Iron deficiency in heart failure: a practical guide

Nicole Ebner, Stephan von Haehling, Nicole Ebner, Stephan von Haehling

Abstract

Iron is an element necessary for cells due to its capacity of transporting oxygen and electrons. One of the important co-morbidities in heart failure is iron deficiency. Iron has relevant biological functions, for example, the formation of haemoglobin, myoglobin and numerous enzymatic groups. The prevalence of iron deficiency increases with the severity of heart failure. For a long time, the influence of iron deficiency was underestimated especially in terms of worsening of cardiovascular diseases and of developing anaemia. In recent years, studies with intravenous iron agents in patients with iron deficiency and cardiovascular diseases indicated new insights in the improvement of therapy. Experimental studies support the understanding of iron metabolism. Many physicians remain doubtful of the use of intravenous iron due to reports of side effects. The aim of this review is to describe iron metabolism in humans, to highlight the influence of iron deficiency on the course and symptoms of heart failure, discuss diagnostic tools of iron deficiency and provide guidance on the use of intravenous iron.

Figures

Figure 1
Figure 1
Overview of the cellular iron metabolism.

References

    1. Jelani Q.U., Katz S.D. Treatment of anemia in heart failure: Potential risks and benefits of intravenous iron therapy in cardiovascular disease. Cardiol. Rev. 2010;18:240–250. doi: 10.1097/CRD.0b013e3181e71150.
    1. Toblli J.E., Silverberg D.S., di Gennaro F., Duarte P., Facchini M., Angerosa M. Cardio-Renal Anaemia Syndrome CRAS Basics and Clinical Aspects. 1st ed. Publicaciones Latinoamericanas; Buenos Aires, Argentina: 2008. Iron Metabolism.
    1. Okonko D.O., Mandal A.K., Missouris C.G., Poole-Wilson P.A. Disordered iron homeostasis in chronic heart failure: Prevalence, predictors, and relation to anemia, exercise capacity, and survival. J. Am. Coll. Cardiol. 2011;58:1241–1251. doi: 10.1016/j.jacc.2011.04.040.
    1. Klip I.T., Comin-Colet J., Voors A.A., Ponikowski P., Enjuanes C., Banasiak W., Lok D.J., Rosentryt P., Torrens A., Polonski L., et al. Iron deficiency in chronic heart failure: An international pooled analysis. Am. Heart J. 2013;165:575–582. doi: 10.1016/j.ahj.2013.01.017.
    1. Jankowska E.A., von Haehling S., Anker S.D., Macdougall I.C., Ponikowski P. Iron deficiency and heart failure: Diagnostic dilemmas and therapeutic perspectives. Eur. Heart J. 2013;34:816–829. doi: 10.1093/eurheartj/ehs224.
    1. Groenveld H.F., Januzzi J.L., Damman K., van Wijngaarden J., Hillege H.L., van Veldhuisen D.J., van der Meer P. Anemia and mortality in heart failure patients a systematic review and meta-analysis. J. Am. Coll. Cardiol. 2008;52:818–827. doi: 10.1016/j.jacc.2008.04.061.
    1. Jankowska E.A., Malyszko J., Ardehali H., Koc-Zorawska E., Banasiak W., von Haehling S., Macdougall I.C., Weiss G., McMurray J.J., Anker S.D., et al. Iron status in patients with chronic heart failure. Eur. Heart J. 2013;34:827–834. doi: 10.1093/eurheartj/ehs377.
    1. Anker S.D., Colet J.C., Filippatos G., Willenheimer R., Dickstein K., Drexler H., Lüscher T.F., Bart B., Banasiak W., Niegowska J., et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 2009;361:2436–2448. doi: 10.1056/NEJMoa0908355.
    1. Ezekowitz J.A., McAlister F.A., Armstrong P.W. Anemia is common in heart failure and is associated with poor outcomes: Insights from a cohort of 12 065 patients with new-onset heart failure. Circulation. 2003;107:223–225. doi: 10.1161/01.CIR.0000052622.51963.FC.
    1. Tsung S.H., Rosenthal W.A., Milewski K.A. Immunological measurement of transferrin compared with chemical measurement of total iron-binding capacity. Clin. Chem. 1975;21:1063–1066.
