Current Understanding of Autophagy in Pregnancy

Akitoshi Nakashima, Sayaka Tsuda, Tae Kusabiraki, Aiko Aoki, Akemi Ushijima, Tomoko Shima, Shi-Bin Cheng, Surendra Sharma, Shigeru Saito, Akitoshi Nakashima, Sayaka Tsuda, Tae Kusabiraki, Aiko Aoki, Akemi Ushijima, Tomoko Shima, Shi-Bin Cheng, Surendra Sharma, Shigeru Saito

Abstract

Autophagy is an evolutionarily conserved process in eukaryotes to maintain cellular homeostasis under environmental stress. Intracellular control is exerted to produce energy or maintain intracellular protein quality controls. Autophagy plays an important role in embryogenesis, implantation, and maintenance of pregnancy. This role includes supporting extravillous trophoblasts (EVTs) that invade the decidua (endometrium) until the first third of uterine myometrium and migrate along the lumina of spiral arterioles under hypoxic and low-nutrient conditions in early pregnancy. In addition, autophagy inhibition has been linked to poor placentation-a feature of preeclamptic placentas-in a placenta-specific autophagy knockout mouse model. Studies of autophagy in human placentas have revealed controversial results, especially with regard to preeclampsia and gestational diabetes mellitus (GDM). Without precise estimation of autophagy flux, wrong interpretation would lead to fixed tissues. This paper presents a review of the role of autophagy in pregnancy and elaborates on the interpretation of autophagy in human placental tissues.

Keywords: Atg7; autophagy; lysosomes; p62/SQSTM1; placenta; preeclampsia; protein aggregation.

Conflict of interest statement

The authors declare no conflict of interests. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Autophagy cascade. An isolation membrane is merging in cytoplasm via PI3K complex. After elongation of the membrane, the isolation membrane closes and completes the autophagosome, which is formed with double membranes. Finally, the autophagosome forms the autolysosome by fusing with the lysosome and digests the contents the inner membrane. Following with the degradation, autophagy provides matured lysosomes by a recycling of proto-lysosomal membrane components.
Figure 2
Figure 2
Placental autophagy inhibition inducing gestational hypertension and poor placentation. (Left figure) Trophoblast-invasion and vascular remodeling are fundamental for normal placentation (the black arrows indicate the place of invasion and vascular remodeling). Autophagy deficiency impairs the functions of trophoblasts in the trophoblast-specific Atg7 knockout mouse model, resulting in poor placentation (the red “T” bars indicate the inhibition). PlGF mRNA levels, but not sFlt1 mRNA levels, are decreased in the knockout placentas (the red arrow indicates the decrease, and the black arrow indicates the stable). (Right figure) Also, the dams bearing the knockout placentas showed hypertension, but not proteinuria (the red arrow indicates the induction of hypertension by the placenta).

References

    1. Klionsky D.J., Emr S.D. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290:1717–1721. doi: 10.1126/science.290.5497.1717.
    1. Mizushima N., Komatsu M. Autophagy: Renovation of cells and tissues. Cell. 2011;147:728–741. doi: 10.1016/j.cell.2011.10.026.
    1. Mizushima N., Ohsumi Y., Yoshimori T. Autophagosome formation in mammalian cells. Cell Struct. Funct. 2002;27:421–429. doi: 10.1247/csf.27.421.
    1. Youle R.J., Narendra D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011;12:9–14. doi: 10.1038/nrm3028.
    1. Reggiori F., Komatsu M., Finley K., Simonsen A. Autophagy: More than a nonselective pathway. Int. J. Cell Biol. 2012;2012:219625. doi: 10.1155/2012/219625.
    1. Boya P., Reggiori F., Codogno P. Emerging regulation and functions of autophagy. Nat. Cell Biol. 2013;15:713–720. doi: 10.1038/ncb2788.
    1. Cuervo A.M., Dice J.F. Age-related decline in chaperone-mediated autophagy. J. Biol. Chem. 2000;275:31505–31513. doi: 10.1074/jbc.M002102200.
