Obesity and Breast Cancer: A Case of Inflamed Adipose Tissue

Ryan Kolb, Weizhou Zhang, Ryan Kolb, Weizhou Zhang

Abstract

Obesity is associated with an increased risk of estrogen receptor-positive breast cancer in postmenopausal women and a worse prognosis for all major breast cancer subtypes regardless of menopausal status. While the link between obesity and the pathogenesis of breast cancer is clear, the molecular mechanism of this association is not completely understood due to the complexity of both obesity and breast cancer. The aim of this review is to highlight the association between obesity and breast cancer and discuss the literature, which indicates that this association is due to chronic adipose tissue inflammation. We will discuss the epidemiological data for the association between breast cancer incidence and progression as well as the potential molecular mechanisms for this association. We will focus on the role of inflammation within the adipose tissue during the pathogenesis of breast cancer. A better understanding of how obesity and adipose tissue inflammation affects the pathogenesis of breast cancer will lead to new strategies to reduce breast cancer risk and improve patient outcomes for obese patients.

Keywords: breast cancer; inflammation; obesity.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Obesity-associated adipose tissue inflammation. Excess energy intake during obesity leads to adipocyte hypertrophy and cell death. This leads to the secretion of inflammatory cytokines and chemokines, which induce the recruitment and polarization of macrophages. Macrophages surround dead adipocytes, forming a crown-like structure (CLS) and secreting inflammatory cytokines. Adipocyte hypertrophy also leads to an increase in leptin and a decrease in adiponectin, which further induces the expression of inflammatory cytokines.
Figure 2
Figure 2
Mechanisms of obesity-driven breast cancer. Obesity leads to adipocyte hypertrophy, which induces the secretion of inflammatory cytokines, chemokines, and leptin. These adipokines then induce the recruitment and polarization of macrophages. Macrophages secrete inflammatory cytokines, which can act directly to promote breast cancer, act on adipocytes to increase the expression of aromatase and estrogen production, and induce the expression of pro-angiogenic factors. Adipose tissue inflammation also promotes the development of insulin resistance, leading to increased insulin and insulin-like growth factor (IGF). Insulin and IGF can directly promote breast cancer. Leptin from adipocytes can also directly act on cancer cells. Obesity leads to a decrease in adiponectin, which inhibits breast cancer.

References

    1. Chooi Y.C., Ding C., Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10. doi: 10.1016/j.metabol.2018.09.005.
    1. Swinburn B.A., Sacks G., Hall K.D., McPherson K., Finegood D.T., Moodie M.L., Gortmaker S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet. 2011;378:804–814. doi: 10.1016/S0140-6736(11)60813-1.
    1. Ladabaum U., Mannalithara A., Myer P.A., Singh G. Obesity, abdominal obesity, physical activity, and caloric intake in US adults: 1988 to 2010. Am. J. Med. 2014;127:717–727.e12. doi: 10.1016/j.amjmed.2014.02.026.
    1. Ng S.W., Popkin B.M. Time use and physical activity: A shift away from movement across the globe. Obes. Rev. 2012;13:659–680. doi: 10.1111/j.1467-789X.2011.00982.x.
    1. Kyrou I., Randeva H.S., Tsigos C., Kaltsas G., Weickert M.O. Clinical Problems Caused by Obesity. In: Feingold K.R., Anawalt B., Boyce A., editors. Endotext. , Inc.; South Dartmouth, MA, USA: 2000.
    1. Kolb R., Sutterwala F.S., Zhang W. Obesity and cancer: Inflammation bridges the two. Curr. Opin. Pharmacol. 2016;29:77–89. doi: 10.1016/j.coph.2016.07.005.
    1. Whitlock G., Lewington S., Sherliker P., Clarke R., Emberson J., Halsey J., Qizilbash N., Collins R., Peto R., Collaboration P.S. Body-mass index and cause-specific mortality in 900,000 adults: Collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–1096. doi: 10.1016/S0140-6736(09)60318-4.
    1. Apovian C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care. 2016;22:s176–s185.
    1. Byrne C.D., Targher G. NAFLD: A multisystem disease. J. Hepatol. 2015;62:S47–S64. doi: 10.1016/j.jhep.2014.12.012.
    1. Fabbrini E., Sullivan S., Klein S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic, and clinical implications. Hepatology. 2010;51:679–689. doi: 10.1002/hep.23280.
    1. Marcos A., Fisher R.A., Ham J.M., Olzinski A.T., Shiffman M.L., Sanyal A.J., Luketic V.A., Sterling R.K., Olbrisch M.E., Posner M.P. Selection and outcome of living donors for adult to adult right lobe transplantation. Transplantation. 2000;69:2410–2415. doi: 10.1097/00007890-200006150-00034.
    1. Hilden M., Christoffersen P., Juhl E., Dalgaard J.B. Liver histology in a ‘normal’ population—Examinations of 503 consecutive fatal traffic casualties. Scand. J. Gastroenterol. 1977;12:593–597. doi: 10.3109/00365527709181339.
    1. Lee R.G. Nonalcoholic steatohepatitis: A study of 49 patients. Hum. Pathol. 1989;20:594–598. doi: 10.1016/0046-8177(89)90249-9.
    1. Gholam P.M., Kotler D.P., Flancbaum L.J. Liver pathology in morbidly obese patients undergoing Roux-en-Y gastric bypass surgery. Obes. Surg. 2002;12:49–51. doi: 10.1381/096089202321144577.
    1. DeFronzo R.A., Ferrannini E., Groop L., Henry R.R., Herman W.H., Holst J.J., Hu F.B., Kahn C.R., Raz I., Shulman G.I., et al. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers. 2015;1:15019. doi: 10.1038/nrdp.2015.19.
    1. Stone T.W., McPherson M., Gail Darlington L. Obesity and cancer: Existing and new hypotheses for a causal connection. EBioMedicine. 2018;30:14–28. doi: 10.1016/j.ebiom.2018.02.022.
    1. Calle E.E., Rodriguez C., Walker-Thurmond K., Thun M.J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N. Engl. J. Med. 2003;348:1625–1638. doi: 10.1056/NEJMoa021423.
    1. Arnold M., Pandeya N., Byrnes G., Renehan P.A.G., Stevens G.A., Ezzati P.M., Ferlay J., Miranda J.J., Romieu I., Dikshit R., et al. Global burden of cancer attributable to high body-mass index in 2012: A population-based study. Lancet Oncol. 2015;16:36–46. doi: 10.1016/S1470-2045(14)71123-4.