    1. von Haehling S., Anker S.D. Iron Deficiency in Health and Disease. In: Anker S.D., von Haehling S., editors. Anaemia in Chronic Heart Failure. 2nd ed. UNI-MED Verlag AG; Bremen, Germany: 2009.
    1. Cohen L.A., Gutierrez L., Weiss A., Leichtmann-Bardoogo Y., Zhang D., Crooks D.R., Sougrat R., Morgenstern A., Galy B., Hentze M.W., et al. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood. 2010;116:1574–1584. doi: 10.1182/blood-2009-11-253815.
    1. Anderson G.J., Vulpe C.D. Mammalian iron transport. Cell. Mol. Life Sci. 2009;66:3241–3261. doi: 10.1007/s00018-009-0051-1.
    1. Ye H., Rouault T.A. Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease. Biochemistry. 2010;49:4945–4956. doi: 10.1021/bi1004798.
    1. Schultz I.J., Chen C., Paw B.H., Hamza I. Iron and porphyrin trafficking in heme biogenesis. J. Biol. Chem. 2010;285:26753–26759. doi: 10.1074/jbc.R110.119503.
    1. Richardson D.R., Lane D.J., Becker E.M., Huang M.L., Whitnall M., Suryo Rahmanto Y., Sheftel A.D., Ponka P. Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc. Natl. Acad. Sci. USA. 2010;107:10775–10782. doi: 10.1073/pnas.0912925107.
    1. Oudit G.Y., Sun H., Trivieri M.G., Koch S.E., Dawood F., Ackerley C., Yazdanpanah M., Wilson G.J., Schwartz A., Liu P.P., Backx P.H. l-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat. Med. 2003;9:1187–1194. doi: 10.1038/nm920.
    1. Murphy C.J., Oudit G.Y. Iron-overload cardiomyopathy: Pathophysiology, diagnosis, and treatment. J. Card. Fail. 2010;16:888–900. doi: 10.1016/j.cardfail.2010.05.009.
    1. Glaspy J., Cavill I. Role of iron in optimizing responses of anemic cancer patients to erythropoietin. Oncology (Williston Park) 1999;13:461–473.
    1. Eschbach J.W., Egrie J.C., Downing M.R., Browne J.K., Adamson J.W. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N. Engl. J. Med. 1987;316:73–78. doi: 10.1056/NEJM198701083160203.
    1. Van Veldhuisen D.J., Anker S.D., Ponikowski P., Macdougall I.C. Anemia and iron deficiency in heart failure: Mechanisms and therapeutic approaches. Nat. Rev. Cardiol. 2011;8:485–493. doi: 10.1038/nrcardio.2011.77.
    1. Kapoor M., Schleinitz M.D., Gemignani A., Wu W.C. Outcomes of patients with chronic heart failure and iron deficiency treated with intravenous iron: A meta-analysis. Cardiovasc. Hematol. Disord. Drug Targets. 2012;13:35–44.
    1. Jankowska E.A., Rozentryt P., Witkowska A., Nowak J., Hartmann O., Ponikowska B., Borodulin-Nadzieja L., Banasiak W., Polonski L., Filippatos G., et al. Iron deficiency: An ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 2010;31:1872–1880. doi: 10.1093/eurheartj/ehq158.
    1. Punnonen K., Irjala K., Rajamäki A. Serum transferrin receptor and its ratio to serum ferritin in the diagnosis of iron deficiency. Blood. 1997;89:1052–1057.
    1. Leszek P., Sochanowicz B., Szperl M., Kolsut P., Brzóska K., Piotrowski W., Rywik T.M., Danko B., Polkowska-Motrenko H., Różański J.M., et al. Myocardial iron homeostasis in advanced chronic heart failure patients. Int. J. Cardiol. 2012;159:47–52. doi: 10.1016/j.ijcard.2011.08.006.
    1. Koury S.T., Bondurant M.C., Koury M.J. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood. 1988;71:524–527.
    1. Lacombe C., da Silva J.L., Bruneval P., Fournier J.G., Wendling F., Casadevall N., Camilleri J.P., Bariety J., Varet B., Tambourin P. Peritubular cells are the site of erythropoietin synthesis in the murine hypoxic kidney. J. Clin. Investig. 1988;81:620–623. doi: 10.1172/JCI113363.
    1. Handelman G.J., Levin N.W. Iron and anemia in human biology: A review of mechanisms. Heart Fail. Rev. 2008;13:393–404. doi: 10.1007/s10741-008-9086-x.
    1. Willis W.T., Gohil K., Brooks G.A., Dallman P.R. Iron deficiency: Improved exercise performance within 15 h of iron treatment in rats. J. Nutr. 1990;120:909–916.
