Regulatory mechanisms of hypoxia-inducible factor 1 activity: Two decades of knowledge

Sho Koyasu, Minoru Kobayashi, Yoko Goto, Masahiro Hiraoka, Hiroshi Harada, Sho Koyasu, Minoru Kobayashi, Yoko Goto, Masahiro Hiraoka, Hiroshi Harada

Abstract

Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator of various genes related to cellular adaptive responses to hypoxia. Dysfunctions in the regulatory systems of HIF-1 activity have been implicated in the pathogenesis of various diseases including malignant tumors and, thus, elucidating the molecular mechanisms underlying the activation of HIF-1 is eagerly desired for the development of novel anti-cancer strategies. The importance of oxygen-dependent and ubiquitin-mediated proteolysis of the regulatory subunit of HIF-1 (HIF-1α) was first reported in 1997. Since then, accumulating evidence has shown that HIF-1α may become stable and active even under normoxic conditions; for example, when disease-associated genetic and functional alterations in some genes trigger the aberrant activation of HIF-1 regardless of oxygen conditions. We herein review the last two decades of knowledge, since 1997, on the regulatory mechanisms of HIF-1 activity from conventional oxygen- and proteolysis-dependent mechanisms to up-to-the-minute information on cancer-associated genetic and functional alteration-mediated mechanisms.

Keywords: gene expression; hypoxia-inducible factor 1 (HIF-1); molecular mechanism; tumor hypoxia.

© 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

Figures

Figure 1
Figure 1
History of hypoxia‐inducible factor 1 (HIF‐1) biology in the first era. Gregg L. Semenza, William G. Kaelin, Jr, and Peter J. Ratcliffe have contributed to elucidating the molecular mechanism responsible for HIF‐1‐mediated adaptive responses to hypoxia in the first era of HIF‐1 biology. The importance of the oxygen‐dependent and ubiquitin‐mediated proteolysis of hypoxia‐inducible factor 1α (HIF‐1α) was first reported by Salceda and Caro 20 years ago in 1997.79 VHL, von Hippel‐Lindau. Images courtesy of the Albert and Mary Lasker Foundation
Figure 2
Figure 2
Conventional oxygen‐ and dioxygenase‐dependent regulatory mechanisms for hypoxia‐inducible factor 1 (HIF‐1) activity. FIH‐1, factor‐inhibiting HIF‐1; HIF‐1α, hypoxia‐inducible factor 1α; HIF‐1β, hypoxia‐inducible factor 1β; PHD, prolyl‐4‐hydroxylase; VHL, von Hippel‐Lindau
Figure 3
Figure 3
Schematic diagram showing the primary structure and hydroxylated (OH), SUMOylated (Sumo), phosphorylated (P), acetylated (Ac), nitrosylated (NO), and methylated (Me) amino acid residues of the hypoxia‐inducible factor 1α (HIF‐1α) protein. Gene symbols represented in red and blue indicate positive and negative regulators of hypoxia‐inducible factor 1 (HIF‐1), respectively. Factors are categorized into 4 groups by dashed squares according to the levels to which HIF‐1 activity is regulated; at the level of protein stability (A), interactions with hypoxia‐inducible factor 1β (HIF‐1β) (B), nuclear translocation (B), and transactivation activity (B). CK1δ, casein kinase 1δ; C‐TAD, C‐terminal transactivation domain; FIH‐1, factor‐inhibiting HIF‐1; GSK‐3, glycogen synthase kinase 3; HLH, helix‐loop‐helix; ID, inhibitory domain; IDH, isocitrate dehydrogenase; LSD1, lysine‐specific demethylase‐1; N‐TAD, N‐terminal transactivation domain; NQO1, NAD(P)H:quinone oxidoreductase 1; ODD, oxygen‐dependent degradation; PAS, Per‐Arnt‐Sim; PCAF, p300/CBP‐associated factor; PHD, prolyl‐4‐hydroxylase; PLK3, polo‐like kinase 3; RSUME, RWD‐containing SUMOylation enhancer; SDH, succinate dehydrogenase; SENP, sentrin/SUMO‐specific protease; SIRT, sirtuin

