial for the B-cell maturation and function is the biomarker B-cell activating factor (BAFF). All these biomarkers may be useful for the diagnosis and prognosis of sarcoidosis. Figure created with Biorender.com.
Figure 2
Figure 2
(A)18F-fluorodeoxyglucose (FDG) by positron emission tomography (PET) activity and improvement in pulmonary function. Correlation between high activity of pulmonary parenchyma on 18F-FDG PET (maximum standardized uptake value [SUVmax]) at baseline and improvement in forced vital capacity (FVC) in patients with a pulmonary treatment indication (R = 0.62, p = 0.0004). Reproduced and modified from (134) with permission. (B) Example of a PET-CT scan of a sarcoidosis patient with pulmonary involvement, before (i) and after (ii) 6 months of infliximab therapy.

References

    1. Statement on Sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) Adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am J Respir Crit Care Med. (1999) 160:736–55. 10.1164/ajrccm.160.2.ats4-99
    1. Tarasidis A, Arce S. Immune response biomarkers as indicators of sarcoidosis presence, prognosis, and possible treatment: an Immunopathogenic perspective. Autoimmun Rev. (2020) 19:102462. 10.1016/j.autrev.2020.102462
    1. Broos CE, Koth LL, Van Nimwegen M, In'T Veen JCCM, Paulissen SMJ, Van Hamburg JP, et al. . Increased T-helper 17.1 cells in sarcoidosis mediastinal lymph nodes. Eur Respir J. (2018) 51:1701124. 10.1183/13993003.01124-2017
    1. Zhou T, Casanova N, Pouladi N, Wang T, Lussier Y, Knox KS, et al. . Identification of Jak-STAT signaling involvement in sarcoidosis severity via a novel microRNA-regulated peripheral blood mononuclear cell gene signature. Sci Rep. (2017) 7:4237. 10.1038/s41598-017-04109-6
    1. Reich JM. Mortality of intrathoracic sarcoidosis in referral vs population-based settings: Influence of stage, ethnicity, and corticosteroid therapy. Chest. (2002) 121:32–9. 10.1378/chest.121.1.32
    1. Prasse A. The diagnosis, differential diagnosis, and treatment of sarcoidosis. Dtsch Aerzteblatt Online. (2016) 113:565–73. 10.3238/arztebl.2016.0565
    1. Valeyre D, Prasse A, Nunes H, Uzunhan Y, Brillet PY, Müller-Quernheim J. Sarcoidosis. Lancet. (2014) 383:1155–67. 10.1016/S0140-6736(13)60680-7
    1. Ramos-Casals M, Retamozo S, Sisó-Almirall A, Pérez-Alvarez R, Pallarés L, Brito-Zerón P. Clinically-useful serum biomarkers for diagnosis and prognosis of sarcoidosis. Expert Rev Clin Immunol. (2019) 15:391–405. 10.1080/1744666X.2019.1568240
    1. Atkinson AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, et al. . Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. (2001) 68:89–95. 10.1067/mcp.2001.113989
    1. Chopra A, Kalkanis A, Judson MA. Biomarkers in sarcoidosis. Expert Rev Clin Immunol. (2016) 12:1191–208. 10.1080/1744666X.2016.1196135
    1. Schimmelpennink MC, Vorselaars ADM, Grutters JC. Biomarkers in sarcoidosis. In: Baughman RP. editor. Sarcoidosis A Clinician's Guide. Elsevier - Health Sciences Division; (2019). pp. 219–238.
    1. Zissel G, Müller-Quernheim J. Cellular players in the immunopathogenesis of sarcoidosis. Clin Chest Med. (2015) 36:549–60. 10.1016/j.ccm.2015.08.016
    1. Kahkouee S, Samadi K, Alai A, Abedini A, Rezaiian L. Serum ACE level in sarcoidosis patients with typical and atypical HRCT manifestation. Polish J Radiol. (2016) 81:458–61. 10.12659/PJR.897708
    1. Lieberman J. Elevation of serum angiotension-converting-enzyme (ACE) level in sarcoidosis. Am J Med. (1975) 59:356–72. 10.1016/0002-9343(75)90395-2
    1. Brice EAW, Friedlander W, Bateman ED, Kirsch RE. Serum angiotensin-converting enzyme activity, concentration, and specific activity in granulomatous interstitial lung disease, tuberculosis, and COPD. Chest. (1995) 107:706–10. 10.1378/chest.107.3.706
    1. Maier LA, Raynolds MV, Young DA, Barker EA, Newman LS. Angiotensin-1 converting enzyme polymorphisms in chronic beryllium disease. Am J Respir Crit Care Med. (1999) 159:1342–50. 10.1164/ajrccm.159.4.9806106
    1. Studdy P, Bird, James DG, Sherlock S. Serum angiotensin–converting enzyme (SACE) in sarcoidosis and other granulomatous disorders. Trans Med Soc Lond. (1978) 95:54–9.
