Circulating Tumor Cells (CTC) Are Associated with Defects in Adaptive Immunity in Patients with Inflammatory Breast Cancer

M Mego, H Gao, E N Cohen, S Anfossi, A Giordano, T Sanda, T M Fouad, U De Giorgi, M Giuliano, W A Woodward, R H Alvarez, V Valero, N T Ueno, G N Hortobagyi, M Cristofanilli, J M Reuben, M Mego, H Gao, E N Cohen, S Anfossi, A Giordano, T Sanda, T M Fouad, U De Giorgi, M Giuliano, W A Woodward, R H Alvarez, V Valero, N T Ueno, G N Hortobagyi, M Cristofanilli, J M Reuben

Abstract

Background: Circulating tumor cells (CTCs) play a crucial role in tumor dissemination and are prognostic in primary and metastatic breast cancer. Peripheral blood (PB) immune cells contribute to an unfavorable microenvironment for CTC survival. This study aimed to correlate CTCs with the PB T-cell immunophenotypes and functions of patients with inflammatory breast cancer (IBC).

Methods: This study included 65 IBC patients treated at the MD Anderson Cancer Center. PB was obtained from patients prior to starting a new line of chemotherapy for CTCs enumeration by CellSearch(®), and T cell phenotype and function by flow cytometry; the results were correlated with CTCs and clinical outcome.

Results: At least 1 CTC (≥1) or ≥5 CTCs was detected in 61.5% or 32.3% of patients, respectively. CTC count did not correlate with total lymphocytes; however, patients with ≥1 CTC or ≥5 CTCs had lower percentages (%) of CD3+ and CD4+ T cells compared with patients with no CTCs or <5 CTCs, respectively. Patients with ≥1 CTC had a lower percentage of T-cell receptor (TCR)-activated CD8+ T cells synthesizing TNF-α and IFN-γ and a higher percentage of T-regulatory lymphocytes compared to patients without CTCs. In multivariate analysis, tumor grade and % CD3+ T-cells were associated with ≥1 CTC, whereas ≥5 CTC was associated with tumor grade, stage, % CD3+ and % CD4+ T cells, and % TCR-activated CD8 T-cells synthesizing IL-17.

Conclusions: IBC patients with CTCs in PB had abnormalities in adaptive immunity that could potentially impact tumor cell dissemination and initiation of the metastatic cascade.

Keywords: Circulating tumors cells; adaptive immunity; and inflammatory breast cancer.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Figure 1
Figure 1
Prognostic value of CTC (A) and combined prognostic value of CTC and TCR-activated CD8+ T cells synthesizing IFN-γ (B). Patients with “low” TCR-activated CD8+ T cells synthesizing IFN-γ and CTC ≥ 5 (group 3) had significantly worse survival (median OS = 10.5 months) compared to patients with “high” TCR-activated CD8+ T cells synthesizing IFN-γ and CTC < 5 (group 1) (median OS not reached). Patients with either “low” TCR-activated CD8+ T cells synthesizing IFN-γ and CTC < 5 (group 0) (median OS = 19.4 months) or “high” TCR-activated CD8+ T cells synthesizing IFN-γ and CTC ≥ 5 (group 4) (median OS = 24.9 months) had intermediate prognosis. TCR-activated CD8+ T cells s synthesizing IFN-γ were dichotomized as “low” or “high” based on median value of percentage of these cells in all patients.
Figure 1
Figure 1
Prognostic value of CTC (A) and combined prognostic value of CTC and TCR-activated CD8+ T cells synthesizing IFN-γ (B). Patients with “low” TCR-activated CD8+ T cells synthesizing IFN-γ and CTC ≥ 5 (group 3) had significantly worse survival (median OS = 10.5 months) compared to patients with “high” TCR-activated CD8+ T cells synthesizing IFN-γ and CTC < 5 (group 1) (median OS not reached). Patients with either “low” TCR-activated CD8+ T cells synthesizing IFN-γ and CTC < 5 (group 0) (median OS = 19.4 months) or “high” TCR-activated CD8+ T cells synthesizing IFN-γ and CTC ≥ 5 (group 4) (median OS = 24.9 months) had intermediate prognosis. TCR-activated CD8+ T cells s synthesizing IFN-γ were dichotomized as “low” or “high” based on median value of percentage of these cells in all patients.