    1. Nakamura S., Oba M., Suzuki M., Takahashi A., Yamamuro T., Fujiwara M., Ikenaka K., Minami S., Tabata N., Yamamoto K., et al. Suppression of autophagic activity by Rubicon is a signature of aging. Nat. Commun. 2019;10:847. doi: 10.1038/s41467-019-08729-6.
    1. Hamasaki M., Furuta N., Matsuda A., Nezu A., Yamamoto A., Fujita N., Oomori H., Noda T., Haraguchi T., Hiraoka Y., et al. Autophagosomes form at ER-mitochondria contact sites. Nature. 2013;495:389–393. doi: 10.1038/nature11910.
    1. Marino G., Uria J.A., Puente X.S., Quesada V., Bordallo J., Lopez-Otin C. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J. Biol. Chem. 2003;278:3671–3678. doi: 10.1074/jbc.M208247200.
    1. Nakamura S., Yoshimori T. New insights into autophagosome-lysosome fusion. J. Cell Sci. 2017;130:1209–1216. doi: 10.1242/jcs.196352.
    1. Matsunaga K., Saitoh T., Tabata K., Omori H., Satoh T., Kurotori N., Maejima I., Shirahama-Noda K., Ichimura T., Isobe T., et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat. Cell Biol. 2009;11:385–396. doi: 10.1038/ncb1846.
    1. Mindell J.A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 2012;74:69–86. doi: 10.1146/annurev-physiol-012110-142317.
    1. Yu L., McPhee C.K., Zheng L., Mardones G.A., Rong Y., Peng J., Mi N., Zhao Y., Liu Z., Wan F., et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature. 2010;465:942–946. doi: 10.1038/nature09076.
    1. Gawriluk T.R., Ko C., Hong X., Christenson L.K., Rucker E.B., 3rd Beclin-1 deficiency in the murine ovary results in the reduction of progesterone production to promote preterm labor. Proc. Natl. Acad. Sci. USA. 2014;111:E4194–E4203. doi: 10.1073/pnas.1409323111.
    1. Song Z.H., Yu H.Y., Wang P., Mao G.K., Liu W.X., Li M.N., Wang H.N., Shang Y.L., Liu C., Xu Z.L., et al. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death. Dis. 2015;6:e1589. doi: 10.1038/cddis.2014.559.
    1. Tsukamoto S., Kuma A., Murakami M., Kishi C., Yamamoto A., Mizushima N. Autophagy is essential for preimplantation development of mouse embryos. Science. 2008;321:117–120. doi: 10.1126/science.1154822.
    1. Song B.S., Yoon S.B., Kim J.S., Sim B.W., Kim Y.H., Cha J.J., Choi S.A., Min H.K., Lee Y., Huh J.W., et al. Induction of autophagy promotes preattachment development of bovine embryos by reducing endoplasmic reticulum stress. Biol. Reprod. 2012;87:8, 1–11. doi: 10.1095/biolreprod.111.097949.
    1. Song W.H., Yi Y.J., Sutovsky M., Meyers S., Sutovsky P. Autophagy and ubiquitin-proteasome system contribute to sperm mitophagy after mammalian fertilization. Proc. Natl. Acad. Sci. USA. 2016;113:E5261–E5270. doi: 10.1073/pnas.1605844113.
    1. Lee J.E., Oh H.A., Song H., Jun J.H., Roh C.R., Xie H., Dey S.K., Lim H.J. Autophagy regulates embryonic survival during delayed implantation. Endocrinology. 2011;152:2067–2075. doi: 10.1210/en.2010-1456.
    1. Sobolewska A., Gajewska M., Zarzynska J., Gajkowska B., Motyl T. IGF-I, EGF, and sex steroids regulate autophagy in bovine mammary epithelial cells via the mTOR pathway. Eur. J. Cell Biol. 2009;88:117–130. doi: 10.1016/j.ejcb.2008.09.004.