    1. Ryder KW, Jay SJ, Kiblawi SO, Hull MT. Serum Angiotensin Converting Enzyme Activity in Patients With Histoplasmosis. JAMA J Am Med Assoc. (1983) 249:1888–9. 10.1001/jama.249.14.1888
    1. Kruit A, Grutters JC, Gerritsen WBM, Kos S, Wodzig WKWH, van den Bosch JMM, et al. . ACE I/D-corrected Z-scores to identify normal and elevated ACE activity in sarcoidosis. Respir Med. (2007) 101:510–5. 10.1016/j.rmed.2006.06.025
    1. Lopes MC, Amadeu TP, Ribeiro-Alves M, da Costa CH, Rodrigues LS, Bessa EJC, et al. . Identification of active sarcoidosis using chitotriosidase and angiotensin-converting enzyme. Lung. (2019) 197:295–302. 10.1007/s00408-019-00219-2
    1. Vorselaars ADM, van Moorsel CHM, Zanen P, Ruven HJT, Claessen AME, van Velzen-Blad H, et al. . ACE and sIL-2R correlate with lung function improvement in sarcoidosis during methotrexate therapy. Respir Med. (2015) 109:279–85. 10.1016/j.rmed.2014.11.009
    1. Kandolin R, Lehtonen J, Airaksinen J, Vihinen T, Miettinen H, Ylitalo K, et al. . Cardiac sarcoidosis: Epidemiology, characteristics, and outcome over 25 years in a nationwide study. Circulation. (2015) 131:624–32. 10.1161/CIRCULATIONAHA.114.011522
    1. Krasowski MD, Savage J, Ehlers A, Maakestad J, Schmidt GA, La'Ulu SL, et al. . Ordering of the serum angiotensin-converting enzyme test in patients receiving angiotensin-converting enzyme inhibitor th erapy an avoidable but common error. Chest. (2015) 148:1447–53. 10.1378/chest.15-1061
    1. Majcherczyk PA, Langen H, Heumann D, Fountoulakis M, Glauser MP, Moreillon P. Digestion of Streptococcus pneumoniae cell walls with its major peptidoglycan hydrolase releases branched stem peptides carrying proinflammatory activity. J Biol Chem. (1999) 274:12537–43. 10.1074/jbc.274.18.12537
    1. Bergantini L, Bianchi F, Cameli P, Mazzei MA, Fui A, Sestini P, et al. . Prognostic biomarkers of sarcoidosis: a comparative study of serum chitotriosidase, ACE, lysozyme, and KL-6. Dis Markers. (2019) 2019:1–7. 10.1155/2019/8565423
    1. Tomita H, Sato S, Matsuda R, Sugiura Y, Kawaguchi H, Niimi T, et al. . Serum lysozyme levels and clinical features of sarcoidosis. Lung. (1999) 177:161–7. 10.1007/PL00007637
    1. Hoffmann G, Wirleitner B, Fuchs D. Potential role of immune system activation-associated production of neopterin derivatives in humans. Inflamm Res. (2003) 52:313–21. 10.1007/s00011-003-1181-9
    1. Gelisgen R, Seyhan E, Simsek G, Durmus S, Uysal P, Sozer V, et al. . YKL-40, soluble IL-2 receptor, angiotensin converting enzyme and C-reactive protein: comparison of markers of sarcoidosis activity. Biomolecules. (2018) 8:84. 10.3390/biom8030084
    1. Ziegenhagen MW, Rothe ME, Schlaak M, Müller-Quernheim J. Bronchoalveolar and serological parameters reflecting the severity of sarcoidosis. Eur Respir J. (2003) 21:407–413. 10.1183/09031936.03.00010403
    1. Hoffmann G, Rieder J, Smolny M, Seibel M, Wirleitner B, Fuchs D, et al. . Neopterin-induced expression of intercellular adhesion molecule-1 (ICAM-1) in type II-like alveolar epithelial cells. Clin Exp Immunol. (1999) 118:434–40. 10.1046/j.1365-2249.1999.01071.x
    1. Korthagen NM, van Moorsel CHM, Zanen P, Ruven HJ, Grutters JC. Evaluation of circulating YKL-40 levels in idiopathic interstitial pneumonias. Lung. (2014) 192:975–80. 10.1007/s00408-014-9647-9
    1. Kruit A, Grutters JC, Ruven HJT, van Moorsel CCM, van den Bosch JMM. A CHI3L1 gene polymorphism is associated with serum levels of YKL-40, a novel sarcoidosis marker. Respir Med. (2007) 101:1563–71. 10.1016/j.rmed.2006.12.006
    1. Johansen JS, Milman N, Hansen M, Garbarsch C, Price PA, Graudal N. Increased serum YKL-40 in patients with pulmonary sarcoidosis - a potential marker of disease activity? Respir Med. (2005) 99:396–402. 10.1016/j.rmed.2004.09.016
    1. Weaver LK, Pioli PA, Wardwell K, Vogel SN, Guyre PM. Up-regulation of human monocyte CD163 upon activation of cell-surface Toll-like receptors. J Leukoc Biol. (2007) 81:663–71. 10.1189/jlb.0706428
    1. Møller HJ. Soluble CD163. Scand J Clin Lab Invest. (2012) 72:1–3. 10.3109/00365513.2011.626868
    1. Tanimura H, Mizuno K, Okamoto H. Serum levels of soluble CD163 as a useful marker of macrophage/monocyte activity in sarcoidosis patients. Sarcoidosis Vasc Diffus Lung Dis. (2015) 32:99–105. Available online at:
    1. Etzerodt A, Moestrup SK. CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxidants Redox Signal. (2013) 18:2352–63. 10.1089/ars.2012.4834
    1. Boot RG, Hollak CEM, Verhoek M, Alberts C, Jonkers RE, Aerts JM. Plasma chitotriosidase and CCL18 as surrogate markers for granulomatous macrophages in sarcoidosis. Clin Chim Acta. (2010) 411:31–6. 10.1016/j.cca.2009.09.034
    1. Sixt SU, Guzman J, Cai M, Costabel U, Sarria R, Bonella F, et al. . CCL18 in serum, BAL fluid and alveolar macrophage culture supernatant in interstitial lung diseases. Respir Med. (2013) 107:1444–52. 10.1016/j.rmed.2013.06.004