    1. Tobin B.W., Beard J.L. Interactions of iron deficiency and exercise training relative to tissue norepinephrine turnover, triiodothyronine production and metabolic rate in rats. J. Nutr. 1990;120:900–908.
    1. Blayney L., Bailey-Wood R., Jacobs A., Henderson A., Muir J. The effects of iron deficiency on the respiratory function and cytochrome content of rat heart mitochondria. Circ. Res. 1976;39:744–748. doi: 10.1161/01.RES.39.5.744.
    1. Kroot J.J.C., Tjalsma H., Fleming R.E., Swinkels D.W. Hepcidin in human iron disorders: Diagnostic implications. Clin. Chem. 2011;57:1650–1669. doi: 10.1373/clinchem.2009.140053.
    1. Geisser P. Safety and efficacy of iron(III)-hydroxide polymaltose complex/a review of over 25 years experience. Arzneimittelforschung. 2007;57:439–452.
    1. Silverberg D.S., Iaina A., Schwartz D., Wexler D. Intravenous iron in heart failure: Beyond targeting anemia. Curr. Heart Fail. Rep. 2011;8:14–21. doi: 10.1007/s11897-010-0034-4.
    1. Wish J.B. Assessing iron status: Beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol. 2006;1:S4–S8. doi: 10.2215/CJN.01490506.
    1. Feelders R.A., Kuiper-Kramer E.P., van Eijk H.G. Structure, function and clinical significance of transferrin receptors. Clin. Chem. Lab. Med. 1999;37:1–10. doi: 10.1515/CCLM.1999.001.
    1. Aung N., Ling H.Z., Cheng A.S., Aggarwal S., Flint J., Mendonca M., Rashid M., Kang S., Weissert S., Coats C.J., et al. Expansion of the red cell distribution width and evolving iron deficiency as predictors of poor outcome in chronic heart failure. Int. J. Cardiol. 2013 doi: 10.1016/j.ijcard.2012.12.091.
    1. Silverstein S.B., Rodgers G.M. Parenteral iron therapy options. Am. J. Hematol. 2004;76:74–78. doi: 10.1002/ajh.20056.
    1. Fishbane S., Kowalski E. The comparative safety of intravenous iron dextran, iron saccharate and sodium ferric gluconate. Semin. Dial. 2000;13:381–384. doi: 10.1046/j.1525-139x.2000.00104.x.
    1. von Haehling S., Anker S.D. Therapeutic Possibilities. In: Anker S.D., von Haehling S., editors. Anaemia in Chronic Heart Failure. 2nd ed. UNI-MED Verlag AG; Bremen, Germany: 2009.
    1. Moore R.A., Gaskell H., Rose P., Allan J. Meta-analysis of efficacy and safety of intravenous ferric carboxymaltose (Ferinject) from clinical trial reports and published trial data. BMC Blood Disord. 2011;11:4. doi: 10.1186/1471-2326-11-4.
    1. Okonko D.O., Grzeslo A., Witkowski T., Mandal A.K., Slater R.M., Roughton M., Foldes G., Thum T., Majda J., Banasiak W., et al. Effect of intravenous iron sucrose on exercise tolerance in anemic and nonanemic patients with symptomatic chronic heart failure and iron deficiency FERRIC-HF: A randomized, controlled, observer-blinded trial. J. Am. Coll. Cardiol. 2008;51:103–112. doi: 10.1016/j.jacc.2007.09.036.
    1. Toblli J.E., Silverberg D.S., di Gennaro F., Duarte P., Facchini M., Angerosa M. Cardio-Renal Anaemia Syndrome CRAS Basics and Clinical Aspects. 1st ed. Publicaciones Latinoamericanas; Buenos Aires, Argentina: 2008. Treatment of Anaemia with Iron.
    1. Danielson B.G. Structure, chemistry, and pharmacokinetics of intravenous iron agents. J. Am. Soc. Nephrol. 2004;15:S93–S98.
    1. Comín-Colet J., Enjuanes C., González G., Torrens A., Cladellas M., Meroño O., Ribas N., Ruiz S., Gómez M., Verdú J.M., et al. Iron deficiency is a key determinant of health-related quality of life in patients with chronic heart failure regardless of anaemia status. Eur. J. Heart Fail. 2013 doi: 10.1093/eurjhf/hft083.
    1. Ganzoni A.M. Intravenous iron-dextran: Therapeutic and experimental possibilities. Schweiz. Med. Wochenschr. 1970;100:301–303. (in German)
    1. Intravenous Iron in Patients with Severe Chronic Heart Failure and Chronic Kidney Disease. [(accessed on 2 April 2013)]. Available online: .
    1. Iron Supplementation in Heart Failure Patients with Anemia: The IRON-HF Study. [(accessed on 2 April 2013)]. Available online: .

Source: PubMed

3
Předplatit