    1. Hiyama M., Kusakabe K.T., Takeshita A., Sugi S., Kuniyoshi N., Imai H., Kano K., Kiso Y. Nutrient starvation affects expression of LC3 family at the feto-maternal interface during murine placentation. J. Vet. Med. Sci. 2015;77:305–311. doi: 10.1292/jvms.14-0490.
    1. Nakashima A., Yamanaka-Tatematsu M., Fujita N., Koizumi K., Shima T., Yoshida T., Nikaido T., Okamoto A., Yoshimori T., Saito S. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy. 2013;9:303–316. doi: 10.4161/auto.22927.
    1. Aoki A., Nakashima A., Kusabiraki T., Ono Y., Yoshino O., Muto M., Kumasawa K., Yoshimori T., Ikawa M., Saito S. Trophoblast-Specific Conditional Atg7 Knockout Mice Develop Gestational Hypertension. Am. J. Pathol. 2018;188:2474–2486. doi: 10.1016/j.ajpath.2018.07.021.
    1. Fujita N., Noda T., Yoshimori T. Atg4B(C74A) hampers autophagosome closure: A useful protein for inhibiting autophagy. Autophagy. 2009;5:88–89. doi: 10.4161/auto.5.1.7183.
    1. Chen B., Longtine M.S., Nelson D.M. Hypoxia induces autophagy in primary human trophoblasts. Endocrinology. 2012;153:4946–4954. doi: 10.1210/en.2012-1472.
    1. Choi J.H., Lee H.J., Yang T.H., Kim G.J. Effects of hypoxia inducible factors-1alpha on autophagy and invasion of trophoblasts. Clin. Exp. Reprod. Med. 2012;39:73–80. doi: 10.5653/cerm.2012.39.2.73.
    1. Gao L., Qi H.B., Kamana K.C., Zhang X.M., Zhang H., Baker P.N. Excessive autophagy induces the failure of trophoblast invasion and vasculature: Possible relevance to the pathogenesis of preeclampsia. J. Hypertens. 2015;33:106–117. doi: 10.1097/HJH.0000000000000366.
    1. Yamanaka-Tatematsu M., Nakashima A., Fujita N., Shima T., Yoshimori T., Saito S. Autophagy induced by HIF1alpha overexpression supports trophoblast invasion by supplying cellular energy. PLoS ONE. 2013;8:e76605. doi: 10.1371/journal.pone.0076605.
    1. Arikawa T., Liao S., Shimada H., Inoue T., Sakata-Haga H., Nakamura T., Hatta T., Shoji H. Galectin-4 expression is down-regulated in response to autophagy during differentiation of rat trophoblast cells. Sci. Rep. 2016;6:32248. doi: 10.1038/srep32248.
    1. Arikawa T., Simamura E., Shimada H., Nishi N., Tatsuno T., Ishigaki Y., Tomosugi N., Yamashiro C., Hata T., Takegami T., et al. Expression pattern of Galectin 4 in rat placentation. Placenta. 2012;33:885–887. doi: 10.1016/j.placenta.2012.07.013.
    1. Cao B., Macones C., Mysorekar I.U. ATG16L1 governs placental infection risk and preterm birth in mice and women. JCI Insight. 2016;1:e86654. doi: 10.1172/jci.insight.86654.
    1. Gauster M., Maninger S., Siwetz M., Deutsch A., El-Heliebi A., Kolb-Lenz D., Hiden U., Desoye G., Herse F., Prokesch A. Downregulation of p53 drives autophagy during human trophoblast differentiation. Cell Mol. Life Sci. 2018;75:1839–1855. doi: 10.1007/s00018-017-2695-6.
    1. Motomura K., Okada N., Morita H., Hara M., Tamari M., Orimo K., Matsuda G., Imadome K.I., Matsuda A., Nagamatsu T., et al. A Rho-associated coiled-coil containing kinases (ROCK) inhibitor, Y-27632, enhances adhesion, viability and differentiation of human term placenta-derived trophoblasts in vitro. PLoS ONE. 2017;12:e0177994. doi: 10.1371/journal.pone.0177994.