    1. Prasse A, Pechkovsky D V., Toews GB, Jungraithmayr W, Kollert F, Goldmann T, et al. . A vicious circle of alveolar macrophages and fibroblasts perpetuates pulmonary fibrosis via CCL18. Am J Respir Crit Care Med. (2006) 173:781–92. 10.1164/rccm.200509-1518OC
    1. Eklund KK, Niemi K, Kovanen PT. Immune functions of serum amyloid A. Crit Rev Immunol. (2012) 32:335–48. 10.1615/CritRevImmunol.v32.i4.40
    1. Bargagli E, Magi B, Olivieri C, Bianchi N, Landi C, Rottoli P. Analysis of serum amyloid A in sarcoidosis patients. Respir Med. (2011) 105:775–80. 10.1016/j.rmed.2010.12.010
    1. Beijer E, Veltkamp M, Meek B, Moller DR. Etiology and immunopathogenesis of sarcoidosis: novel insights. Semin Respir Crit Care Med. (2017) 38:404–16. 10.1055/s-0037-1603087
    1. Jiang TT, Shi LY, Wei LL, Li X, Yang S, Wang C, et al. . Serum amyloid A, protein Z, and C4b-binding protein β chain as new potential biomarkers for pulmonary tuberculosis. PLoS One. (2017) 12:e0173304. 10.1371/journal.pone.0173304
    1. Popević S, Šumarac Z, Jovanović D, Babić D, Stjepanović M, Jovičić S, Šobić-Šaranović D, Filipović S, et al. . Verifying sarcoidosis activity: chitotriosidase versus ACE in sarcoidosis - a case-control study. J Med Biochem. (2016) 35:390–400. 10.1515/jomb-2016-0017
    1. Bargagli E, Bennett D, Maggiorelli C, Di Sipio P, Margollicci M, Bianchi N, et al. . Human chitotriosidase: a sensitive biomarker of sarcoidosis. J Clin Immunol. (2013) 33:264–70. 10.1007/s10875-012-9754-4
    1. Okamoto H, Mizuno K, Horio T. Circulating CD14+CD16+ monocytes are expanded in sarcoidosis patients. J Dermatol. (2003) 30:503–9. 10.1111/j.1346-8138.2003.tb00424.x
    1. Hijdra D, Vorselaars ADM, Crommelin HA, van Moorsel CHM, Meek B, Claessen AME, et al. . Can intermediate monocytes predict response to infliximab therapy in sarcoidosis? Eur Respir J. (2016) 48:1242–5. 10.1183/13993003.00709-2016
    1. Fingerle-Rowson G, Angstwurm M, Andreesen R, Ziegler-Heitbrock HWL. Selective depletion of CD14+CD16+ monocytes by glucocorticoid therapy. Clin Exp Immunol. (1998) 112:501–6. 10.1046/j.1365-2249.1998.00617.x
    1. Heron M, Grutters JC, Van Velzen-Blad H, Veltkamp M, Claessen AME, Van Den Bosch JMM. Increased expression of CD16, CD69, and very late antigen-1 on blood monocytes in active sarcoidosis. Chest. (2008) 134:1001–8. 10.1378/chest.08-0443
    1. Davis BH, Zarev PV. Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels. Cytom Part B Clin Cytom. (2005) 63:16–22. 10.1002/cyto.b.20031
    1. Berg KE, Ljungcrantz I, Andersson L, Bryngelsson C, Hedblad B, Fredrikson GN, et al. . Elevated CD14++CD16-monocytes predict cardiovascular events. Circ Cardiovasc Genet. (2012) 5:121–32. 10.1161/CIRCGENETICS.111.960385
    1. Hou J, Zhang M, Ding Y, Wang X, Li T, Gao P, et al. . Circulating CD14+CD163+CD206+ M2 monocytes are increased in patients with early stage of idiopathic membranous nephropathy. Mediators Inflamm. (2018) 2018:1–10. 10.1155/2018/5270657
    1. Iannuzzi MC, Fontana JR. Sarcoidosis: clinical presentation, immunopathogenesis, and therapeutics. JAMA. (2011) 167:1225–31. 10.1001/jama.2011.10
    1. Rubin LA, Nelson DL. The soluble interleukin-2 receptor: biology, function, and clinical application. Ann Intern Med. (1990) 113:619. 10.7326/0003-4819-113-8-619
    1. Sakthivel P, Bruder D. Mechanism of granuloma formation in sarcoidosis. Curr Opin Hematol. (2017) 24:59–5. 10.1097/MOH.0000000000000301
    1. Hunninghake GW, Bedell GN, Zavala DC, Monick M, Brady M. Role of interleukin-2 release by lung T-cells in active pulmonary sarcoidosis. Am Rev Respir Dis. (1983) 218:634–8.
    1. Eurelings LEM, Miedema JR, Dalm VASH, Van Daele PLA, Van Hagen PM, Van Laar JAM, et al. . Sensitivity and specificity of serum soluble interleukin-2 receptor for diagnosing sarcoidosis in a population of patients suspected of sarcoidosis. PLoS One. (2019) 14:e0223897. 10.1371/journal.pone.0223897
    1. Vorselaars ADM, Verwoerd A, Van Moorsel CHM, Keijsers RGM, Rijkers GT, Grutters JC. Prediction of relapse after discontinuation of infliximab therapy in severe sarcoidosis. Eur Respir J. (2014) 43:602–9. 10.1183/09031936.00055213
    1. Ogata-Suetsugu S, Hamada N, Takayama K, Tsubouchi K, Arimura-Omori M, Nakanishi Y. The clinical value of serum soluble interleukin-2 receptor in pulmonary sarcoidosis. Sarcoidosis Vasc Diffus Lung Dis. (2017) 34:41–7. 10.36141/svdld.v34i1.5045
    1. Grutters JC, Fellrath JM, Mulder L, Janssen R, Van Den Bosch JMM, Van Velzen-Blad H. Serum soluble interleukin-2 receptor measurement in patients with sarcoidosis: a clinical evaluation. Chest. (2003) 124:186–95. 10.1378/chest.124.1.186
    1. Kudryavtsev I, Serebriakova M, Starshinova A, Zinchenko Y, Basantsova N, Malkova A, et al. . Imbalance in B cell and T follicular helper cell subsets in pulmonary sarcoidosis. Sci Rep. (2020) 10:1059. 10.1038/s41598-020-57741-0
    1. Cinetto F, Compagno N, Scarpa R, Malipiero G, Agostini C. Rituximab in refractory sarcoidosis: a single centre experience. Clin Mol Allergy. (2015) 13:19. 10.1186/s12948-015-0025-9
