Hypoxia and hypoxia-inducible factors in diabetes and its complications

Sergiu-Bogdan Catrina, Xiaowei Zheng, Sergiu-Bogdan Catrina, Xiaowei Zheng

Abstract

Hypoxia-inducible factors (HIFs) are the key regulators of oxygen homeostasis in response to hypoxia. In diabetes, multiple tissues are hypoxic but adaptive responses to hypoxia are impaired due to insufficient activation of HIF signalling, which results from inhibition of HIF-1α stability and function due to hyperglycaemia and elevated fatty acid levels. In this review, we will summarise and discuss current findings about the regulation of HIF signalling in diabetes and the pathogenic roles of hypoxia and dysregulated HIF signalling in the development of diabetes and its complications. The therapeutic potential of targeting HIF signalling for the prevention and treatment of diabetes and related complications is also discussed.

Keywords: Diabetes; Diabetes complications; Diabetic foot ulcer; Diabetic nephropathy; Diabetic retinopathy; Hypoxia; Hypoxia-inducible factor; Insulin resistance; Prolyl hydroxylase inhibitor; Review.

Figures

Fig. 1
Fig. 1
Regulation of HIF-1 under non-diabetic and diabetic conditions. (a) In normoxia, HIF-1α is hydroxylated by PHD in the presence of Fe2+ and 2-oxoglutarate (2-OG). The hydroxylated HIF-1α is recognised by VHL, which mediates the ubiquitylation and proteasomal degradation of HIF-1α. Succinate can inhibit the PHD-mediated degradation of HIF-1α. HIF-1α can also be hydroxylated at an asparagine residue (N803) by factor-inhibiting HIF-1 (FIH-1), which prevents the recruitment of coactivators. (b) Under hypoxic and non-diabetic conditions, HIF-1α is stabilised and translocates to the nucleus, where it dimerises with HIF-1β on the HRE of target genes, recruits coactivators including p300, and activates the transcription of HIF-1 target genes that mediate adaptive responses to hypoxia. (c) In diabetes, despite profound hypoxia, HIF-1α stability and function are inhibited, leading to insufficient HIF-1 activation and, therefore, impaired adaptive responses to hypoxia. Mechanistically, hyperglycaemia not only promotes PHD-mediated HIF-1α degradation but also induces methylglyoxal-mediated modification of HIF-1α, which facilitates the carboxy terminus of Hsp70-interacting protein (CHIP)-mediated HIF-1α ubiquitylation. Methylglyoxal also inhibits HIF-1 dimerisation and coactivator recruitment through modification of p300. Moreover, elevated fatty acids can promote PHD-mediated HIF-1α degradation by decreasing succinate levels in type 2 diabetes. This figure is available as part of a downloadable slideset
Fig. 2
Fig. 2
Impaired responses to hypoxia due to HIF-1 inhibition in diabetes contribute to the development of diabetes and diabetes complications. (a) Under non-diabetic conditions, HIF-1 signalling is induced in response to lowered oxygen levels, leading to homeostasis in hypoxia. (b) Under diabetic conditions, although tissues are more hypoxic, HIF-1 signalling is inhibited resulting in impaired adaptive responses to hypoxia, contributing to the development of diabetes and its complications. This figure is available as part of a downloadable slideset