    1. Larsson S.C., Wolk A. Overweight, obesity and risk of liver cancer: A meta-analysis of cohort studies. Br. J. Cancer. 2007;97:1005–1008. doi: 10.1038/sj.bjc.6603932.
    1. Martinez-Useros J., Garcia-Foncillas J. Obesity and colorectal cancer: Molecular features of adipose tissue. J. Transl. Med. 2016;14:21. doi: 10.1186/s12967-016-0772-5.
    1. Murphy T.K., Calle E.E., Rodriguez C., Kahn H.S., Thun M.J. Body mass index and colon cancer mortality in a large prospective study. Am. J. Epidemiol. 2000;152:847–854. doi: 10.1093/aje/152.9.847.
    1. Weill F. Ultrasonic visualization of an umbilical vein. Radiology. 1976;120:159–160. doi: 10.1148/120.1.159.
    1. Fox C.S., Massaro J.M., Hoffmann U., Pou K.M., Maurovich-Horvat P., Liu C.Y., Vasan R.S., Murabito J.M., Meigs J.B., Cupples L.A., et al. Abdominal visceral and subcutaneous adipose tissue compartments: Association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48. doi: 10.1161/CIRCULATIONAHA.106.675355.
    1. Dong Y., Zhou J., Zhu Y., Luo L., He T., Hu H., Liu H., Zhang Y., Luo D., Xu S., et al. Abdominal obesity and colorectal cancer risk: Systematic review and meta-analysis of prospective studies. Biosci. Rep. 2017;37 doi: 10.1042/BSR20170945.
    1. Karimi K., Lindgren T.H., Koch C.A., Brodell R.T. Obesity as a risk factor for malignant melanoma and non-melanoma skin cancer. Rev. Endocr. Metab. Disord. 2016;17:389–403. doi: 10.1007/s11154-016-9393-9.
    1. Kirkpatrick C.S., White E., Lee J.A. Case-control study of malignant melanoma in Washington State. II. Diet, alcohol, and obesity. Am. J. Epidemiol. 1994;139:869–880. doi: 10.1093/oxfordjournals.aje.a117093.
    1. Dennis L.K., Lowe J.B., Lynch C.F., Alavanja M.C. Cutaneous melanoma and obesity in the Agricultural Health Study. Ann. Epidemiol. 2008;18:214–221. doi: 10.1016/j.annepidem.2007.09.003.
    1. Sergentanis T.N., Antoniadis A.G., Gogas H.J., Antonopoulos C.N., Adami H.O., Ekbom A., Petridou E.T. Obesity and risk of malignant melanoma: A meta-analysis of cohort and case-control studies. Eur. J. Cancer. 2013;49:642–657. doi: 10.1016/j.ejca.2012.08.028.
    1. Renehan A.G., Tyson M., Egger M., Heller R.F., Zwahlen M. Body-mass index and incidence of cancer: A systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–578. doi: 10.1016/S0140-6736(08)60269-X.
    1. Olsen C.M., Green A.C., Zens M.S., Stukel T.A., Bataille V., Berwick M., Elwood J.M., Gallagher R., Holly E.A., Kirkpatrick C., et al. Anthropometric factors and risk of melanoma in women: A pooled analysis. Int. J. Cancer. 2008;122:1100–1108. doi: 10.1002/ijc.23214.
    1. Malvi P., Chaube B., Singh S.V., Mohammad N., Vijayakumar M.V., Singh S., Chouhan S., Bhat M.K. Elevated circulatory levels of leptin and resistin impair therapeutic efficacy of dacarbazine in melanoma under obese state. Cancer Metab. 2018;6:2. doi: 10.1186/s40170-018-0176-5.
    1. Malvi P., Chaube B., Singh S.V., Mohammad N., Pandey V., Vijayakumar M.V., Radhakrishnan R.M., Vanuopadath M., Nair S.S., Nair B.G., et al. Weight control interventions improve therapeutic efficacy of dacarbazine in melanoma by reversing obesity-induced drug resistance. Cancer Metab. 2016;4:21. doi: 10.1186/s40170-016-0162-8.
    1. Malvi P., Chaube B., Pandey V., Vijayakumar M.V., Boreddy P.R., Mohammad N., Singh S.V., Bhat M.K. Obesity induced rapid melanoma progression is reversed by orlistat treatment and dietary intervention: Role of adipokines. Mol. Oncol. 2015;9:689–703. doi: 10.1016/j.molonc.2014.11.006.
    1. Chi M., Chen J., Ye Y., Tseng H.Y., Lai F., Tay K.H., Jin L., Guo S.T., Jiang C.C., Zhang X.D. Adipocytes contribute to resistance of human melanoma cells to chemotherapy and targeted therapy. Curr. Med. Chem. 2014;21:1255–1267. doi: 10.2174/0929867321666131129114742.
    1. Naik A., Monjazeb A.M., Decock J. The Obesity Paradox in Cancer, Tumor Immunology, and Immunotherapy: Potential Therapeutic Implications in Triple Negative Breast Cancer. Front. Immunol. 2019;10:1940. doi: 10.3389/fimmu.2019.01940.
    1. Wang Z., Aguilar E.G., Luna J.I., Dunai C., Khuat L.T., Le C.T., Mirsoian A., Minnar C.M., Stoffel K.M., Sturgill I.R., et al. Paradoxical effects of obesity on T cell function during tumor progression and PD-1 checkpoint blockade. Nat. Med. 2019;25:141–151. doi: 10.1038/s41591-018-0221-5.
    1. Tremmel M., Gerdtham U.G., Nilsson P.M., Saha S. Economic burden of obesity: A systematic literature review. Int. J. Environ. Res. Public Health. 2017;14:435. doi: 10.3390/ijerph14040435.
    1. Hammond R.A., Levine R. The economic impact of obesity in the United States. Diabetes Metab. Syndr. Obes. 2010;3:285–295. doi: 10.2147/DMSO.S7384.
    1. Finkelstein E.A., Trogdon J.G., Cohen J.W., Dietz W. Annual medical spending attributable to obesity: Payer-and service-specific estimates. Health Aff. 2009;28:w822–w831. doi: 10.1377/hlthaff.28.5.w822.
    1. Trogdon J.G., Finkelstein E.A., Hylands T., Dellea P.S., Kamal-Bahl S.J. Indirect costs of obesity: A review of the current literature. Obes. Rev. 2008;9:489–500. doi: 10.1111/j.1467-789X.2008.00472.x.