    1. Ferreira J.V., Fofo H., Bejarano E., Bento C.F., Ramalho J.S., Girao H., Pereira P. STUB1/CHIP is required for HIF1A degradation by chaperone-mediated autophagy. Autophagy. 2013;9:1349–1366. doi: 10.4161/auto.25190.
    1. Jauniaux E., Hempstock J., Teng C., Battaglia F.C., Burton G.J. Polyol concentrations in the fluid compartments of the human conceptus during the first trimester of pregnancy: Maintenance of redox potential in a low oxygen environment. J. Clin. Endocrinol. Metab. 2005;90:1171–1175. doi: 10.1210/jc.2004-1513.
    1. Jauniaux E., Watson A., Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation. Am. J. Obstet. Gynecol. 2001;184:998–1003. doi: 10.1067/mob.2001.111935.
    1. Hung T.H., Chen S.F., Lo L.M., Li M.J., Yeh Y.L., Hsieh T.T. Increased autophagy in placentas of intrauterine growth-restricted pregnancies. PLoS ONE. 2012;7:e40957. doi: 10.1371/journal.pone.0040957.
    1. Oh S.Y., Choi S.J., Kim K.H., Cho E.Y., Kim J.H., Roh C.R. Autophagy-related proteins, LC3 and Beclin-1, in placentas from pregnancies complicated by preeclampsia. Reprod. Sci. 2008;15:912–920. doi: 10.1177/1933719108319159.
    1. Kalkat M., Garcia J., Ebrahimi J., Melland-Smith M., Todros T., Post M., Caniggia I. Placental autophagy regulation by the BOK-MCL1 rheostat. Autophagy. 2013;9:2140–2153. doi: 10.4161/auto.26452.
    1. Kalkunte S., Boij R., Norris W., Friedman J., Lai Z., Kurtis J., Lim K.H., Padbury J.F., Matthiesen L., Sharma S. Sera from preeclampsia patients elicit symptoms of human disease in mice and provide a basis for an in vitro predictive assay. Am. J. Pathol. 2010;177:2387–2398. doi: 10.2353/ajpath.2010.100475.
    1. Kanninen T.T., Jayaram A., Jaffe Lifshitz S., Witkin S.S. Altered autophagy induction by sera from pregnant women with pre-eclampsia: A case-control study. BJOG. 2014;121:958–964. doi: 10.1111/1471-0528.12755.
    1. Keegan D.A., Krey L.C., Chang H.C., Noyes N. Increased risk of pregnancy-induced hypertension in young recipients of donated oocytes. Fertil. Steril. 2007;87:776–781. doi: 10.1016/j.fertnstert.2006.08.105.
    1. Salha O., Sharma V., Dada T., Nugent D., Rutherford A.J., Tomlinson A.J., Philips S., Allgar V., Walker J.J. The influence of donated gametes on the incidence of hypertensive disorders of pregnancy. Hum. Reprod. 1999;14:2268–2273. doi: 10.1093/humrep/14.9.2268.
    1. Wiggins D.A., Main E. Outcomes of pregnancies achieved by donor egg in vitro fertilization--a comparison with standard in vitro fertilization pregnancies. Am. J. Obstet. Gynecol. 2005;192:2002–2006. doi: 10.1016/j.ajog.2005.02.059.
    1. Nakabayashi Y., Nakashima A., Yoshino O., Shima T., Shiozaki A., Adachi T., Nakabayashi M., Okai T., Kushima M., Saito S. Impairment of the accumulation of decidual T cells, NK cells, and monocytes, and the poor vascular remodeling of spiral arteries, were observed in oocyte donation cases, regardless of the presence or absence of preeclampsia. J. Reprod. Immunol. 2016;114:65–74. doi: 10.1016/j.jri.2015.07.005.