References

    1. Semenza GL. Pharmacologic Targeting of Hypoxia-Inducible Factors. Annu Rev Pharmacol Toxicol. 2019;59:379–403. doi: 10.1146/annurev-pharmtox-010818-021637.
    1. Semenza GL. A compendium of proteins that interact with HIF-1alpha. Exp Cell Res. 2017;356(2):128–135. doi: 10.1016/j.yexcr.2017.03.041.
    1. Holmquist-Mengelbier L, Fredlund E, Lofstedt T, et al. Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell. 2006;10(5):413–423. doi: 10.1016/j.ccr.2006.08.026.
    1. Smythies JA, Sun M, Masson N et al (2019) Inherent DNA-binding specificities of the HIF-1alpha and HIF-2alpha transcription factors in chromatin. EMBO Rep 20(1). 10.15252/embr.201846401
    1. Koyasu S, Kobayashi M, Goto Y, Hiraoka M, Harada H. Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge. Cancer Sci. 2018;109(3):560–571. doi: 10.1111/cas.13483.
    1. Arden GB, Sivaprasad S. Hypoxia and oxidative stress in the causation of diabetic retinopathy. Curr Diabetes Rev. 2011;7(5):291–304. doi: 10.2174/157339911797415620.
    1. Gu HF, Zheng X, Abu Seman N, et al. Impact of the hypoxia-inducible factor-1 alpha (HIF1A) Pro582Ser polymorphism on diabetes nephropathy. Diabetes Care. 2013;36(2):415–421. doi: 10.2337/dc12-1125.
    1. Persson P, Palm F. Hypoxia-inducible factor activation in diabetic kidney disease. Curr Opin Nephrol Hypertens. 2017;26(5):345–350. doi: 10.1097/MNH.0000000000000341.
    1. Sato Y, Endo H, Okuyama H, et al. Cellular hypoxia of pancreatic beta-cells due to high levels of oxygen consumption for insulin secretion in vitro. J Biol Chem. 2011;286(14):12524–12532. doi: 10.1074/jbc.M110.194738.
    1. Lee YS, Kim JW, Osborne O, et al. Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell. 2014;157(6):1339–1352. doi: 10.1016/j.cell.2014.05.012.
    1. Botusan IR, Sunkari VG, Savu O, et al. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice. Proc Natl Acad Sci U S A. 2008;105(49):19426–19431. doi: 10.1073/pnas.0805230105.
    1. Catrina SB, Okamoto K, Pereira T, Brismar K, Poellinger L. Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes. 2004;53(12):3226–3232. doi: 10.2337/diabetes.53.12.3226.
    1. Marfella R, Esposito K, Nappo F, et al. Expression of angiogenic factors during acute coronary syndromes in human type 2 diabetes. Diabetes. 2004;53(9):2383–2391. doi: 10.2337/diabetes.53.9.2383.
    1. Dodd MS, Sousa Fialho MDL, Montes Aparicio CN, et al. Fatty Acids Prevent Hypoxia-Inducible Factor-1alpha Signaling Through Decreased Succinate in Diabetes. JACC Basic Transl Sci. 2018;3(4):485–498. doi: 10.1016/j.jacbts.2018.04.005.
    1. Bento CF, Fernandes R, Ramalho J, et al. The chaperone-dependent ubiquitin ligase CHIP targets HIF-1alpha for degradation in the presence of methylglyoxal. PLoS One. 2010;5(11):e15062. doi: 10.1371/journal.pone.0015062.
    1. Katavetin P, Miyata T, Inagi R, et al. High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidative stress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J Am Soc Nephrol. 2006;17(5):1405–1413. doi: 10.1681/ASN.2005090918.
    1. Thangarajah H, Yao D, Chang EI, et al. The molecular basis for impaired hypoxia-induced VEGF expression in diabetic tissues. Proc Natl Acad Sci U S A. 2009;106(32):13505–13510. doi: 10.1073/pnas.0906670106.
    1. Ceradini DJ, Yao D, Grogan RH, et al. Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem. 2008;283(16):10930–10938. doi: 10.1074/jbc.M707451200.
    1. Isoe T, Makino Y, Mizumoto K, et al. High glucose activates HIF-1-mediated signal transduction in glomerular mesangial cells through a carbohydrate response element binding protein. Kidney Int. 2010;78(1):48–59. doi: 10.1038/ki.2010.99.