    1. Carmichael A.R., Bates T. Obesity and breast cancer: A review of the literature. Breast. 2004;13:85–92. doi: 10.1016/j.breast.2003.03.001.
    1. Andò S., Gelsomino L., Panza S., Giordano C., Bonofiglio D., Barone I., Catalano S. Obesity, leptin and breast cancer: Epidemiological evidence and proposed mechanisms. Cancers. 2019;11:62. doi: 10.3390/cancers11010062.
    1. Eliassen A.H., Colditz G.A., Rosner B., Willett W.C., Hankinson S.E. Adult weight change and risk of postmenopausal breast cancer. JAMA. 2006;296:193–201. doi: 10.1001/jama.296.2.193.
    1. McKenzie F., Ferrari P., Freisling H., Chajès V., Rinaldi S., de Batlle J., Dahm C.C., Overvad K., Baglietto L., Dartois L., et al. Healthy lifestyle and risk of breast cancer among postmenopausal women in the European prospective investigation into cancer and nutrition cohort study. Int. J. Cancer. 2015;136:2640–2648. doi: 10.1002/ijc.29315.
    1. Dobbins M., Decorby K., Choi B.C. The association between obesity and cancer risk: A meta-analysis of observational studies from 1985 to 2011. ISRN Prev. Med. 2013;2013:680536. doi: 10.5402/2013/680536.
    1. Munsell M.F., Sprague B.L., Berry D.A., Chisholm G., Trentham-Dietz A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol. Rev. 2014;36:114–136. doi: 10.1093/epirev/mxt010.
    1. Keum N., Greenwood D.C., Lee D.H., Kim R., Aune D., Ju W., Hu F.B., Giovannucci E.L. Adult weight gain and adiposity-related cancers: A dose-response meta-analysis of prospective observational studies. J. Natl. Cancer Inst. 2015;107 doi: 10.1093/jnci/djv088.
    1. Neuhouser M.L., Aragaki A.K., Prentice R.L., Manson J.E., Chlebowski R., Carty C.L., Ochs-Balcom H.M., Thomson C.A., Caan B.J., Tinker L.F., et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: A secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncol. 2015;1:611–621. doi: 10.1001/jamaoncol.2015.1546.
    1. Suzuki R., Orsini N., Saji S., Key T.J., Wolk A. Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status—A meta-analysis. Int. J. Cancer. 2009;124:698–712. doi: 10.1002/ijc.23943.
    1. Pierobon M., Frankenfeld C.L. Obesity as a risk factor for triple-negative breast cancers: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2013;137:307–314. doi: 10.1007/s10549-012-2339-3.
    1. Trivers K.F., Lund M.J., Porter P.L., Liff J.M., Flagg E.W., Coates R.J., Eley J.W. The epidemiology of triple-negative breast cancer, including race. Cancer Causes Control. 2009;20:1071–1082. doi: 10.1007/s10552-009-9331-1.
    1. Vona-Davis L., Rose D.P., Hazard H., Howard-McNatt M., Adkins F., Partin J., Hobbs G. Triple-negative breast cancer and obesity in a rural Appalachian population. Cancer Epidemiol. Biomarkers Prev. 2008;17:3319–3324. doi: 10.1158/1055-9965.EPI-08-0544.
    1. Chang S., Buzdar A.U., Hursting S.D. Inflammatory breast cancer and body mass index. J. Clin. Oncol. 1998;16:3731–3735. doi: 10.1200/JCO.1998.16.12.3731.
    1. Schairer C., Li Y., Frawley P., Graubard B.I., Wellman R.D., Buist D.S., Kerlikowske K., Onega T.L., Anderson W.F., Miglioretti D.L. Risk factors for inflammatory breast cancer and other invasive breast cancers. J. Natl. Cancer Inst. 2013;105:1373–1384. doi: 10.1093/jnci/djt206.
    1. Atkinson R.L., El-Zein R., Valero V., Lucci A., Bevers T.B., Fouad T., Liao W., Ueno N.T., Woodward W.A., Brewster A.M. Epidemiological risk factors associated with inflammatory breast cancer subtypes. Cancer Causes Control. 2016;27:359–366. doi: 10.1007/s10552-015-0712-3.
    1. Protani M., Coory M., Martin J.H. Effect of obesity on survival of women with breast cancer: Systematic review and meta-analysis. Breast Cancer Res. Treat. 2010;123:627–635. doi: 10.1007/s10549-010-0990-0.
    1. Chan D.S., Vieira A.R., Aune D., Bandera E.V., Greenwood D.C., McTiernan A., Navarro Rosenblatt D., Thune I., Vieira R., Norat T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014;25:1901–1914. doi: 10.1093/annonc/mdu042.
    1. Ewertz M., Jensen M.B., Gunnarsdóttir K., Højris I., Jakobsen E.H., Nielsen D., Stenbygaard L.E., Tange U.B., Cold S. Effect of obesity on prognosis after early-stage breast cancer. J. Clin. Oncol. 2011;29:25–31. doi: 10.1200/JCO.2010.29.7614.
    1. Goodwin P.J., Ennis M., Pritchard K.I., Trudeau M.E., Koo J., Taylor S.K., Hood N. Insulin- and obesity-related variables in early-stage breast cancer: Correlations and time course of prognostic associations. J. Clin. Oncol. 2012;30:164–171. doi: 10.1200/JCO.2011.36.2723.
    1. Nechuta S., Chen W.Y., Cai H., Poole E.M., Kwan M.L., Flatt S.W., Patterson R.E., Pierce J.P., Caan B.J., Ou Shu X. A pooled analysis of post-diagnosis lifestyle factors in association with late estrogen-receptor-positive breast cancer prognosis. Int. J. Cancer. 2016;138:2088–2097. doi: 10.1002/ijc.29940.
    1. Ewertz M., Gray K.P., Regan M.M., Ejlertsen B., Price K.N., Thürlimann B., Bonnefoi H., Forbes J.F., Paridaens R.J., Rabaglio M., et al. Obesity and risk of recurrence or death after adjuvant endocrine therapy with letrozole or tamoxifen in the breast international group 1-98 trial. J. Clin. Oncol. 2012;30:3967–3975. doi: 10.1200/JCO.2011.40.8666.
    1. Sestak I., Distler W., Forbes J.F., Dowsett M., Howell A., Cuzick J. Effect of body mass index on recurrences in tamoxifen and anastrozole treated women: An exploratory analysis from the ATAC trial. J. Clin. Oncol. 2010;28:3411–3415. doi: 10.1200/JCO.2009.27.2021.