    1. Akaishi R., Yamada T., Nakabayashi K., Nishihara H., Furuta I., Kojima T., Morikawa M., Fujita N., Minakami H. Autophagy in the placenta of women with hypertensive disorders in pregnancy. Placenta. 2014;35:974–980. doi: 10.1016/j.placenta.2014.10.009.
    1. Melland-Smith M., Ermini L., Chauvin S., Craig-Barnes H., Tagliaferro A., Todros T., Post M., Caniggia I. Disruption of sphingolipid metabolism augments ceramide-induced autophagy in preeclampsia. Autophagy. 2015;11:653–669. doi: 10.1080/15548627.2015.1034414.
    1. Yamada T., Carson A.R., Caniggia I., Umebayashi K., Yoshimori T., Nakabayashi K., Scherer S.W. Endothelial nitric-oxide synthase antisense (NOS3AS) gene encodes an autophagy-related protein (APG9-like2) highly expressed in trophoblast. J. Biol. Chem. 2005;280:18283–18290. doi: 10.1074/jbc.M413957200.
    1. Kanayama N., Takahashi K., Matsuura T., Sugimura M., Kobayashi T., Moniwa N., Tomita M., Nakayama K. Deficiency in p57Kip2 expression induces preeclampsia-like symptoms in mice. Mol. Hum. Reprod. 2002;8:1129–1135. doi: 10.1093/molehr/8.12.1129.
    1. Kojima T., Yamada T., Akaishi R., Furuta I., Saitoh T., Nakabayashi K., Nakayama K.I., Nakayama K., Akira S., Minakami H. Role of the Atg9a gene in intrauterine growth and survival of fetal mice. Reprod. Biol. 2015;15:131–138. doi: 10.1016/j.repbio.2015.05.001.
    1. Curtis S., Jones C.J., Garrod A., Hulme C.H., Heazell A.E. Identification of autophagic vacuoles and regulators of autophagy in villous trophoblast from normal term pregnancies and in fetal growth restriction. J. Matern. Fetal. Neonatal. Med. 2013;26:339–346. doi: 10.3109/14767058.2012.733764.
    1. Hung T.H., Hsieh T.T., Chen S.F., Li M.J., Yeh Y.L. Autophagy in the human placenta throughout gestation. PLoS ONE. 2013;8:e83475. doi: 10.1371/journal.pone.0083475.
    1. Muralimanoharan S., Gao X., Weintraub S., Myatt L., Maloyan A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy. 2016;12:752–769. doi: 10.1080/15548627.2016.1156822.
    1. Hirota Y., Cha J., Yoshie M., Daikoku T., Dey S.K. Heightened uterine mammalian target of rapamycin complex 1 (mTORC1) signaling provokes preterm birth in mice. Proc. Natl. Acad. Sci. USA. 2011;108:18073–18078. doi: 10.1073/pnas.1108180108.
    1. Nixon R.A. The role of autophagy in neurodegenerative disease. Nat. Med. 2013;19:983–997. doi: 10.1038/nm.3232.
    1. Soto C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 2003;4:49–60. doi: 10.1038/nrn1007.
    1. Cheng S.B., Nakashima A., Sharma S. Understanding Pre-Eclampsia Using Alzheimer’s Etiology: An Intriguing Viewpoint. Am. J. Reprod. Immunol. 2016;75:372–381. doi: 10.1111/aji.12446.
    1. Buhimschi I.A., Nayeri U.A., Zhao G., Shook L.L., Pensalfini A., Funai E.F., Bernstein I.M., Glabe C.G., Buhimschi C.S. Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci. Transl. Med. 2014;6:245ra92. doi: 10.1126/scitranslmed.3008808.
    1. Kalkunte S.S., Neubeck S., Norris W.E., Cheng S.B., Kostadinov S., Vu Hoang D., Ahmed A., von Eggeling F., Shaikh Z., Padbury J., et al. Transthyretin is dysregulated in preeclampsia, and its native form prevents the onset of disease in a preclinical mouse model. Am. J. Pathol. 2013;183:1425–1436. doi: 10.1016/j.ajpath.2013.07.022.