    1. Ando M, Goto A, Takeno Y, Yamasue M, Komiya K, Umeki K, et al. . Significant elevation of the levels of B-cell activating factor (BAFF) in patients with sarcoidosis. Clin Rheumatol. (2018) 37:2833–8. 10.1007/s10067-018-4183-2
    1. Saussine A, Tazi A, Feuillet S, Rybojad M, Juillard C, Bergeron A, et al. . Active chronic sarcoidosis is characterized by increased transitional blood B cells, increased IL-10-producing regulatory B cells and high BAFF levels. PLoS One. (2012) 7:e43588. 10.1371/journal.pone.0043588
    1. Ueda-Hayakawa I, Tanimura H, Osawa M, Iwasaka H, Ohe S, Yamazaki F, et al. . Elevated serum BAFF levels in patients with sarcoidosis: association with disease activity. Rheumatology. (2013) 52:1658–66. 10.1093/rheumatology/ket186
    1. Becker-Merok A, Nikolaisen C, Nossent HC. B-lymphocyte activating factor in systemic lupus erythematosus and rheumatoid arthritis in relation to autoantibody levels, disease measures and time. Lupus. (2006) 15:570–6. 10.1177/0961203306071871
    1. Belkhou A, Younsi R, El Bouchti I, El Hassani S. Rituximab as a treatment alternative in sarcoidosis. Jt Bone Spine. (2008) 75:511–2. 10.1016/j.jbspin.2008.01.025
    1. Lee NS, Barber L, Akula SM, Sigounas G, Kataria YP, Arce S. Disturbed homeostasis and multiple signaling defects in the peripheral blood B-cell compartment of patients with severe chronic sarcoidosis. Clin Vaccine Immunol. (2011) 18:1306–11. 10.1128/CVI.05118-11
    1. Kamphuis LS, Van Zelm MC, Lam KH, Rimmelzwaan GF, Baarsma GS, Dik WA, et al. . Perigranuloma localization and abnormal maturation of B cells emerging key players in sarcoidosis? Am J Respir Crit Care Med. (2013) 187:406–16. 10.1164/rccm.201206-1024OC
    1. Doi TS, Takahashi T, Taguchi O, Azuma T, Obata Y. NF-κB RelA-deficient lymphocytes: Normal development of T cells and B cells, impaired production of IgA and IgG1 and reduced proliferative responses. J Exp Med. (1997) 185:953–61. 10.1084/jem.185.5.953
    1. Fillatreau S, Sweenie CH, McGeachy MJ, Gray D, Anderton SM. B cells regulate autoimmunity by provision of IL-10. Nat Immunol. (2002) 3:944–50. 10.1038/ni833
    1. Thi Hong Nguyen C, Kambe N, Kishimoto I, Ueda-Hayakawa I, Okamoto H. Serum soluble interleukin-2 receptor level is more sensitive than angiotensin-converting enzyme or lysozyme for diagnosis of sarcoidosis and may be a marker of multiple organ involvement. J Dermatol. (2017) 44:789–97. 10.1111/1346-8138.13792
    1. Enyedi A, Csongrádi A, Altorjay IT, Beke GL, Váradi C, Enyedi EE, et al. . Combined application of angiotensin converting enzyme and chitotriosidase analysis improves the laboratory diagnosis of sarcoidosis. Clin Chim Acta. (2020) 500:155–62. 10.1016/j.cca.2019.10.010
    1. Bargagli E, Bianchi N, Margollicci M, Olivieri C, Luddi A, Coviello G, et al. . Chitotriosidase and soluble IL-2 receptor: comparison of two markers of sarcoidosis severity. Scand J Clin Lab Invest. (2008) 68:479–83. 10.1080/00365510701854975
    1. Miyoshi S, Hamada H, Kadowaki T, Hamaguchi N, Ito R, Irifune K, et al. . Comparative evaluation of serum markers in pulmonary sarcoidosis. Chest. (2010) 137:1391–7. 10.1378/chest.09-1975
    1. Hamsten C, Wiklundh E, Grönlund H, Schwenk JM, Uhlén M, Eklund A, et al. . Elevated levels of FN1 and CCL2 in bronchoalveolar lavage fluid from sarcoidosis patients. Respir Res. (2016) 17:69. 10.1186/s12931-016-0381-0
    1. Tanriverdi H, Erboy F, Altinsoy B, Uygur F, Arasli M, Ozel Tekin I, et al. . Bronchoalveolar lavage fluid characteristics of patients with sarcoidosis and nonsarcoidosis interstitial lung diseases: ten-year experience of a single center in turkey. Iran Red Crescent Med J. (2015) 17:e31103. 10.5812/ircmj.31103
    1. Hyldgaard C, Kaae S, Riddervold M, Hoffmann HJ, Hilberg O. Value of s-ACE, BAL lymphocytosis, and CD4+/CD8+ and CD103+CD4+/CD4+ T-cell ratios in diagnosis of sarcoidosis. Eur Respir J. (2012) 39:1037–1039. 10.1183/09031936.00144311
    1. Costabel U. CD4/CD8 ratios in bronchoalveolar lavage fluid: of value for diagnosing sarcoidosis? Eur Respir J. (1997) 10:2699–700. 10.1183/09031936.97.10122699
    1. Kantrow SP, Meyer KC, Kidd P, Raghu G. The CD4/CD8 ratio in BAL fluid is highly variable in sarcoidosis. Eur Respir J. (1997) 10:2716–21. 10.1183/09031936.97.10122716
    1. Darlington P, Kullberg S, Eklund A, Grunewald J. Lung CD4+ Vα2.3+ T-cells in sarcoidosis cohorts with Löfgren's syndrome. Respir Res. (2020) 21:61. 10.1186/s12931-020-1327-0
    1. Kolopp-Sarda MN, Kohler C, De March AK, Béné MC, Faure G. Discriminative immunophenotype of bronchoalveolar lavage CD4 lymphocytes in sarcoidosis. Lab Investig. (2000) 80:1065–9. 10.1038/labinvest.3780111
    1. Heron M, Slieker WAT, Zanen P, van Lochem EG, Hooijkaas H, van den Bosch JMM, et al. . Evaluation of CD103 as a cellular marker for the diagnosis of pulmonary sarcoidosis. Clin Immunol. (2008) 126:338–44. 10.1016/j.clim.2007.11.005