    1. Druesne-Pecollo N., Touvier M., Barrandon E., Chan D.S., Norat T., Zelek L., Hercberg S., Latino-Martel P. Excess body weight and second primary cancer risk after breast cancer: A systematic review and meta-analysis of prospective studies. Breast Cancer Res. Treat. 2012;135:647–654. doi: 10.1007/s10549-012-2187-1.
    1. Majed B., Moreau T., Senouci K., Salmon R.J., Fourquet A., Asselain B. Is obesity an independent prognosis factor in woman breast cancer? Breast Cancer Res. Treat. 2008;111:329–342. doi: 10.1007/s10549-007-9785-3.
    1. Elmore J.G., Carney P.A., Abraham L.A., Barlow W.E., Egger J.R., Fosse J.S., Cutter G.R., Hendrick R.E., D’Orsi C.J., Paliwal P., et al. The association between obesity and screening mammography accuracy. Arch. Intern. Med. 2004;164:1140–1147. doi: 10.1001/archinte.164.10.1140.
    1. Feldstein A.C., Perrin N., Rosales A.G., Schneider J., Rix M.M., Glasgow R.E. Patient barriers to mammography identified during a reminder program. J. Womens Health. 2011 doi: 10.1089/jwh.2010.2195.
    1. Lee K., Kruper L., Dieli-Conwright C.M., Mortimer J.E. The impact of obesity on breast cancer diagnosis and treatment. Curr. Oncol. Rep. 2019;21:41. doi: 10.1007/s11912-019-0787-1.
    1. Fischer J.P., Cleveland E.C., Nelson J.A., Kovach S.J., Serletti J.M., Wu L.C., Kanchwala S. Breast reconstruction in the morbidly obese patient: Assessment of 30-day complications using the 2005 to 2010 National Surgical Quality Improvement Program data sets. Plast. Reconstr. Surg. 2013;132:750–761. doi: 10.1097/PRS.0b013e31829fe33c.
    1. Fischer J.P., Nelson J.A., Kovach S.J., Serletti J.M., Wu L.C., Kanchwala S. Impact of obesity on outcomes in breast reconstruction: Analysis of 15,937 patients from the ACS-NSQIP datasets. J. Am. Coll. Surg. 2013;217:656–664. doi: 10.1016/j.jamcollsurg.2013.03.031.
    1. Griggs J.J., Sorbero M.E., Lyman G.H. Undertreatment of obese women receiving breast cancer chemotherapy. Arch. Intern. Med. 2005;165:1267–1273. doi: 10.1001/archinte.165.11.1267.
    1. Colleoni M., Li S., Gelber R.D., Price K.N., Coates A.S., Castiglione-Gertsch M., Goldhirsch A., International Breast Cancer Study Group Relation between chemotherapy dose, oestrogen receptor expression, and body-mass index. Lancet. 2005;366:1108–1110. doi: 10.1016/S0140-6736(05)67110-3.
    1. Raman R., Mott S.L., Schroeder M.C., Phadke S., El Masri J., Thomas A. Effect of body mass index- and actual weight-based neoadjuvant chemotherapy doses on pathologic complete response in operable breast cancer. Clin. Breast Cancer. 2016;16:480–486. doi: 10.1016/j.clbc.2016.06.008.
    1. Vaysse C., Muller C., Fallone F. Obesity: An heavyweight player in breast cancer’s chemoresistance. Oncotarget. 2019;10:3207–3208. doi: 10.18632/oncotarget.26905.
    1. Lehuédé C., Li X., Dauvillier S., Vaysse C., Franchet C., Clement E., Esteve D., Longué M., Chaltiel L., Le Gonidec S., et al. Adipocytes promote breast cancer resistance to chemotherapy, a process amplified by obesity: Role of the major vault protein (MVP) Breast Cancer Res. 2019;21:7. doi: 10.1186/s13058-018-1088-6.
    1. Sabol R.A., Villela V.A., Denys A., Freeman B.T., Hartono A.B., Wise R.M., Harrison M.A.A., Sandler M.B., Hossain F., Miele L., et al. Obesity-altered adipose stem cells promote radiation resistance of estrogen receptor positive breast cancer through paracrine signaling. Int. J. Mol. Sci. 2020;21:2722. doi: 10.3390/ijms21082722.
    1. Schech A., Yu S., Goloubeva O., McLenithan J., Sabnis G. A nude mouse model of obesity to study the mechanisms of resistance to aromatase inhibitors. Endocr. Relat. Cancer. 2015;22:645–656. doi: 10.1530/ERC-15-0168.
    1. Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J. Clin. Investig. 2019;129:3006–3017. doi: 10.1172/JCI127201.
    1. Barone I., Giordano C., Bonofiglio D., Andò S., Catalano S. The weight of obesity in breast cancer progression and metastasis: Clinical and molecular perspectives. Semin. Cancer Biol. 2020;60:274–284. doi: 10.1016/j.semcancer.2019.09.001.
    1. Osman M.A., Hennessy B.T. Obesity correlation with metastases development and response to first-line metastatic chemotherapy in breast cancer. Clin. Med. Insights Oncol. 2015;9:105–112. doi: 10.4137/CMO.S32812.
    1. Kaviani A., Neishaboury M., Mohammadzadeh N., Ansari-Damavandi M., Jamei K. Effects of obesity on presentation of breast cancer, lymph node metastasis and patient survival: A retrospective review. Asian Pac. J. Cancer Prev. 2013;14:2225–2229. doi: 10.7314/APJCP.2013.14.4.2225.
    1. Majed B., Senouci K., Asselain B. Shortened survival and more metastasis recurrences among overweight breast cancer patients. Breast J. 2009;15:557–559. doi: 10.1111/j.1524-4741.2009.00785.x.
    1. Wu Q., Li B., Li Z., Li J., Sun S. Cancer-associated adipocytes: Key players in breast cancer progression. J. Hematol. Oncol. 2019;12:95. doi: 10.1186/s13045-019-0778-6.
    1. Incio J., Ligibel J.A., McManus D.T., Suboj P., Jung K., Kawaguchi K., Pinter M., Babykutty S., Chin S.M., Vardam T.D., et al. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci. Transl. Med. 2018;10 doi: 10.1126/scitranslmed.aag0945.
    1. Chu D.T., Phuong T.N.T., Tien N.L.B., Tran D.K., Nguyen T.T., Thanh V.V., Quang T.L., Minh L.B., Pham V.H., Ngoc V.T.N., et al. The effects of adipocytes on the regulation of breast cancer in the tumor microenvironment: An update. Cells. 2019;8:857. doi: 10.3390/cells8080857.