    1. McCarthy F.P., Adetoba A., Gill C., Bramham K., Bertolaccini M., Burton G.J., Girardi G., Seed P.T., Poston L., Chappell L.C. Urinary congophilia in women with hypertensive disorders of pregnancy and preexisting proteinuria or hypertension. Am. J. Obstet. Gynecol. 2016;215:464.e1–464.e7. doi: 10.1016/j.ajog.2016.04.041.
    1. Cox L.S., Redman C. The role of cellular senescence in ageing of the placenta. Placenta. 2017;52:139–145. doi: 10.1016/j.placenta.2017.01.116.
    1. Coppe J.P., Patil C.K., Rodier F., Sun Y., Munoz D.P., Goldstein J., Nelson P.S., Desprez P.Y., Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–2868. doi: 10.1371/journal.pbio.0060301.
    1. Nuzzo A.M., Giuffrida D., Masturzo B., Mele P., Piccoli E., Eva C., Todros T., Rolfo A. Altered expression of G1/S phase cell cycle regulators in placental mesenchymal stromal cells derived from preeclamptic pregnancies with fetal-placental compromise. Cell Cycle. 2017;16:200–212. doi: 10.1080/15384101.2016.1261766.
    1. Sharp A.N., Heazell A.E., Baczyk D., Dunk C.E., Lacey H.A., Jones C.J., Perkins J.E., Kingdom J.C., Baker P.N., Crocker I.P. Preeclampsia is associated with alterations in the p53-pathway in villous trophoblast. PLoS ONE. 2014;9:e87621. doi: 10.1371/journal.pone.0087621.
    1. Kang C., Xu Q., Martin T.D., Li M.Z., Demaria M., Aron L., Lu T., Yankner B.A., Campisi J., Elledge S.J. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science. 2015;349:aaa5612. doi: 10.1126/science.aaa5612.
    1. Lentjes M.H., Niessen H.E., Akiyama Y., de Bruine A.P., Melotte V., van Engeland M. The emerging role of GATA transcription factors in development and disease. Expert Rev. Mol. Med. 2016;18:e3. doi: 10.1017/erm.2016.2.
    1. American Diabetes A. Gestational diabetes mellitus. Diabetes Care. 2000;23:S77–S79.
    1. American Diabetes A. 15. Diabetes Advocacy: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018;41:S152–S153. doi: 10.2337/dc18-S015.
    1. American Diabetes A. Standards of Medical Care in Diabetes-2018 Abridged for Primary Care Providers. Clin. Diabetes. 2018;36:14–37.
    1. Ji L., Chen Z., Xu Y., Xiong G., Liu R., Wu C., Hu H., Wang L. Systematic Characterization of Autophagy in Gestational Diabetes Mellitus. Endocrinology. 2017;158:2522–2532. doi: 10.1210/en.2016-1922.
    1. Avagliano L., Massa V., Terraneo L., Samaja M., Doi P., Bulfamante G.P., Marconi A.M. Gestational diabetes affects fetal autophagy. Placenta. 2017;55:90–93. doi: 10.1016/j.placenta.2017.05.002.
    1. Martino J., Sebert S., Segura M.T., Garcia-Valdes L., Florido J., Padilla M.C., Marcos A., Rueda R., McArdle H.J., Budge H., et al. Maternal Body Weight and Gestational Diabetes Differentially Influence Placental and Pregnancy Outcomes. J. Clin. Endocrinol. Metab. 2016;101:59–68. doi: 10.1210/jc.2015-2590.
    1. Haugen A.C., Schug T.T., Collman G., Heindel J.J. Evolution of DOHaD: The impact of environmental health sciences. J. Dev. Orig. Health Dis. 2015;6:55–64. doi: 10.1017/S2040174414000580.