References

    1. Anderson WF, Schairer C, Chen BE, Hance KW, Levine PH. Epidemiology of inflammatory breast cancer (IBC) Breast Dis. 2005;22:9–23.
    1. Hance KW, Anderson WF, Devesa SS, Young HA, Levine PH. Trends in inflammatory breast carcinoma incidence and survival: the surveillance, epidemiology, and end results program at the National Cancer Institute. J Natl Cancer Inst. 2005;97:966–975.
    1. Walshe J, Swain S. Clinical aspects of inflammatory breast cancer. Breast Dis. 2005;22:35–44.
    1. Ueno NT, Buzdar AU, Singletary SE. et al. Combined-modality treatment of inflammatory breast carcinoma: twenty years of experience at M.D. Anderson Cancer Center. Cancer Chemother Pharmacol. 1997;40:321–329.
    1. Masuda H, Brewer TM, Liu DD. et al. Long-term treatment efficacy in primary inflammatory breast cancer by hormonal receptor- and HER2-defined subtypes. Ann Oncol. 2014;25:384–391.
    1. Fouad TM, Kogawa T, Liu DD. et al. Survival differences between patients with metastatic inflammatory and non-inflammatory breast cancer. Cancer Res. 2013;73(24 Suppl):Abstract. P6-12-02.
    1. Cristofanilli M, Buzdar AU, Hortobagyi GN. Update on the management of inflammatory breast cancer. Oncologist. 2003;8:141–148.
    1. Cristofanilli M, Valero V, Buzdar AU. et al. Inflammatory breast cancer (IBC) and patterns of recurrence-understanding the biology of a unique disease. Cancer. 2007;110:1436–1444.
    1. Robertson FM, Bondy M, Yang W. et al. Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin. 2010;60:351–375.
    1. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003;3:453–458.
    1. Butler TP, Gullino PM. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res. 1975;35:512–516.
    1. Wong CW, Lee A, Shientag L. et al. Apoptosis: an early event in metastatic inefficiency. Cancer Res. 2001;61:333–338.
    1. Baccelli I, Schneeweiss A, Riethdorf S. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 2013;31:539–544.
    1. Lucci A, Hall CS, Lodhi AK. et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol. 2012;13:688–695.
    1. Cristofanilli M, Budd GT, Ellis MJ. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351:781–791.
    1. Mego M, Giordano A, De Giorgi U, Circulating tumor cells in newly diagnosed inflammatory breast cancer. Breast Cancer Research; 2015. (In press)
    1. Zhan M, Zhao H. & Han, Z. C. Signaling mechanisms of anoikis. Histol. Histopathol. 2004;19:973–983.
    1. Mego M, Mani SA, Cristofanilli M. Molecular mechanisms of metastasis in breast cancer-clinical applications. Nat Rev Clin Oncol. 2010;7:693–701.
    1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.
    1. Green TL, Cruse JM, Lewis RE, Craft BS. Circulating tumor cells (CTCs) from metastatic breast cancer patients linked to decreased immune function and response to treatment. Exp Mol Pathol. 2013;95:174–179.
    1. Green TL, Santos MF, Ejaeidi AA, Craft BS, Lewis RE, Cruse JM. Toll-like receptor (TLR) expression of immune system cells from metastatic breast cancer patients with circulating tumor cells. Exp Mol Pathol. 2014;97:44–48.
    1. Gruber I, Landenberger N, Staebler A, Hahn M, Wallwiener D, Fehm T. Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. Anticancer Res. 2013;33:2233–2238.
    1. Greene FL, Page DL, Fleming ID, AJCC Cancer Staging Handbook, 6th edition. New York, NY: Springer; 2002.
    1. Dawood S, Merajver SD, Viens P. et al. International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment. Ann Oncol. 2011;22:515–523.
    1. Singletary SE, Allred C, Ashley P. et al. Staging system for breast cancer: revisions for the 6th edition of the AJCC Cancer Staging Manual. Surg Clin North Am. 2003;83:803–819.
    1. Allard WJ, Matera J, Miller MC. et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10:6897–6904.