References

    1. Semenza GL, Nejfelt MK, Chi SM, Antonarakis SE. Hypoxia‐inducible nuclear factors bind to an enhancer element located 3’ to the human erythropoietin gene. Proc Natl Acad Sci USA. 1991;88:5680‐5684.
    1. Imagawa S, Goldberg MA, Doweiko J, Bunn HF. Regulatory elements of the erythropoietin gene. Blood. 1991;77:278‐285.
    1. Wang GL, Semenza GL. Purification and characterization of hypoxia‐inducible factor 1. J Biol Chem. 1995;270:1230‐1237.
    1. Harada H, Kizaka‐Kondoh S, Li G, et al. Significance of HIF‐1‐active cells in angiogenesis and radioresistance. Oncogene. 2007;26:7508‐7516.
    1. Semenza GL. Targeting HIF‐1 for cancer therapy. Nat Rev Cancer. 2003;3:721‐732.
    1. Yeom CJ, Zeng L, Goto Y, et al. LY6E: a conductor of malignant tumor growth through modulation of the PTEN/PI3K/Akt/HIF‐1 axis. Oncotarget. 2016;7:65837‐65848.
    1. Zeng L, Morinibu A, Kobayashi M, et al. Aberrant IDH3alpha expression promotes malignant tumor growth by inducing HIF‐1‐mediated metabolic reprogramming and angiogenesis. Oncogene. 2015;34:4758‐4766.
    1. Goto Y, Zeng L, Yeom CJ, et al. UCHL1 provides diagnostic and antimetastatic strategies due to its deubiquitinating effect on HIF‐1alpha. Nat Commun. 2015;6:6153.
    1. Semenza GL. Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends Mol Med. 2012;18:534‐543.
    1. Harada H. How can we overcome tumor hypoxia in radiation therapy? J Radiat Res (Tokyo). 2011;52:545‐556.
    1. Harada H. Hypoxia‐inducible factor 1‐mediated characteristic features of cancer cells for tumor radioresistance. J Radiat Res. 2016;57(Suppl 1):i99‐i105.
    1. Semenza GL. Oxygen‐dependent regulation of mitochondrial respiration by hypoxia‐inducible factor 1. Biochem J. 2007;405:1‐9.
    1. Semenza GL. Mitochondrial autophagy: life and breath of the cell. Autophagy. 2008;4:534‐536.
    1. Semenza GL. Regulation of cancer cell metabolism by hypoxia‐inducible factor 1. Semin Cancer Biol. 2009;19:12‐16.
    1. Kizaka‐Kondoh S, Inoue M, Harada H, Hiraoka M. Tumor hypoxia: a target for selective cancer therapy. Cancer Sci. 2003;94:1021‐1028.
    1. Semenza GL. Hypoxia‐inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33:207‐214.
    1. Epstein AC, Gleadle JM, McNeill LA, et al. C. elegans EGL‐9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107:43‐54.
    1. Hirota K, Semenza GL. Regulation of hypoxia‐inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem Biophys Res Commun. 2005;338:610‐616.
    1. Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL‐mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292:464‐468.
    1. Jaakkola P, Mole DR, Tian YM, et al. Targeting of HIF‐alpha to the von Hippel‐Lindau ubiquitylation complex by O2‐regulated prolyl hydroxylation. Science. 2001;292:468‐472.
    1. Yeom CJ, Goto Y, Zhu Y, Hiraoka M, Harada H. Microenvironments and cellular characteristics in the micro tumor cords of malignant solid tumors. Int J Mol Sci. 2012;13:13949‐13965.
    1. Trastour C, Benizri E, Ettore F, et al. HIF‐1alpha and CA IX staining in invasive breast carcinomas: prognosis and treatment outcome. Int J Cancer. 2007;120:1451‐1458.
    1. Isaacs JS, Jung YJ, Mole DR, et al. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell. 2005;8:143‐153.