    1. Ailhaud G. Adipose tissue as a secretory organ: From adipogenesis to the metabolic syndrome. C. R. Biol. 2006;329:570–577, discussion 575–653. doi: 10.1016/j.crvi.2005.12.012.
    1. Baek A.E., Nelson E.R. The contribution of cholesterol and its metabolites to the pathophysiology of breast cancer. Horm. Cancer. 2016;7:219–228. doi: 10.1007/s12672-016-0262-5.
    1. Gunter M.J., Hoover D.R., Yu H., Wassertheil-Smoller S., Rohan T.E., Manson J.E., Li J., Ho G.Y., Xue X., Anderson G.L., et al. Insulin, insulin-like growth factor-I, and risk of breast cancer in postmenopausal women. J. Natl. Cancer Inst. 2009;101:48–60. doi: 10.1093/jnci/djn415.
    1. Lu C.W., Lo Y.H., Chen C.H., Lin C.Y., Tsai C.H., Chen P.J., Yang Y.F., Wang C.H., Tan C.H., Hou M.F., et al. VLDL and LDL, but not HDL, promote breast cancer cell proliferation, metastasis and angiogenesis. Cancer Lett. 2017;388:130–138. doi: 10.1016/j.canlet.2016.11.033.
    1. Manabe Y., Toda S., Miyazaki K., Sugihara H. Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J. Pathol. 2003;201:221–228. doi: 10.1002/path.1430.
    1. Lee Y., Jung W.H., Koo J.S. Adipocytes can induce epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res. Treat. 2015;153:323–335. doi: 10.1007/s10549-015-3550-9.
    1. Dirat B., Bochet L., Dabek M., Daviaud D., Dauvillier S., Majed B., Wang Y.Y., Meulle A., Salles B., Le Gonidec S., et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011;71:2455–2465. doi: 10.1158/0008-5472.CAN-10-3323.
    1. Kolb R., Kluz P., Tan Z.W., Borcherding N., Bormann N., Vishwakarma A., Balcziak L., Zhu P., Davies B.S., Gourronc F., et al. Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene. 2019;38:2351–2363. doi: 10.1038/s41388-018-0592-6.
    1. Yamaguchi J., Ohtani H., Nakamura K., Shimokawa I., Kanematsu T. Prognostic impact of marginal adipose tissue invasion in ductal carcinoma of the breast. Am. J. Clin. Pathol. 2008;130:382–388. doi: 10.1309/MX6KKA1UNJ1YG8VN.
    1. Kimijima I., Ohtake T., Sagara H., Watanabe T., Takenoshita S. Scattered fat invasion: An indicator for poor prognosis in premenopausal, and for positive estrogen receptor in postmenopausal breast cancer patients. Oncology. 2000;59:25–30. doi: 10.1159/000055284.
    1. Lorincz A.M., Sukumar S. Molecular links between obesity and breast cancer. Endocr. Relat. Cancer. 2006;13:279–292. doi: 10.1677/erc.1.00729.
    1. Suba Z. Circulatory estrogen level protects against breast cancer in obese women. Recent Pat. Anticancer Drug Discov. 2013;8:154–167. doi: 10.2174/1574892811308020004.
    1. Key T.J., Appleby P.N., Reeves G.K., Roddam A., Dorgan J.F., Longcope C., Stanczyk F.Z., Stephenson H.E., Falk R.T., Miller R., et al. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J. Natl. Cancer Inst. 2003;95:1218–1226. doi: 10.1093/jnci/djg022.
    1. Niu J., Jiang L., Guo W., Shao L., Liu Y., Wang L. The association between leptin level and breast cancer: A meta-analysis. PLoS ONE. 2013;8:e67349. doi: 10.1371/journal.pone.0067349.
    1. Pan H., Deng L.L., Cui J.Q., Shi L., Yang Y.C., Luo J.H., Qin D., Wang L. Association between serum leptin levels and breast cancer risk: An updated systematic review and meta-analysis. Medicine. 2018;97:e11345. doi: 10.1097/MD.0000000000011345.
    1. Gui Y., Pan Q., Chen X., Xu S., Luo X., Chen L. The association between obesity related adipokines and risk of breast cancer: A meta-analysis. Oncotarget. 2017;8:75389–75399. doi: 10.18632/oncotarget.17853.
    1. Delort L., Rossary A., Farges M.C., Vasson M.P., Caldefie-Chézet F. Leptin, adipocytes and breast cancer: Focus on inflammation and anti-tumor immunity. Life Sci. 2015;140:37–48. doi: 10.1016/j.lfs.2015.04.012.
    1. Gu L., Cao C., Fu J., Li Q., Li D.H., Chen M.Y. Serum adiponectin in breast cancer: A meta-analysis. Medicine. 2018;97:e11433. doi: 10.1097/MD.0000000000011433.
    1. Liu L.Y., Wang M., Ma Z.B., Yu L.X., Zhang Q., Gao D.Z., Wang F., Yu Z.G. The role of adiponectin in breast cancer: A meta-analysis. PLoS ONE. 2013;8:e73183. doi: 10.1371/journal.pone.0073183.
    1. Dos Santos E., Benaitreau D., Dieudonne M.N., Leneveu M.C., Serazin V., Giudicelli Y., Pecquery R. Adiponectin mediates an antiproliferative response in human MDA-MB 231 breast cancer cells. Oncol. Rep. 2008;20:971–977.
    1. Kijak P.J., Leadbetter M.G., Thomas M.H., Thompson E.A. Confirmation of oxytetracycline, tetracycline and chlortetracycline residues in milk by particle beam liquid chromatography/mass spectrometry. Biol. Mass Spectrom. 1991;20:789–795. doi: 10.1002/bms.1200201208.
    1. Zhang J., Qin Y., Zheng X., Qiu J., Gong L., Mao H., Jia W., Guo J. The relationship between human serum resistin level and body fat content, plasma glucose as well as blood pressure. Zhonghua Yi Xue Za Zhi. 2002;82:1609–1612.
    1. Kang J.H., Yu B.Y., Youn D.S. Relationship of serum adiponectin and resistin levels with breast cancer risk. J. Korean Med. Sci. 2007;22:117–121. doi: 10.3346/jkms.2007.22.1.117.
    1. Assiri A.M., Kamel H.F., Hassanien M.F. Resistin, visfatin, adiponectin, and leptin: Risk of breast cancer in pre- and postmenopausal Saudi females and their possible diagnostic and predictive implications as novel biomarkers. Dis. Markers. 2015;2015:253519. doi: 10.1155/2015/253519.