    1. Naing A, Reuben JM, Camacho LH. et al. Phase I Dose Escalation Study of Sodium Stibogluconate (SSG), a protein tyrosine phosphatase inhibitor, combined with interferon alpha for patients with solid tumors. J Cancer. 2011;2:81–89.
    1. Reuben JM, Lee BN, Li C. et al. Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer. 2006;106:2437–2444.
    1. Gao H, Lee BN, Talpaz M, Donato NJ, Cortes JE, Kantarjian HM, Reuben JM. Imatinib mesylate suppresses cytokine synthesis by activated CD4 T cells of patients with chronic myelogenous leukemia. Leukemia. 2005;19:1905–1911.
    1. Bidard FC, Mathiot C, Delaloge S. et al. Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer. Ann Oncol. 2010;21:729–733.
    1. Lang JE, Mosalpuria K, Cristofanilli M. et al. HER2 status predicts the presence of circulating tumor cells in patients with operable breast cancer. Breast Cancer Res Treat. 2009;113:501–517.
    1. Bidard F, Hajage D, Bachelot T. et al. Circulating tumor cells and CYFRA 21-1 as outcome-associated biomarkers in first line metastatic breast cancer: results of the IC 2006-04 study. Ann Oncol. 2011;22(supplement 2):ii41–ii42.
    1. Rack BK, Schindlbeck C, Andergassen U. et al. Use of circulating tumor cells (CTC) in peripheral blood of breast cancer patients before and after adjuvant chemotherapy to predict risk for relapse: the SUCCESS trial [abstract] J Clin Oncol. 2010;28(15 Suppl):a1003.
    1. Mego M, De Giorgi U, Hsu L. et al. Circulating tumor cells in metastatic inflammatory breast cancer. Ann Oncol. 2009;20:1824–1828.
    1. Muraro E, Comaro E, Talamini R. et al. Improved Natural Killer cell activity and retained anti-tumor CD8(+) T cell responses contribute to the induction of a pathological complete response in HER2-positive breast cancer patients undergoing neoadjuvant chemotherapy. J Transl Med. 2015;13:204.
    1. Datta J, Berk E, Xu S. et al. Anti-HER2 CD4(+) T-helper type 1 response is a novel immune correlate to pathologic response following neoadjuvant therapy in HER2-positive breast cancer. Breast Cancer Res. 2015;17:71.
    1. De Giorgi U, Rihawi K, Aieta M. et al. Lymphopenia and clinical outcome of elderly patients treated with sunitinib for metastatic renal cell cancer. J Geriatr Oncol. 2014;5:156–163.
    1. De Giorgi U, Mego M, Scarpi E. et al. Relationship between lymphocytopenia and circulating tumor cells as prognostic factors for overall survival in metastatic breast cancer. Clin Breast Cancer. 2012;12:264–269.
    1. Fujiwara Y, Misawa T, Shiba H. et al. Postoperative peripheral absolute blood lymphocyte-to-monocyte ratio predicts therapeutic outcome after pancreatic resection in patients with pancreatic adenocarcinoma. Anticancer Res. 2014;34:5163–5168.
    1. Wei X, Huang F, Wei Y. et al. Low lymphocyte-to-monocyte ratio predicts unfavorable prognosis in non-germinal center type diffuse large B-cell lymphoma. Leuk Res. 2014;38:694–698.
    1. Kobayashi N, Usui S, Kikuchi S. et al. Preoperative lymphocyte count is an independent prognostic factor in node-negative non-small cell lung cancer. Lung Cancer. 2012;75:223–227.
    1. Knutson KL, Disis ML, Salazar LG. CD4 regulatory Tcells in human cancer pathogenesis. Cancer Immunol Immunother. 2007;56:271–285.
    1. Perez SA1, Karamouzis MV, Skarlos DV. et al. CD4+CD25+ regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients. Clin Cancer Res. 2007;13:2714–2721.
    1. Liyanage UK, Moore TT, Joo HG. et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169:2756–2761.
    1. Decker T, Fischer G, Bücke W. et al. Increased number of regulatory T cells (T-regs) in the peripheral blood of patients with Her-2/neu-positive early breast cancer. J Cancer Res Clin Oncol. 2012;138:1945–50.
    1. Faghih Z, Erfani N, Haghshenas MR, Safaei A, Talei AR, Ghaderi A. Immune profiles of CD4+ lymphocyte subsets in breast cancer tumor draining lymph nodes. Immunology Letters. 2014;158:57–65.