    1. Selak MA, Armour SM, MacKenzie ED, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF‐alpha prolyl hydroxylase. Cancer Cell. 2005;7:77‐85.
    1. Maxwell PH, Wiesener MS, Chang GW, et al. The tumour suppressor protein VHL targets hypoxia‐inducible factors for oxygen‐dependent proteolysis. Nature. 1999;399:271‐275.
    1. Ohh M, Park CW, Ivan M, et al. Ubiquitination of hypoxia‐inducible factor requires direct binding to the beta‐domain of the von Hippel‐Lindau protein. Nat Cell Biol. 2000;2:423‐427.
    1. Tanimoto K, Makino Y, Pereira T, Poellinger L. Mechanism of regulation of the hypoxia‐inducible factor‐1 alpha by the von Hippel‐Lindau tumor suppressor protein. EMBO J. 2000;19:4298‐4309.
    1. Kaelin WG Jr. The von Hippel‐Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 2008;8:865‐873.
    1. Kaelin WG Jr. The von Hippel‐Lindau tumor suppressor protein and clear cell renal carcinoma. Clin Cancer Res. 2007;13:680s‐684s.
    1. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science. 2002;295:858‐861.
    1. Mahon PC, Hirota K, Semenza GL. FIH‐1: a novel protein that interacts with HIF‐1alpha and VHL to mediate repression of HIF‐1 transcriptional activity. Genes Dev. 2001;15:2675‐2686.
    1. Mimura I, Nangaku M, Kanki Y, et al. Dynamic change of chromatin conformation in response to hypoxia enhances the expression of GLUT3 (SLC2A3) by cooperative interaction of hypoxia‐inducible factor 1 and KDM3A. Mol Cell Biol. 2012;32:3018‐3032.
    1. Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR. High‐resolution genome‐wide mapping of HIF‐binding sites by ChIP‐seq. Blood. 2011;117:e207‐e217.
    1. Hirsila M, Koivunen P, Gunzler V, Kivirikko KI, Myllyharju J. Characterization of the human prolyl 4‐hydroxylases that modify the hypoxia‐inducible factor. J Biol Chem. 2003;278:30772‐30780.
    1. Koivunen P, Hirsila M, Gunzler V, Kivirikko KI, Myllyharju J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4‐hydroxylases. J Biol Chem. 2004;279:9899‐9904.
    1. Tian YM, Yeoh KK, Lee MK, et al. Differential sensitivity of hypoxia inducible factor hydroxylation sites to hypoxia and hydroxylase inhibitors. J Biol Chem. 2011;286:13041‐13051.
    1. Gerber SA, Pober JS. IFN‐alpha induces transcription of hypoxia‐inducible factor‐1alpha to inhibit proliferation of human endothelial cells. J Immunol. 2008;181:1052‐1062.
    1. Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia‐inducible factor 1. Cell. 2011;146:772‐784.
    1. Rius J, Guma M, Schachtrup C, et al. NF‐kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF‐1alpha. Nature. 2008;453:807‐811.
    1. Koshikawa N, Hayashi J, Nakagawara A, Takenaga K. Reactive oxygen species‐generating mitochondrial DNA mutation up‐regulates hypoxia‐inducible factor‐1alpha gene transcription via phosphatidylinositol 3‐kinase‐Akt/protein kinase C/histone deacetylase pathway. J Biol Chem. 2009;284:33185‐33194.
    1. Koslowski M, Luxemburger U, Tureci O, Sahin U. Tumor‐associated CpG demethylation augments hypoxia‐induced effects by positive autoregulation of HIF‐1alpha. Oncogene. 2011;30:876‐882.
    1. Wang D, Zhang J, Lu Y, Luo Q, Zhu L. Nuclear respiratory factor‐1 (NRF‐1) regulated hypoxia‐inducible factor‐1alpha (HIF‐1alpha) under hypoxia in HEK293T. IUBMB Life. 2016;68:748‐755.
    1. Bett JS, Ibrahim AF, Garg AK, et al. The P‐body component USP52/PAN2 is a novel regulator of HIF1A mRNA stability. Biochem J. 2013;451:185‐194.