    1. Roberts R.L., Gearry R.B., Hollis-Moffatt J.E., Miller A.L., Reid J., Abkevich V., Timms K.M., Gutin A., Lanchbury J.S., Merriman T.R., et al. IL23R R381Q and ATG16L1 T300A are strongly associated with Crohn’s disease in a study of New Zealand Caucasians with inflammatory bowel disease. Am. J. Gastroenterol. 2007;102:2754–2761. doi: 10.1111/j.1572-0241.2007.01525.x.
    1. Saitoh T., Akira S. Regulation of inflammasomes by autophagy. J. Allergy Clin. Immunol. 2016;138:28–36. doi: 10.1016/j.jaci.2016.05.009.
    1. Shi C.S., Shenderov K., Huang N.N., Kabat J., Abu-Asab M., Fitzgerald K.A., Sher A., Kehrl J.H. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 2012;13:255–263. doi: 10.1038/ni.2215.
    1. Matias M.L., Romao M., Weel I.C., Ribeiro V.R., Nunes P.R., Borges V.T., Araujo J.P., Jr., Peracoli J.C., de Oliveira L., Peracoli M.T. Endogenous and Uric Acid-Induced Activation of NLRP3 Inflammasome in Pregnant Women with Preeclampsia. PLoS ONE. 2015;10:e0129095. doi: 10.1371/journal.pone.0129095.
    1. Agrawal V., Jaiswal M.K., Mallers T., Katara G.K., Gilman-Sachs A., Beaman K.D., Hirsch E. Altered autophagic flux enhances inflammatory responses during inflammation-induced preterm labor. Sci. Rep. 2015;5:9410. doi: 10.1038/srep09410.
    1. Hirota Y., Daikoku T., Tranguch S., Xie H., Bradshaw H.B., Dey S.K. Uterine-specific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J. Clin. Investig. 2010;120:803–815. doi: 10.1172/JCI40051.
    1. Oh S.Y., Roh C.R. Autophagy in the placenta. Obstet. Gynecol. Sci. 2017;60:241–259. doi: 10.5468/ogs.2017.60.3.241.
    1. Klionsky D.J., Cuervo A.M., Seglen P.O. Methods for monitoring autophagy from yeast to human. Autophagy. 2007;3:181–206. doi: 10.4161/auto.3678.
    1. Mizushima N., Yoshimori T., Levine B. Methods in mammalian autophagy research. Cell. 2010;140:313–326. doi: 10.1016/j.cell.2010.01.028.
    1. Kaizuka T., Morishita H., Hama Y., Tsukamoto S., Matsui T., Toyota Y., Kodama A., Ishihara T., Mizushima T., Mizushima N. An Autophagic Flux Probe that Releases an Internal Control. Mol. Cell. 2016;64:835–849. doi: 10.1016/j.molcel.2016.09.037.
    1. Inami Y., Waguri S., Sakamoto A., Kouno T., Nakada K., Hino O., Watanabe S., Ando J., Iwadate M., Yamamoto M., et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J. Cell Biol. 2011;193:275–284. doi: 10.1083/jcb.201102031.
    1. Komatsu M., Waguri S., Koike M., Sou Y.S., Ueno T., Hara T., Mizushima N., Iwata J., Ezaki J., Murata S., et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149–1163. doi: 10.1016/j.cell.2007.10.035.
    1. Tanaka S., Hikita H., Tatsumi T., Sakamori R., Nozaki Y., Sakane S., Shiode Y., Nakabori T., Saito Y., Hiramatsu N., et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology. 2016;64:1994–2014. doi: 10.1002/hep.28820.
    1. Kroemer G. Autophagy: A druggable process that is deregulated in aging and human disease. J. Clin. Investig. 2015;125:1–4. doi: 10.1172/JCI78652.
    1. Saitoh T., Fujita N., Jang M.H., Uematsu S., Yang B.G., Satoh T., Omori H., Noda T., Yamamoto N., Komatsu M., et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature. 2008;456:264–268. doi: 10.1038/nature07383.

Source: PubMed

3
Předplatit