    1. Lee Y.C., Chen Y.J., Wu C.C., Lo S., Hou M.F., Yuan S.S. Resistin expression in breast cancer tissue as a marker of prognosis and hormone therapy stratification. Gynecol. Oncol. 2012;125:742–750. doi: 10.1016/j.ygyno.2012.02.032.
    1. Dalamaga M., Sotiropoulos G., Karmaniolas K., Pelekanos N., Papadavid E., Lekka A. Serum resistin: A biomarker of breast cancer in postmenopausal women? Association with clinicopathological characteristics, tumor markers, inflammatory and metabolic parameters. Clin. Biochem. 2013;46:584–590. doi: 10.1016/j.clinbiochem.2013.01.001.
    1. Olszanecka-Glinianowicz M., Kocelak P., Nylec M., Chudek J., Zahorska-Markiewicz B. Circulating visfatin level and visfatin/insulin ratio in obese women with metabolic syndrome. Arch. Med. Sci. 2012;8:214–218. doi: 10.5114/aoms.2012.28547.
    1. Lee Y.C., Yang Y.H., Su J.H., Chang H.L., Hou M.F., Yuan S.S. High visfatin expression in breast cancer tissue is associated with poor survival. Cancer Epidemiol. Biomarkers Prev. 2011;20:1892–1901. doi: 10.1158/1055-9965.EPI-11-0399.
    1. Bulló M., Casas-Agustench P., Amigó-Correig P., Aranceta J., Salas-Salvadó J. Inflammation, obesity and comorbidities: The role of diet. Public Health Nutr. 2007;10:1164–1172. doi: 10.1017/S1368980007000663.
    1. Esser N., Legrand-Poels S., Piette J., Scheen A.J., Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014;105:141–150. doi: 10.1016/j.diabres.2014.04.006.
    1. Wang Z., Nakayama T. Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm. 2010;2010:535918. doi: 10.1155/2010/535918.
    1. Sun B., Karin M. Obesity, inflammation, and liver cancer. J. Hepatol. 2012;56:704–713. doi: 10.1016/j.jhep.2011.09.020.
    1. Rodríguez-Hernández H., Simental-Mendía L.E., Rodríguez-Ramírez G., Reyes-Romero M.A. Obesity and inflammation: Epidemiology, risk factors, and markers of inflammation. Int. J. Endocrinol. 2013;2013:678159. doi: 10.1155/2013/678159.
    1. Ding S., Lund P.K. Role of intestinal inflammation as an early event in obesity and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:328–333. doi: 10.1097/MCO.0b013e3283478727.
    1. Spagnuolo M.I., Cicalese M.P., Caiazzo M.A., Franzese A., Squeglia V., Assante L.R., Valerio G., Merone R., Guarino A. Relationship between severe obesity and gut inflammation in children: What’s next? Ital. J. Pediatr. 2010;36:66. doi: 10.1186/1824-7288-36-66.
    1. Jais A., Brüning J.C. Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Investig. 2017;127:24–32. doi: 10.1172/JCI88878.
    1. Gukovsky I., Li N., Todoric J., Gukovskaya A., Karin M. Inflammation, autophagy, and obesity: Common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144:1199–1209.e4. doi: 10.1053/j.gastro.2013.02.007.
    1. Wu H., Ballantyne C.M. Skeletal muscle inflammation and insulin resistance in obesity. J. Clin. Investig. 2017;127:43–54. doi: 10.1172/JCI88880.
    1. Gregor M.F., Hotamisligil G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 2011;29:415–445. doi: 10.1146/annurev-immunol-031210-101322.
    1. Ellulu M.S., Patimah I., Khaza’ai H., Rahmat A., Abed Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017;13:851–863. doi: 10.5114/aoms.2016.58928.
    1. Longo M., Zatterale F., Naderi J., Parrillo L., Formisano P., Raciti G.A., Beguinot F., Miele C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int. J. Mol. Sci. 2019;20:2358. doi: 10.3390/ijms20092358.
    1. Skurk T., Alberti-Huber C., Herder C., Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J. Clin. Endocrinol. Metab. 2007;92:1023–1033. doi: 10.1210/jc.2006-1055.
    1. Ghaben A.L., Scherer P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019;20:242–258. doi: 10.1038/s41580-018-0093-z.
    1. Sharma N.K., Das S.K., Mondal A.K., Hackney O.G., Chu W.S., Kern P.A., Rasouli N., Spencer H.J., Yao-Borengasser A., Elbein S.C. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J. Clin. Endocrinol. Metab. 2008;93:4532–4541. doi: 10.1210/jc.2008-1001.
    1. Boden G., Duan X., Homko C., Molina E.J., Song W., Perez O., Cheung P., Merali S. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes. 2008;57:2438–2444. doi: 10.2337/db08-0604.
    1. Gregor M.F., Hotamisligil G.S. Thematic review series: Adipocyte biology. Adipocyte stress: The endoplasmic reticulum and metabolic disease. J. Lipid Res. 2007;48:1905–1914. doi: 10.1194/jlr.R700007-JLR200.
    1. Zatterale F., Longo M., Naderi J., Raciti G.A., Desiderio A., Miele C., Beguinot F. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes. Front. Physiol. 2019;10:1607. doi: 10.3389/fphys.2019.01607.
    1. Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol. Rev. 2013;93:1–21. doi: 10.1152/physrev.00017.2012.
    1. Han J.M., Levings M.K. Immune regulation in obesity-associated adipose inflammation. J. Immunol. 2013;191:527–532. doi: 10.4049/jimmunol.1301035.
    1. Cinti S., Mitchell G., Barbatelli G., Murano I., Ceresi E., Faloia E., Wang S., Fortier M., Greenberg A.S., Obin M.S. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J. Lipid Res. 2005;46:2347–2355. doi: 10.1194/jlr.M500294-JLR200.
    1. Iikuni N., Lam Q.L., Lu L., Matarese G., La Cava A. Leptin and Inflammation. Curr. Immunol. Rev. 2008;4:70–79. doi: 10.2174/157339508784325046.
    1. Fang H., Judd R.L. Adiponectin regulation and function. Compr. Physiol. 2018;8:1031–1063. doi: 10.1002/cphy.c170046.
    1. Dossus L., Jimenez-Corona A., Romieu I., Boutron-Ruault M.C., Boutten A., Dupré T., Fagherazzi G., Clavel-Chapelon F., Mesrine S. C-reactive protein and postmenopausal breast cancer risk: Results from the E3N cohort study. Cancer Causes Control. 2014;25:533–539. doi: 10.1007/s10552-014-0355-9.