    1. Whiteside TL. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 2006;16:3–15.
    1. Fehm T, Müller V, Aktas B. et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res Treat. 2010;124:403–412.
    1. Punnoose EA, Atwal SK, Spoerke JM. et al. Molecular biomarker analyses using circulating tumor cells. PLoS One. 2010;5:e12517.
    1. Flores LM, Kindelberger DW, Ligon AH. et al. Improving the yield of circulating tumour cells facilitates molecular characterisation and recognition of discordant HER2 amplification in breast cancer. Br J Cancer. 2010;102:1495–1502.
    1. Sisirak V, Faget J, Vey N. et al. Plasmacytoid dendritic cells deficient in IFNα production promote the amplification of FOXP3(+) regulatory T cells and are associated with poor prognosis in breast cancer patients. Oncoimmunology. 2013;2:e22338.
    1. Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 2008;38:2636–2649.
    1. Dobrzanski MJ, Reome JB, Hollenbaugh JA, Dutton RW. Tc1 and Tc2 effector cell therapy elicit long-term tumor immunity by contrasting mechanisms that result in complementary endogenous type 1 antitumor responses. J Immunol. 2004;172:1380–1390.
    1. Vukmanovic-Stejic M, B. Vyas, P. Gorak-Stolinska, A. Noble, D. M. Kemeny. 2000. Human Tc1 and Tc2/Tc0 CD8 T cell clones display distinct cell surface and functional phenotypes. Blood. 2000;95:231–240.
    1. Yen HR, Harris TJ, Wada S. et al. Tc17 CD8 T cells: functional plasticity and subset diversity. J Immunol. 2009;183:7161–7168.
    1. Hinrichs CS, Kaiser A, Paulos CM. et al. Type 17 CD8+ T cells display enhanced antitumor immunity. Blood. 2009;114:596–599.
    1. Faghih Z, Rezaeifard S, Safaei A, Ghaderi A, Erfani N. IL-17 and IL-4 producing CD8+ T cells in tumor draining lymph nodes of breast cancer patients: positive association with tumor progression. Iran J Immunol. 2013;10:193–204.
    1. Zhao Y, Zhao H, Sun Y. et al. IL-4 induces a suppressive IL-10-producing CD8+ T cell population via a Cdkn2a-dependent mechanism. J Leukoc Biol. 2013;94:1103–1112.
    1. Noble A, Giorgini A, Leggat JA. Cytokine-induced IL-10-secreting CD8 T cells represent a phenotypically distinct suppressor T-cell lineage. Blood. 2006;107:4475–4483.
    1. Campbell MJ, Scott J, Maecker HT, Park JW, Esserman LJ. Immune dysfunction anmicrometastases in women with breast cancer. Breast Cancer Res Treat. 2005;91:163–171.
    1. Naume B, Gately MK, Desai BB, Sundan A, Espevik T. Synergistic effects of interleukin 4 and interleukin 12 on NK cell proliferation. Cytokine. 1993;5:38–46.
    1. Brown MA, Hural J. Functions of IL-4 and control of its expression. Crit Rev Immunol. 1997;17:1–32.
    1. Swisher SG, Economou JS, Holmes EC, Golub SH. TNF-alpha and IFN-gamma reverse IL-4 inhibition of lymphokine-activated killer cell function. Cell Immunol. 1990;128:450–461.
    1. Yu M, Bardia A, Wittner BS. et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339:580–584.
    1. Mego M, Mani SA, Lee BN. et al. Expression of epithelial-mesenchymal transition-inducing transcription factors in primary breast cancer: the effect of neoadjuvant therapy. Int J Cancer. 2012;130:808–816.
    1. Giordano A, Gao H, Anfossi S. et al. Epithelial-mesenchymal transition and stem cell markers in patients with HER2-positive metastatic breast cancer. Mol Cancer Ther. 2012;11:2526–2534.
    1. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell. 2009;15:195–206.
    1. Gu-Trantien C, Loi S, Garaud S. et al. CD4⁺ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest. 2013;123:2873–2892.
    1. Loi S, Michiels S, Salgado R. et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25:1544–1550.
    1. Loi S, Sirtaine N, Piette F. et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol. 2013;31:860–867.

Source: PubMed

3
Předplatit