    1. Hellen CU, Sarnow P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 2001;15:1593‐1612.
    1. Harada H, Itasaka S, Kizaka‐Kondoh S, et al. The Akt/mTOR pathway assures the synthesis of HIF‐1alpha protein in a glucose‐ and reoxygenation‐dependent manner in irradiated tumors. J Biol Chem. 2009;284:5332‐5342.
    1. Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL. HER2 (neu) signaling increases the rate of hypoxia‐inducible factor 1alpha (HIF‐1alpha) synthesis: novel mechanism for HIF‐1‐mediated vascular endothelial growth factor expression. Mol Cell Biol. 2001;21:3995‐4004.
    1. Zhou J, Callapina M, Goodall GJ, Brune B. Functional integrity of nuclear factor kappaB, phosphatidylinositol 3’‐kinase, and mitogen‐activated protein kinase signaling allows tumor necrosis factor alpha‐evoked Bcl‐2 expression to provoke internal ribosome entry site‐dependent translation of hypoxia‐inducible factor 1 alpha. Cancer Res. 2004;64:9041‐9048.
    1. El‐Naggar AM, Veinotte CJ, Cheng H, et al. Translational activation of HIF1alpha by YB‐1 promotes sarcoma metastasis. Cancer Cell. 2015;27:682‐697.
    1. Fallone F, Britton S, Nieto L, Salles B, Muller C. ATR controls cellular adaptation to hypoxia through positive regulation of hypoxia‐inducible factor 1 (HIF‐1) expression. Oncogene. 2013;32:4387‐4396.
    1. Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765‐773.
    1. Koivunen P, Lee S, Duncan CG, et al. Transformation by the (R)‐enantiomer of 2‐hydroxyglutarate linked to EGLN activation. Nature. 2012;483:484‐488.
    1. Burr SP, Costa AS, Grice GL, et al. Mitochondrial protein lipoylation and the 2‐oxoglutarate dehydrogenase complex controls hif1alpha stability in aerobic conditions. Cell Metab. 2016;24:740‐752.
    1. Oh ET, Kim JW, Kim JM, et al. NQO1 inhibits proteasome‐mediated degradation of HIF‐1alpha. Nat Commun. 2016;7:13593.
    1. Ji M, Jin A, Sun J, et al. Clinicopathological implications of NQO1 overexpression in the prognosis of pancreatic adenocarcinoma. Oncol Lett. 2017;13:2996‐3002.
    1. Tong YH, Zhang B, Yan YY, et al. Dual‐negative expression of Nrf2 and NQO1 predicts superior outcomes in patients with non‐small cell lung cancer. Oncotarget. 2017;8:45750‐45758.
    1. Seo KS, Park JH, Heo JY, et al. SIRT2 regulates tumour hypoxia response by promoting HIF‐1alpha hydroxylation. Oncogene. 2015;34:1354‐1362.
    1. Liu YV, Baek JH, Zhang H, Diez R, Cole RN, Semenza GL. RACK1 competes with HSP90 for binding to HIF‐1alpha and is required for O(2)‐independent and HSP90 inhibitor‐induced degradation of HIF‐1alpha. Mol Cell. 2007;25:207‐217.
    1. Flugel D, Gorlach A, Michiels C, Kietzmann T. Glycogen synthase kinase 3 phosphorylates hypoxia‐inducible factor 1alpha and mediates its destabilization in a VHL‐independent manner. Mol Cell Biol. 2007;27:3253‐3265.
    1. Xu D, Yao Y, Lu L, Costa M, Dai W. Plk3 functions as an essential component of the hypoxia regulatory pathway by direct phosphorylation of HIF‐1alpha. J Biol Chem. 2010;285:38944‐38950.
    1. Ouyang B, Pan H, Lu L, et al. Human Prk is a conserved protein serine/threonine kinase involved in regulating M phase functions. J Biol Chem. 1997;272:28646‐28651.
    1. Bae SH, Jeong JW, Park JA, et al. Sumoylation increases HIF‐1alpha stability and its transcriptional activity. Biochem Biophys Res Commun. 2004;324:394‐400.