    1. Pierce B.L., Ballard-Barbash R., Bernstein L., Baumgartner R.N., Neuhouser M.L., Wener M.H., Baumgartner K.B., Gilliland F.D., Sorensen B.E., McTiernan A., et al. Elevated biomarkers of inflammation are associated with reduced survival among breast cancer patients. J. Clin. Oncol. 2009;27:3437–3444. doi: 10.1200/JCO.2008.18.9068.
    1. Fuentes-Mattei E., Velazquez-Torres G., Phan L., Zhang F., Chou P.C., Shin J.H., Choi H.H., Chen J.S., Zhao R., Chen J., et al. Effects of obesity on transcriptomic changes and cancer hallmarks in estrogen receptor-positive breast cancer. J. Natl. Cancer Inst. 2014;106 doi: 10.1093/jnci/dju158.
    1. Morris P.G., Hudis C.A., Giri D., Morrow M., Falcone D.J., Zhou X.K., Du B., Brogi E., Crawford C.B., Kopelovich L., et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev. Res. 2011;4:1021–1029. doi: 10.1158/1940-6207.CAPR-11-0110.
    1. Gérard C., Brown K.A. Obesity and breast cancer—Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol. Cell Endocrinol. 2018;466:15–30. doi: 10.1016/j.mce.2017.09.014.
    1. Silswal N., Singh A.K., Aruna B., Mukhopadhyay S., Ghosh S., Ehtesham N.Z. Human resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in macrophages by NF-kappaB-dependent pathway. Biochem. Biophys. Res. Commun. 2005;334:1092–1101. doi: 10.1016/j.bbrc.2005.06.202.
    1. Tripathi D., Kant S., Pandey S., Ehtesham N.Z. Resistin in metabolism, inflammation, and disease. FEBS J. 2020 doi: 10.1111/febs.15322.
    1. Monteiro R., Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010;2010 doi: 10.1155/2010/289645.
    1. Kahn S.E., Hull R.L., Utzschneider K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006;444:840–846. doi: 10.1038/nature05482.
    1. Verheus M., Peeters P.H., Rinaldi S., Dossus L., Biessy C., Olsen A., Tjønneland A., Overvad K., Jeppesen M., Clavel-Chapelon F., et al. Serum C-peptide levels and breast cancer risk: Results from the European prospective investigation into cancer and nutrition (EPIC) Int. J. Cancer. 2006;119:659–667. doi: 10.1002/ijc.21861.
    1. Key T.J., Appleby P.N., Reeves G.K., Roddam A.W., Breast Cancer Collaborative Group Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: Pooled individual data analysis of 17 prospective studies. Lancet Oncol. 2010;11:530–542. doi: 10.1016/S1470-2045(10)70095-4.
    1. Esposito K., Chiodini P., Capuano A., Bellastella G., Maiorino M.I., Rafaniello C., Giugliano D. Metabolic syndrome and postmenopausal breast cancer: Systematic review and meta-analysis. Menopause. 2013;20:1301–1309. doi: 10.1097/GME.0b013e31828ce95d.
    1. Goodwin P.J., Ennis M., Pritchard K.I., Trudeau M.E., Koo J., Madarnas Y., Hartwick W., Hoffman B., Hood N. Fasting insulin and outcome in early-stage breast cancer: Results of a prospective cohort study. J. Clin. Oncol. 2002;20:42–51. doi: 10.1200/JCO.2002.20.1.42.
    1. Duggan C., Irwin M.L., Xiao L., Henderson K.D., Smith A.W., Baumgartner R.N., Baumgartner K.B., Bernstein L., Ballard-Barbash R., McTiernan A. Associations of insulin resistance and adiponectin with mortality in women with breast cancer. J. Clin. Oncol. 2011;29:32–39. doi: 10.1200/JCO.2009.26.4473.
    1. Gilbert C.A., Slingerland J.M. Cytokines, obesity, and cancer: New insights on mechanisms linking obesity to cancer risk and progression. Annu Rev. Med. 2013;64:45–57. doi: 10.1146/annurev-med-121211-091527.
    1. Knüpfer H., Preiss R. Significance of interleukin-6 (IL-6) in breast cancer (review) Breast Cancer Res. Treat. 2007;102:129–135. doi: 10.1007/s10549-006-9328-3.
    1. Cruceriu D., Baldasici O., Balacescu O., Berindan-Neagoe I. The dual role of tumor necrosis factor-alpha (TNF-α) in breast cancer: Molecular insights and therapeutic approaches. Cell Oncol. 2020;43:1–18. doi: 10.1007/s13402-019-00489-1.
    1. Jin L., Yuan R.Q., Fuchs A., Yao Y., Joseph A., Schwall R., Schnitt S.J., Guida A., Hastings H.M., Andres J., et al. Expression of interleukin-1beta in human breast carcinoma. Cancer. 1997;80:421–434. doi: 10.1002/(SICI)1097-0142(19970801)80:3<421::AID-CNCR10>;2-Z.
    1. Kolb R., Phan L., Borcherding N., Liu Y., Yuan F., Janowski A.M., Xie Q., Markan K.R., Li W., Potthoff M.J., et al. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat. Commun. 2016;7:13007. doi: 10.1038/ncomms13007.
    1. Arendt L.M., McCready J., Keller P.J., Baker D.D., Naber S.P., Seewaldt V., Kuperwasser C. Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res. 2013 doi: 10.1158/0008-5472.CAN-13-0926.
    1. Fukumura D., Incio J., Shankaraiah R.C., Jain R.K. Obesity and cancer: An angiogenic and inflammatory link. Microcirculation. 2016;23:191–206. doi: 10.1111/micc.12270.
    1. Hammarstedt A., Graham T.E., Kahn B.B. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells. Diabetol. Metab. Syndr. 2012;4:42. doi: 10.1186/1758-5996-4-42.
    1. Iyengar N.M., Brown K.A., Zhou X.K., Gucalp A., Subbaramaiah K., Giri D.D., Zahid H., Bhardwaj P., Wendel N.K., Falcone D.J., et al. Metabolic Obesity, Adipose Inflammation and Elevated Breast Aromatase in Women with Normal Body Mass Index. Cancer Prev. Res. 2017;10:235–243. doi: 10.1158/1940-6207.CAPR-16-0314.
    1. Ding C., Chan Z., Magkos F. Lean, but not healthy: The ‘metabolically obese, normal-weight’ phenotype. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:408–417. doi: 10.1097/MCO.0000000000000317.