    1. Duscher D, Neofytou E, Wong VW, et al. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc Natl Acad Sci U S A. 2015;112(1):94–99. doi: 10.1073/pnas.1413445112.
    1. Zhu Y, Wang Y, Jia Y, Xu J, Chai Y. Roxadustat promotes angiogenesis through HIF-1alpha/VEGF/VEGFR2 signaling and accelerates cutaneous wound healing in diabetic rats. Wound Repair Regen. 2019;27(4):324–334. doi: 10.1111/wrr.12708.
    1. Vinovskis C, Li LP, Prasad P, et al. Relative Hypoxia and Early Diabetic Kidney Disease in Type 1 Diabetes. Diabetes. 2020;69(12):2700–2708. doi: 10.2337/db20-0457.
    1. Feng YZ, Ye YJ, Cheng ZY, et al. Non-invasive assessment of early stage diabetic nephropathy by DTI and BOLD MRI. Br J Radiol. 2020;93(1105):20190562. doi: 10.1259/bjr.20190562.
    1. Gilbert RE. Proximal Tubulopathy: Prime Mover and Key Therapeutic Target in Diabetic Kidney Disease. Diabetes. 2017;66(4):791–800. doi: 10.2337/db16-0796.
    1. Li R, Uttarwar L, Gao B, et al. High Glucose Up-regulates ADAM17 through HIF-1alpha in Mesangial Cells. J Biol Chem. 2015;290(35):21603–21614. doi: 10.1074/jbc.M115.651604.
    1. Garcia-Pastor C, Benito-Martinez S, Moreno-Manzano V, Fernandez-Martinez AB, Lucio-Cazana FJ. Mechanism and Consequences of The Impaired Hif-1alpha Response to Hypoxia in Human Proximal Tubular HK-2 Cells Exposed to High Glucose. Sci Rep. 2019;9(1):15868. doi: 10.1038/s41598-019-52310-6.
    1. Sugahara M, Tanaka S, Tanaka T, et al. Prolyl Hydroxylase Domain Inhibitor Protects against Metabolic Disorders and Associated Kidney Disease in Obese Type 2 Diabetic Mice. J Am Soc Nephrol. 2020;31(3):560–577. doi: 10.1681/ASN.2019060582.
    1. Sousa Fialho MDL, Abd Jamil AH, Stannard GA, Heather LC. Hypoxia-inducible factor 1 signalling, metabolism and its therapeutic potential in cardiovascular disease. Biochim Biophys Acta Mol Basis Dis. 2019;1865(4):831–843. doi: 10.1016/j.bbadis.2018.09.024.
    1. Rahtu-Korpela L, Maatta J, Dimova EY, et al. Hypoxia-Inducible Factor Prolyl 4-Hydroxylase-2 Inhibition Protects Against Development of Atherosclerosis. Arterioscler Thromb Vasc Biol. 2016;36(4):608–617. doi: 10.1161/ATVBAHA.115.307136.
    1. Cheng L, Yu H, Yan N, Lai K, Xiang M. Hypoxia-Inducible Factor-1alpha Target Genes Contribute to Retinal Neuroprotection. Front Cell Neurosci. 2017;11:20. doi: 10.3389/fncel.2017.00020.
    1. Ekberg NR, Eliasson S, Li YW, et al. Protective Effect of the HIF-1A Pro582Ser Polymorphism on Severe Diabetic Retinopathy. J Diabetes Res. 2019;2019:2936962. doi: 10.1155/2019/2936962.
    1. Regazzetti C, Peraldi P, Gremeaux T, et al. Hypoxia decreases insulin signaling pathways in adipocytes. Diabetes. 2009;58(1):95–103. doi: 10.2337/db08-0457.
    1. Jiang C, Qu A, Matsubara T, et al. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes. 2011;60(10):2484–2495. doi: 10.2337/db11-0174.
    1. Halberg N, Khan T, Trujillo ME, et al. Hypoxia-inducible factor 1alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol. 2009;29(16):4467–4483. doi: 10.1128/MCB.00192-09.
    1. Rahtu-Korpela L, Karsikas S, Horkko S, et al. HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. Diabetes. 2014;63(10):3324–3333. doi: 10.2337/db14-0472.
    1. Michailidou Z, Morton NM, Moreno Navarrete JM, et al. Adipocyte pseudohypoxia suppresses lipolysis and facilitates benign adipose tissue expansion. Diabetes. 2015;64(3):733–745. doi: 10.2337/db14-0233.