    1. Bretagne L, Diatta ID, Faouzi M, Nobile A, Bongiovanni M, Nicod LP, et al. . Diagnostic value of the CD103+CD4+/CD4+ ratio to differentiate sarcoidosis from other causes of lymphocytic alveolitis. Respiration. (2016) 91:486–96. 10.1159/000446606
    1. Facco M, Cabrelle A, Teramo A, Olivieri V, Gnoato M, Teolato S, et al. . Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax. (2011) 66:144–50. 10.1136/thx.2010.140319
    1. Broos CE, Hendriks RW, Kool M. T-cell immunology in sarcoidosis: Disruption of a delicate balance between helper and regulatory T-cells. Curr Opin Pulm Med. (2016) 22:476–83. 10.1097/MCP.0000000000000303
    1. Ramstein J, Broos CE, Simpson LJ, Mark Ansel K, Sun SA, Ho ME, et al. . IFN-γproducing t-helper 17.1 cells are increased in sarcoidosis and are more prevalent than t-helper type 1 cells. Am J Respir Crit Care Med. (2016) 193:1281–91. 10.1164/rccm.201507-1499OC
    1. Bennett D, Bargagli E, Refini RM, Rottoli P. New concepts in the pathogenesis of sarcoidosis. Expert Rev Respir Med. (2019) 13:981–91. 10.1080/17476348.2019.1655401
    1. Zhang B, Dai Q, Jin X, Liang D, Li X, Lu H, et al. . Phosphoinositide 3-kinase/protein kinase B inhibition restores regulatory T cell's function in pulmonary sarcoidosis. J Cell Physiol. (2019) 234:19911–20. 10.1002/jcp.28589
    1. Kachamakova-Trojanowska N, Jazwa-Kusior A, Szade K, Kasper L, Soja J, Andrychiewicz A, et al. . Molecular profiling of regulatory T cells in pulmonary sarcoidosis. J Autoimmun. (2018) 94:56–69. 10.1016/j.jaut.2018.07.012
    1. Wikén M, Grunewald J, Eklund A, Wahlström J. Higher monocyte expression of TLR2 and TLR4, and enhanced pro-inflammatory synergy of TLR2 with NOD2 stimulation in sarcoidosis. J Clin Immunol. (2009) 29:78–89. 10.1007/s10875-008-9225-0
    1. Prasse A, Zissel G, Lützen N, Schupp J, Schmiedlin R, Gonzalez-Rey E, et al. . Inhaled vasoactive intestinal peptide exerts immunoregulatory effects in sarcoidosis. Am J Respir Crit Care Med. (2010) 182:540–8. 10.1164/rccm.200909-1451OC
    1. Patterson KC, Chen ES. The pathogenesis of pulmonary sarcoidosis and implications for treatment. Chest. (2018) 153:1432–42. 10.1016/j.chest.2017.11.030
    1. Tutor-Ureta P, Citores MJ, Castejón R, Mellor-Pita S, Yebra-Bango M, Romero Y, et al. . Prognostic value of neutrophils and NK cells in bronchoalveolar lavage of sarcoidosis. Cytom Part B Clin Cytom. (2006) 70:416–22. 10.1002/cyto.b.20120
    1. Bergantini L, Cameli P, d'Alessandro M, Vagaggini C, Refini R, Landi C, et al. . NK and NKT-like cells in granulomatous and fibrotic lung diseases. Clin Exp Med. (2019) 19:487–94. 10.1007/s10238-019-00578-3
    1. Berzins SP, Ritchie DS. Natural killer T cells: Drivers or passengers in preventing human disease? Nat Rev Immunol. (2014) 14:640–6. 10.1038/nri3725
    1. Morgenthau AS, Iannuzzi MC. Recent advances in sarcoidosis. Chest. (2011) 139:174–82. 10.1378/chest.10-0188
    1. Kobayashi S, Kaneko Y, Seino KI, Yamada Y, Motohashi S, Koike J, et al. . Impaired IFN-γ production of Vα24 NKT cells in non-remitting sarcoidosis. Int Immunol. (2004) 16:215–22. 10.1093/intimm/dxh020
    1. Korosec P, Rijavec M, Silar M, Kern I, Kosnik M, Osolnik K. Deficiency of pulmonary Vα24 Vβ11 natural killer T cells in corticosteroid-naïve sarcoidosis patients. Respir Med. (2010) 104:571–7. 10.1016/j.rmed.2009.11.008
    1. Ho L-P, Urban BC, Thickett DR, Davies RJ, McMichael AJ. Deficiency of a subset of T-cells with immunoregulatory properties in sarcoidosis. Lancet. (2005) 365:1062–72. 10.1016/S0140-6736(05)71143-0
    1. Busuttil A, Weigt SS, Keane MP, Xue YY, Palchevskiy V, Burdick MD, et al. . CXCR3 ligands are augmented during the pathogenesis of pulmonary sarcoidosis. Eur Respir J. (2009) 34:676–86. 10.1183/09031936.00157508
    1. Arger NK, Ho ME, Allen IE, Benn BS, Woodruff PG, Koth LL. CXCL9 and CXCL10 are differentially associated with systemic organ involvement and pulmonary disease severity in sarcoidosis. Respir Med. (2020) 161:105822. 10.1016/j.rmed.2019.105822
    1. Arger NK, Ho M, Woodruff PG, Koth LL. Serum CXCL11 correlates with pulmonary outcomes and disease burden in sarcoidosis. Respir Med. (2019) 152:89–96. 10.1016/j.rmed.2019.04.005
    1. Lee K, Chung W, Jung Y, Kim Y, Park J, Sheen S, et al. . CXCR3 ligands as clinical markers for pulmonary tuberculosis. Int J Tuberc Lung Dis. (2015) 19:191–9. 10.5588/ijtld.14.0525
    1. Chung W, Lee K, Jung Y, Kim Y, Park J, Sheen S, et al. . Serum CXCR3 ligands as biomarkers for the diagnosis and treatment monitoring of tuberculosis. Int J Tuberc Lung Dis. (2015) 19:1476–84. 10.5588/ijtld.15.0325
    1. Kohno N, Kyoizumi S, Awaya Y, Fukuhara H, Yamakido M, Akiyama M. New serum indicator of interstitial pneumonitis activity. Sialylated carbohydrate antigen KL-6. Chest. (1989) 96:68–73. 10.1378/chest.96.1.68
    1. Menon B, Tiwari M, Gopi A, Raj P, Panwar K. Serum krebs von den lungen-6 (KL-6): a promising biomarker in sarcoidosis. MOJ Curr Res Rev. (2018) 1:45–7. 10.15406/mojcrr.2018.01.00009