    1. Murano I., Barbatelli G., Parisani V., Latini C., Muzzonigro G., Castellucci M., Cinti S. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J. Lipid Res. 2008;49:1562–1568. doi: 10.1194/jlr.M800019-JLR200.
    1. Bigornia S.J., Farb M.G., Mott M.M., Hess D.T., Carmine B., Fiscale A., Joseph L., Apovian C.M., Gokce N. Relation of depot-specific adipose inflammation to insulin resistance in human obesity. Nutr. Diabetes. 2012;2:e30. doi: 10.1038/nutd.2012.3.
    1. Mullooly M., Yang H.P., Falk R.T., Nyante S.J., Cora R., Pfeiffer R.M., Radisky D.C., Visscher D.W., Hartmann L.C., Carter J.M., et al. Relationship between crown-like structures and sex-steroid hormones in breast adipose tissue and serum among postmenopausal breast cancer patients. Breast Cancer Res. 2017;19:8. doi: 10.1186/s13058-016-0791-4.
    1. Carter J.M., Hoskin T.L., Pena M.A., Brahmbhatt R., Winham S.J., Frost M.H., Stallings-Mann M., Radisky D.C., Knutson K.L., Visscher D.W., et al. Macrophagic “crown-like structures” are associated with an increased risk of breast cancer in benign breast disease. Cancer Prev. Res. 2018;11:113–119. doi: 10.1158/1940-6207.CAPR-17-0245.
    1. Iyengar N.M., Zhou X.K., Gucalp A., Morris P.G., Howe L.R., Giri D.D., Morrow M., Wang H., Pollak M., Jones L.W., et al. Systemic correlates of white adipose tissue inflammation in early-stage breast cancer. Clin. Cancer Res. 2016;22:2283–2289. doi: 10.1158/1078-0432.CCR-15-2239.
    1. Renehan A.G., Harvie M., Cutress R.I., Leitzmann M., Pischon T., Howell S., Howell A. How to manage the obese patient with cancer. J. Clin. Oncol. 2016;34:4284–4294. doi: 10.1200/JCO.2016.69.1899.
    1. Horowitz N.S., Wright A.A. Impact of obesity on chemotherapy management and outcomes in women with gynecologic malignancies. Gynecol. Oncol. 2015;138:201–206. doi: 10.1016/j.ygyno.2015.04.002.
    1. Evans J.M., Donnelly L.A., Emslie-Smith A.M., Alessi D.R., Morris A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ. 2005;330:1304–1305. doi: 10.1136/bmj.38415.708634.F7.
    1. Kasznicki J., Sliwinska A., Drzewoski J. Metformin in cancer prevention and therapy. Ann. Transl. Med. 2014;2:57. doi: 10.3978/j.issn.2305-5839.2014.06.01.
    1. Monami M., Lamanna C., Balzi D., Marchionni N., Mannucci E. Sulphonylureas and cancer: A case-control study. Acta Diabetol. 2009;46:279–284. doi: 10.1007/s00592-008-0083-2.
    1. Tacke F. Cenicriviroc for the treatment of non-alcoholic steatohepatitis and liver fibrosis. Expert Opin. Investig. Drugs. 2018;27:301–311. doi: 10.1080/13543784.2018.1442436.
    1. Bai Y., Sun Q. Macrophage recruitment in obese adipose tissue. Obes. Rev. 2015;16:127–136. doi: 10.1111/obr.12242.
    1. Sheppard M., Laskou F., Stapleton P.P., Hadavi S., Dasgupta B. Tocilizumab (Actemra) Hum. Vaccin. Immunother. 2017;13:1972–1988. doi: 10.1080/21645515.2017.1316909.
    1. Brogan P.A., Hofer M., Kuemmerle-Deschner J.B., Kone-Paut I., Roesler J., Kallinich T., Horneff G., Calvo Penades I., Sevilla-Perez B., Goffin L., et al. Rapid and sustained long-term efficacy and safety of canakinumab in patients with cryopyrin-associated periodic syndrome ages five years and younger. Arthritis Rheumatol. 2019;71:1955–1963. doi: 10.1002/art.41004.
    1. Blumenauer B., Judd M., Wells G., Burls A., Cranney A., Hochberg M., Tugwell P. Infliximab for the treatment of rheumatoid arthritis. Cochrane Database Syst. Rev. 2002 doi: 10.1002/14651858.CD003785.
    1. Teras L.R., Patel A.V., Wang M., Yaun S.S., Anderson K., Brathwaite R., Caan B.J., Chen Y., Connor A.E., Eliassen A.H., et al. Sustained weight loss and risk of breast cancer in women ≥50 years: A pooled analysis of prospective data. J. Natl. Cancer Inst. 2019 doi: 10.1093/jnci/djz226.
    1. Feigelson H.S., Caan B., Weinmann S., Leonard A.C., Powers J.D., Yenumula P.R., Arterburn D.E., Koebnick C., Altaye M., Schauer D.P. Bariatric surgery is associated with reduced risk of breast cancer in both premenopausal and postmenopausal women. Ann. Surg. 2019 doi: 10.1097/SLA.0000000000003331.
    1. Schauer D.P., Feigelson H.S., Koebnick C., Caan B., Weinmann S., Leonard A.C., Powers J.D., Yenumula P.R., Arterburn D.E. Bariatric surgery and the risk of cancer in a large multisite cohort. Ann. Surg. 2019;269:95–101. doi: 10.1097/SLA.0000000000002525.
    1. Barchitta M., Maugeri A., Magnano San Lio R., Quattrocchi A., Degrassi F., Catalano F., Basile G., Agodi A. The effects of diet and dietary interventions on the quality of life among breast cancer survivors: A cross-sectional analysis and a systematic review of experimental studies. Cancers. 2020;12:322. doi: 10.3390/cancers12020322.
    1. Demark-Wahnefried W., Campbell K.L., Hayes S.C. Weight management and its role in breast cancer rehabilitation. Cancer. 2012;118:2277–2287. doi: 10.1002/cncr.27466.
    1. Franco L.P., Morais C.C., Cominetti C. Normal-weight obesity syndrome: Diagnosis, prevalence, and clinical implications. Nutr. Rev. 2016;74:558–570. doi: 10.1093/nutrit/nuw019.
    1. Conus F., Rabasa-Lhoret R., Péronnet F. Characteristics of metabolically obese normal-weight (MONW) subjects. Appl. Physiol. Nutr. Metab. 2007;32:4–12. doi: 10.1139/h06-092.

Source: PubMed

3
Předplatit