    1. Gunton JE. Hypoxia-inducible factors and diabetes. J Clin Invest. 2020;130(10):5063–5073. doi: 10.1172/jci137556.
    1. Cheng K, Ho K, Stokes R, et al. Hypoxia-inducible factor-1alpha regulates beta cell function in mouse and human islets. J Clin Invest. 2010;120(6):2171–2183. doi: 10.1172/JCI35846.
    1. Stokes RA, Cheng K, Deters N, et al. Hypoxia-inducible factor-1alpha (HIF-1alpha) potentiates beta-cell survival after islet transplantation of human and mouse islets. Cell Transplant. 2013;22(2):253–266. doi: 10.3727/096368912X647180.
    1. Gunton JE, Kulkarni RN, Yim S, et al. Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell. 2005;122(3):337–349. doi: 10.1016/j.cell.2005.05.027.
    1. Lalwani A, Warren J, Liuwantara D, et al. beta Cell Hypoxia-Inducible Factor-1alpha Is Required for the Prevention of Type 1 Diabetes. Cell Rep. 2019;27(8):2370–2384. doi: 10.1016/j.celrep.2019.04.086.
    1. Nomoto H, Pei L, Montemurro C, et al. Activation of the HIF1alpha/PFKFB3 stress response pathway in beta cells in type 1 diabetes. Diabetologia. 2020;63(1):149–161. doi: 10.1007/s00125-019-05030-5.
    1. Cantley J, Selman C, Shukla D, et al. Deletion of the von Hippel-Lindau gene in pancreatic beta cells impairs glucose homeostasis in mice. J Clin Invest. 2009;119(1):125–135. doi: 10.1172/JCI26934.
    1. Puri S, Cano DA, Hebrok M. A role for von Hippel-Lindau protein in pancreatic beta-cell function. Diabetes. 2009;58(2):433–441. doi: 10.2337/db08-0749.
    1. Zehetner J, Danzer C, Collins S, et al. PVHL is a regulator of glucose metabolism and insulin secretion in pancreatic beta cells. Genes Dev. 2008;22(22):3135–3146. doi: 10.1101/gad.496908.
    1. Hoang M, Paglialunga S, Bombardier E, Tupling AR, Joseph JW. The Loss of ARNT/HIF1beta in Male Pancreatic beta-Cells Is Protective Against High-Fat Diet-Induced Diabetes. Endocrinology. 2019;160(12):2825–2836. doi: 10.1210/en.2018-00936.
    1. Pichu S, Sathiyamoorthy J, Krishnamoorthy E, Umapathy D, Viswanathan V. Impact of the hypoxia inducible factor-1alpha (HIF-1alpha) pro582ser polymorphism and its gene expression on diabetic foot ulcers. Diabetes Res Clin Pract. 2015;109(3):533–540. doi: 10.1016/j.diabres.2015.05.014.
    1. Yamada N, Horikawa Y, Oda N, et al. Genetic variation in the hypoxia-inducible factor-1alpha gene is associated with type 2 diabetes in Japanese. J Clin Endocrinol Metab. 2005;90(10):5841–5847. doi: 10.1210/jc.2005-0991.
    1. Choudhry H, Harris AL. Advances in Hypoxia-Inducible Factor Biology. Cell Metab. 2018;27(2):281–298. doi: 10.1016/j.cmet.2017.10.005.
    1. Pang M, Li Y, Gu W, Sun Z, Wang Z, Li L (2020) Recent Advances in Epigenetics of Macrovascular Complications in Diabetes Mellitus. Heart Lung Circ. 10.1016/j.hlc.2020.07.015
    1. Hyvarinen J, Hassinen IE, Sormunen R, et al. Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. J Biol Chem. 2010;285(18):13646–13657. doi: 10.1074/jbc.M109.084855.
    1. Rojas DR, Tegeder I, Kuner R, Agarwal N. Hypoxia-inducible factor 1alpha protects peripheral sensory neurons from diabetic peripheral neuropathy by suppressing accumulation of reactive oxygen species. J Mol Med (Berl) 2018;96(12):1395–1405. doi: 10.1007/s00109-018-1707-9.
    1. Zeinivand M, Nahavandi A, Zare M. Deferoxamine regulates neuroinflammation and oxidative stress in rats with diabetes-induced cognitive dysfunction. Inflammopharmacology. 2020;28(2):575–583. doi: 10.1007/s10787-019-00665-7.
    1. Dhillon S. Roxadustat: First Global Approval. Drugs. 2019;79(5):563–572. doi: 10.1007/s40265-019-01077-1.

Source: PubMed

3
Předplatit