    1. Kohno N, Awaya Y, Oyama T, Yamakido M, Akiyama M, Inoue Y, et al. . KL-6, a mucin-like glycoprotein, in bronchoalveolar lavage fluid from patients with interstitial lung disease. Am Rev Respir Dis. (1993) 148:637–42. 10.1164/ajrccm/148.3.637
    1. Kunitake R, Kuwano K, Yoshida K, Maeyama T, Kawasaki M, Hagimoto N, et al. . KL-6, surfactant protein A and D in bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. Respiration. (2001) 68:488–95. 10.1159/000050556
    1. Janssen R, Sato H, Grutters JC, Bernard A, Van Velzen-Blad H, Du Bois RM, et al. . Study of clara cell 16, KL-6, and surfactant protein-D in serum as disease markers in pulmonary sarcoidosis. Chest. (2003) 124:2119–25. 10.1378/chest.124.6.2119
    1. D'Alessandro M, Carleo A, Cameli P, Bergantini L, Perrone A, Vietri L, et al. . BAL biomarkers' panel for differential diagnosis of interstitial lung diseases. Clin Exp Med. (2020) 20:207–16. 10.1007/s10238-020-00608-5
    1. Keijsers RG, Veltkamp M, Grutters JC. Chest imaging. Clin Chest Med. (2015) 36:603–19. 10.1016/j.ccm.2015.08.004
    1. Baughman RP, Teirstein AS, Judson MA, Rossman MD, Yeager H, Bresnitz EA, et al. . Clinical characteristics of patients in a case control study of sarcoidosis. Am J Respir Crit Care Med. (2001) 164:1885–9. 10.1164/ajrccm.164.10.2104046
    1. Scadding JG. Prognosis of intrathoracic sarcoidosis in England. A review of 136 cases after five years' observation. Br Med J. (1961) 2:1165–72. 10.1136/bmj.2.5261.1165
    1. Silva M, Nunes H, Valeyre D, Sverzellati N. Imaging of sarcoidosis. Clin Rev Allergy Immunol. (2015) 49:45–53. 10.1007/s12016-015-8478-7
    1. Kirkil G, Lower EE, Baughman RP. Predictors of mortality in pulmonary sarcoidosis. Chest. (2018) 153:105–13. 10.1016/j.chest.2017.07.008
    1. Baughman RP, Shipley R, Desai S, Drent M, Judson MA, Costabel U, et al. . Changes in chest roentgenogram of sarcoidosis patients during a clinical trial of infliximab therapy: comparison of different methods of evaluation. Chest. (2009) 136:526–35. 10.1378/chest.08-1876
    1. Judson MA, Gilbert GE, Rodgers JK, Greer CF, Schabel SI. The utility of the chest radiograph in diagnosing exacerbations of pulmonary sarcoidosis. Respirology. (2008) 13:97–102. 10.1111/j.1440-1843.2007.01206.x
    1. Oberstein A, Von Zitzewitz H, Schweden F, Müller-Quernheim J. Non invasive evaluation of the inflammatory activity in sarcoidosis with high-resolution computed tomography. Sarcoidosis Vasc Diffus Lung Dis. (1997) 14:65-72
    1. Drent M, De Vries J, Lenters M, Lamers RJS, Rothkranz-Kos S, Wouters EFM, et al. . Sarcoidosis: assessment of disease severity using HRCT. Eur Radiol. (2003) 13:2462–71. 10.1007/s00330-003-1965-x
    1. Mostard RLM, Kuijk SMJV, Verschakelen JA, van Kroonenburgh MJPG, Nelemans PJ, Wijnen PAHM, et al. . A predictive tool for an effective use of 18F-FDG PET in assessing activity of sarcoidosis. BMC Pulm Med. (2012) 12:57. 10.1186/1471-2466-12-57
    1. Benamore R, Kendrick YR, Repapi E, Helm E, Cole SL, Taylor S, et al. . CTAS: A CT score to quantify disease activity in pulmonary sarcoidosis. Thorax. (2016) 71:1161–3. 10.1136/thoraxjnl-2016-208833
    1. Duan J, Xu Y, Zhu H, Zhang H, Sun S, Sun H, et al. . Relationship between CT activity score with lung function and the serum angiotensin converting enzyme in pulmonary sarcoidosis on chest HRCT. Medicine (Baltimore). (2018) 97:15–9. 10.1097/MD.0000000000012205
    1. Adams H, Keijsers RG, Korenromp IHE, Grutters JC. FDG PET for gauging of sarcoid disease activity. Semin Respir Crit Care Med. (2014) 35:352–61. 10.1055/s-0034-1376866
    1. Nishiyama Y, Yamamoto Y, Fukunaga K, Takinami H, Iwado Y, Satoh K, et al. . Comparative evaluation of 18F-FDG PET and 67Ga scintigraphy in patients with sarcoidosis. J Nucl Med. (2006) 47:1571–6. Available online at:
    1. Treglia G, Taralli S, Giordano A. Emerging role of whole-body 18F-fluorodeoxyglucose positron emission tomography as a marker of disease activity in patients with sarcoidosis: A systematic review. Sarcoidosis Vasc Diffus Lung Dis. (2011) 28:87–94 10.4081/itjm.2012.21
    1. Keijsers RG, Verzijlbergen FJ, Oyen WJ, Van Den Bosch JM, Ruven HJ, Van Velzen-Blad H, et al. . 18F-FDG PET, genotype-corrected ACE and sIL-2R in newly diagnosed sarcoidosis. Eur J Nucl Med Mol Imaging. (2009) 36:1131–7. 10.1007/s00259-009-1097-x
    1. Chen H, Jin R, Wang Y, Li L, Li K, He Y. The utility of 18F-FDG PET/CT for monitoring response and predicting prognosis after glucocorticoids therapy for sarcoidosis. Biomed Res Int. (2018) 2018:6. 10.1155/2018/1823710
    1. Cremers JP, Van Kroonenburgh MJ, Mostard RLM, Vöö SA, Wijnen PA, Koek GH, et al. . Extent of disease activity assessed by 18F-FDG PET/CT in a Dutch sarcoidosis population. Sarcoidosis Vasc Diffus Lung Dis. (2014) 31:37–45. Available online at:
    1. Teirstein AS, Machac J, Almeida O, Lu P, Padilla ML, Iannuzzi MC. Results of 188 whole-body fluorodeoxyglucose positron emission tomography scans in 137 patients with sarcoidosis. Chest. (2007) 132:1949–53. 10.1378/chest.07-1178