    1. Carbia‐Nagashima A, Gerez J, Perez‐Castro C, et al. RSUME, a small RWD‐containing protein, enhances SUMO conjugation and stabilizes HIF‐1alpha during hypoxia. Cell. 2007;131:309‐323.
    1. Cheng J, Kang X, Zhang S, Yeh ET. SUMO‐specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell. 2007;131:584‐595.
    1. Kim Y, Nam HJ, Lee J, et al. Methylation‐dependent regulation of HIF‐1alpha stability restricts retinal and tumour angiogenesis. Nat Commun. 2016;7:10347.
    1. Baek SH, Kim KI. Regulation of HIF‐1alpha stability by lysine methylation. BMB Rep. 2016;49:245‐246.
    1. Li Z, Wang D, Messing EM, Wu G. VHL protein‐interacting deubiquitinating enzyme 2 deubiquitinates and stabilizes HIF‐1alpha. EMBO Rep. 2005;6:373‐378.
    1. Troilo A, Alexander I, Muehl S, Jaramillo D, Knobeloch KP, Krek W. HIF1alpha deubiquitination by USP8 is essential for ciliogenesis in normoxia. EMBO Rep. 2014;15:77‐85.
    1. Depping R, Jelkmann W, Kosyna FK. Nuclear‐cytoplasmatic shuttling of proteins in control of cellular oxygen sensing. J Mol Med (Berl). 2015;93:599‐608.
    1. Carbonaro M, Escuin D, O'Brate A, Thadani‐Mulero M, Giannakakou P. Microtubules regulate hypoxia‐inducible factor‐1alpha protein trafficking and activity: implications for taxane therapy. J Biol Chem. 2012;287:11859‐11869.
    1. Chen S, Yin C, Lao T, et al. AMPK‐HDAC5 pathway facilitates nuclear accumulation of HIF‐1alpha and functional activation of HIF‐1 by deacetylating Hsp70 in the cytosol. Cell Cycle. 2015;14:2520‐2536.
    1. Mylonis I, Chachami G, Samiotaki M, et al. Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia‐inducible factor‐1alpha. J Biol Chem. 2006;281:33095‐33106.
    1. Mylonis I, Chachami G, Paraskeva E, Simos G. Atypical CRM1‐dependent nuclear export signal mediates regulation of hypoxia‐inducible factor‐1alpha by MAPK. J Biol Chem. 2008;283:27620‐27627.
    1. Kalousi A, Mylonis I, Politou AS, Chachami G, Paraskeva E, Simos G. Casein kinase 1 regulates human hypoxia‐inducible factor HIF‐1. J Cell Sci. 2010;123:2976‐2986.
    1. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia‐inducible factor 1alpha. Mol Cell. 2010;38:864‐878.
    1. Yasinska IM, Sumbayev VV. S‐nitrosation of Cys‐800 of HIF‐1alpha protein activates its interaction with p300 and stimulates its transcriptional activity. FEBS Lett. 2003;549:105‐109.
    1. Chen X, Iliopoulos D, Zhang Q, et al. XBP1 promotes triple‐negative breast cancer by controlling the HIF1alpha pathway. Nature. 2014;508:103‐107.
    1. Nakashima R, Goto Y, Koyasu S, et al. UCHL1‐HIF‐1 axis‐mediated antioxidant property of cancer cells as a therapeutic target for radiosensitization. Sci Rep. 2017;7:6879.
    1. Wang GL, Semenza GL. General involvement of hypoxia‐inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA. 1993;90:4304‐4308.
    1. Salceda S, Caro J. Hypoxia‐inducible factor 1alpha (HIF‐1alpha) protein is rapidly degraded by the ubiquitin‐proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox‐induced changes. J Biol Chem. 1997;272:22642‐22647.
    1. Kallio PJ, Wilson WJ, O'Brien S, Makino Y, Poellinger L. Regulation of the hypoxia‐inducible transcription factor 1alpha by the ubiquitin‐proteasome pathway. J Biol Chem. 1999;274:6519‐6525.

Source: PubMed

3
Předplatit