    1. Mostard RLM, Vöö S, Van Kroonenburgh MJPG, Verschakelen JA, Wijnen PAHM, Nelemans PJ, et al. . Inflammatory activity assessment by F18 FDG-PET/CT in persistent symptomatic sarcoidosis. Respir Med. (2011) 105:1917–24. 10.1016/j.rmed.2011.08.012
    1. Keijsers RG, Verzijlbergen FJ, Van Den Bosch JM, Zanen P, Van De Garde EM, Oyen WJ, et al. . 18F-FDG PET as a predictor of pulmonary function in sarcoidosis. Sarcoidosis Vasc Diffus Lung Dis. (2011) 28:123–9. Available online at:
    1. Vorselaars ADM, Crommelin HA, Deneer VHM, Meek B, Claessen AME, Keijsers RGM, et al. . Effectiveness of infliximab in refractory FDG PET-positive sarcoidosis. Eur Respir J. (2015) 46:175–85. 10.1183/09031936.00227014
    1. Sobic-Saranovic D, Grozdic I, Videnovic-Ivanov J, Vucinic-Mihailovic V, Artiko V, Saranovic D, et al. . The utility of 18F-FDG PET/CT for diagnosis and adjustment of therapy in patients with active chronic sarcoidosis. J Nucl Med. (2012) 53:1543–9. 10.2967/jnumed.112.104380
    1. Adams H, van Rooij R, van Moorsel CHM, Spee-Dropkova M, Grutters JC, Keijsers RG. Volumetric FDG PET analysis of global lung inflammation: new tool for precision medicine in pulmonary sarcoidosis? Sarcoidosis Vasc Diffus Lung Dis. (2018) 35:44–54. 10.36141/svdld.v35i1.5807
    1. Schimmelpennink MC, Vorselaars ADM, Veltkamp M, Keijsers RGM. Quantification of pulmonary disease activity in sarcoidosis measured with 18F-FDG PET/CT: SUVmax versus total lung glycolysis. EJNMMI Res. (2019) 9:54. 10.1186/s13550-019-0505-x
    1. Bakker AL, Grutters JC, Keijsers RG, Post MC. Cardiac sarcoidosis: challenges in clinical practice. Curr Opin Pulm Med. (2017) 23:468–75. 10.1097/MCP.0000000000000410
    1. Birnie DH, Kandolin R, Nery PB, Kupari M. Cardiac manifestations of sarcoidosis: diagnosis and management. Eur Heart J. (2017) 38:2663–70. 10.1093/eurheartj/ehw328
    1. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. . HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Hear Rhythm. (2014) 11:1304–23. 10.1016/j.hrthm.2014.03.043
    1. Greulich S, Kitterer D, Latus J, Aguor E, Steubing H, Kaesemann P, et al. . Comprehensive cardiovascular magnetic resonance assessment in patients with sarcoidosis and preserved left ventricular ejection fraction. Circ Cardiovasc Imaging. (2016) 9:e005022. 10.1161/CIRCIMAGING.116.005022
    1. Greulich S, Deluigi CC, Gloekler S, Wahl A, Zürn C, Kramer U, et al. . CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging. (2013) 6:501–511. 10.1016/j.jcmg.2012.10.021
    1. Nadel J, Lancefield T, Voskoboinik A, Taylor AJ. Late gadolinium enhancement identified with cardiac magnetic resonance imaging in sarcoidosis patients is associated with long-term ventricular arrhythmia and sudden cardiac death. Eur Hear J Cardiovasc Imaging. (2015) 16:634–41. 10.1093/ehjci/jeu294
    1. Kouranos V, Tzelepis GE, Rapti A, Mavrogeni S, Aggeli K, Douskou M, et al. . Complementary role of CMR to conventional screening in the diagnosis and prognosis of cardiac sarcoidosis. JACC Cardiovasc Imaging. (2017) 10:1437–47. 10.1016/j.jcmg.2016.11.019
    1. Coleman GC, Shaw PW, Balfour PC, Gonzalez JA, Kramer CM, Patel AR, et al. . Prognostic value of myocardial scarring on CMR in patients with cardiac sarcoidosis. JACC Cardiovasc Imaging. (2017) 10:411–20. 10.1016/j.jcmg.2016.05.009
    1. Bravo PE, Raghu G, Rosenthal DG, Elman S, Petek BJ, Soine LA, et al. . Risk assessment of patients with clinical manifestations of cardiac sarcoidosis with positron emission tomography and magnetic resonance imaging. Int J Cardiol. (2017) 241:457–62. 10.1016/j.ijcard.2017.03.033
    1. Manabe O, Yoshinaga K, Ohira H, Masuda A, Sato T, Tsujino I, et al. . The effects of 18-h fasting with low-carbohydrate diet preparation on suppressed physiological myocardial 18F-fluorodeoxyglucose (FDG) uptake and possible minimal effects of unfractionated heparin use in patients with suspected cardiac involvement sarcoid. J Nucl Cardiol. (2016) 23:244–52. 10.1007/s12350-015-0226-0
    1. Tang R, Wang JTY, Wang L, Le K, Huang Y, Hickey AJ, et al. . Impact of patient preparation on the diagnostic performance of 18F-FDG PET in cardiac sarcoidosis a systematic review and meta-analysis. Clin Nucl Med. (2016) 41:e327–e39. 10.1097/RLU.0000000000001063
    1. Vita T, Okada DR, Veillet-Chowdhury M, Bravo PE, Mullins E, Hulten E, et al. . Complementary value of cardiac magnetic resonance imaging and positron emission tomography/computed tomography in the assessment of cardiac sarcoidosis. Circ Cardiovasc Imaging. (2018) 11:e007030. 10.1161/CIRCIMAGING.117.007030
    1. Blankstein R, Osborne M, Naya M, Waller A, Kim CK, Murthy VL, et al. . Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. (2014) 63:329–36. 10.1016/j.jacc.2013.09.022
    1. Dweck MR, Abgral R, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. . Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging. (2018) 11:94–107. 10.1016/j.jcmg.2017.02.021
    1. Hoitsma E, Faber CG, Drent M, Sharma OP. Neurosarcoidosis: a clinical dilemma. Lancet Neurol. (2004) 3:397–407. 10.1016/S1474-4422(04)00805-1
    1. Marangoni S, Argentiero V, Tavolato B. Neurosarcoidosis: clinical description of 7 cases with a proposal for a new diagnostic strategy. J Neurol. (2006) 253:488–95. 10.1007/s00415-005-0043-5
    1. Zajicek JP, Scolding NJ, Foster O, Rovaris M, Evanson J, Moseley IF, et al. . Central nervous system sarcoidosis-diagnosis and management. QJM Mon J Assoc Physicians. (1999) 92:103–17. 10.1093/qjmed/92.2.103
    1. Bathla G, Singh AK, Policeni B, Agarwal A, Case B. Imaging of neurosarcoidosis: common, uncommon, and rare. Clin Radiol. (2016) 71:96–106. 10.1016/j.crad.2015.09.007
    1. Voortman M, Hendriks CMR, Elfferich MDP, Bonella F, Møller J, De Vries J, et al. . The burden of sarcoidosis symptoms from a patient perspective. Lung. (2019) 197:155–61 10.1007/s00408-019-00206-7
    1. Vargas DL, Stern BJ. Neurosarcoidosis: diagnosis and management. Semin Respir Crit Care Med. (2010) 31:419–27. 10.1055/s-0030-1262210
    1. Huang JF, Aksamit AJ, Staff NP. MRI and PET imaging discordance in neurosarcoidosis. Neurology. (2012) 79:1070. 10.1212/WNL.0b013e3182684672
    1. Sammarra I, Barbagallo G, Labate A, Mondello B, Albonico G, Maisano M, et al. . Value of multimodal imaging approach to diagnosis of neurosarcoidosis. Brain Sci. (2019) 9:243. 10.3390/brainsci9100243
    1. Rivière E, Schwartz P, MacHelart I, Greib C, Pellegrin JL, Viallard JF, et al. . Neurosarcoidosis and infliximab therapy monitored by 18FDG PET/CT. QJM. (2019) 112:695–7. 10.1093/qjmed/hcz148
    1. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. (2003) 3:900–11 10.1038/nri1226
    1. Rosenbaum JT, Pasadhika S, Crouser ED, Choi D, Harrington CA, Lewis JA, et al. . Hypothesis: Sarcoidosis is a STAT1-mediated disease. Clin Immunol. (2009) 132:174–83. 10.1016/j.clim.2009.04.010
    1. Wei JJ, Kallenbach LR, Kreider M, Leung TH, Rosenbach M. Resolution of cutaneous sarcoidosis after Janus kinase inhibitor therapy for concomitant polycythemia vera. JAAD Case Rep. (2019) 5:360–1. 10.1016/j.jdcr.2019.02.006
    1. Damsky W, Thakral D, McGeary MK, Leventhal J, Galan A, King B. Janus kinase inhibition induces disease remission in cutaneous sarcoidosis and granuloma annulare. J Am Acad Dermatol. (2020) 82:612–21. 10.1016/j.jaad.2019.05.098
    1. Damsky W, Thakral D, Emeagwali N, Galan A, King B. Tofacitinib treatment and molecular analysis of cutaneous sarcoidosis. N Engl J Med. (2018) 379:2540–6. 10.1056/NEJMoa1805958
    1. Rotenberg C, Besnard V, Brillet PY, Giraudier S, Nunes H, Valeyre D. Dramatic response of refractory sarcoidosis under ruxolitinib in a patient with associated JAK2-mutated polycythemia. Eur Respir J. (2018) 52:1801482. 10.1183/13993003.01482-2018
    1. Laplante M, Sabatini DM. MTOR signaling in growth control and disease. Cell. (2012) 149:274–93. 10.1016/j.cell.2012.03.017
    1. Linke M, Pham HTT, Katholnig K, Schnöller T, Miller A, Demel F, et al. . Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nat Immunol. (2017) 18:293–302. 10.1038/ni.3655
    1. Calender A, Lim CX, Weichhart T, Buisson A, Besnard V, Rollat-Farnier PA, et al. . Exome sequencing and pathogenicity-network analysis of five French families implicate mTOR signalling and autophagy in familial sarcoidosis. Eur Respir J. (2019) 54:1900430. 10.1183/13993003.00430-2019
    1. Korenromp IHE, Heijnen CJ, Vogels OJM, Van Den Bosch JMM, Grutters JC. Characterization of chronic fatigue in patients with sarcoidosis in clinical remission. Chest. (2011) 140:441–7. 10.1378/chest.10-2629
    1. Van Manen MJG, Wester VL, Van Rossum EFC, Van Den Toorn LM, Dorst KY, De Rijke YB, et al. . Scalp hair cortisol and testosterone levels in patients with sarcoidosis. PLoS One. (2019) 14:1–15. 10.1371/journal.pone.0215763
    1. Russell E, Koren G, Rieder M, Van Uum S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology. (2012) 37:589–601. 10.1016/j.psyneuen.2011.09.009
    1. Gormsen LC, Haraldsen A, Kramer S, Dias AH, Kim WY, Borghammer P. A dual tracer 68Ga-DOTANOC PET/CT and 18F-FDG PET/CT pilot study for detection of cardiac sarcoidosis. EJNMMI Res. (2016) 6:52. 10.1186/s13550-016-0207-6
    1. Vis R, Malviya G, Signore A, Grutters JC, Meek B, Van De Garde EMW, et al. . 99mTc-anti-TNF-α antibody for the imaging of disease activity in pulmonary sarcoidosis. Eur Respir J. (2016) 47:1198–207. 10.1183/13993003.01352-2015
    1. Culver DA, Judson MA. New advances in the management of pulmonary sarcoidosis. BMJ. (2019) 367:l5553. 10.1136/bmj.l5553
    1. Futami Y, Takeda Y, Koba T, Kida H, Kumanogoh A, Ueda K. Proteomic profiling of serum exosomes to find novel biomarkers in sarcoidosis. Am J Respir Crit Care Med. (2020) 201:A4489 10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A4489

Source: PubMed

3
Předplatit