Sprint and jump performance in elite male soccer players following a 10-week Nordic Hamstring exercise Protocol: a randomised pilot study

K Krommes, J Petersen, M B Nielsen, P Aagaard, P Hölmich, K Thorborg, K Krommes, J Petersen, M B Nielsen, P Aagaard, P Hölmich, K Thorborg

Abstract

Objective: The preseason Nordic Hamstring Protocol (NHP) reduces hamstring strain injuries in football players. Despite persisting injury rates, elite clubs are reluctant to apply the NHP often over concerns of negative impacts on performance. This pilot study investigated if sprint or jump-performance outcomes tended to increase or decrease following implementation of the NHP in elite male soccer-players.

Results: Nineteen male soccer players from the Danish 1st division were randomised to perform NHP (27 sessions) during pre-season, or to control group (CG). Sprint performance (30 m with 5 and 10 m split times) and countermovement jump (CMJ height) was measured before the mid-seasonal break and again after 10 weeks of performing the NHP at the end of pre-season. Dropouts were due to transfers and injuries unrelated to performing NHP (NHP = 0, CG = 5). Sprint performance on the short split distances improved for most players in the NHP (6 out of 9 improved, median changes for 5 m split: - 0.068 s; 10 m split: - 0.078 s), but not CG (2 out of 5 improved, median changes for 5 m split: + 0.1 s; 10 m split: CG: + 0.11 s), but both groups had small declines at 30 m sprint (NHP: 7 out of 9 declined, median changes: + 0.116 s; CG: 4 out of 5 declined, median changes: + 0.159 s). CMJ height mostly improved in both groups (NHP: 6 out of 9 improved, median changes: + 2.1 cm; CG: 4 out of 8 improved, median changes: + 0.55 cm). Performing the NHP in elite soccer players did therefore not seem to negatively affect sprint and vertical jump performance outcomes in the present study, while in fact showing some promise for the more explosive characteristics such as the short 5 and 10 m split-times and maximal CMJ height, which all are highly relevant performance parameters in elite football.

Keywords: Eccentric; Football; Hamstring strain injuries; Nordic Hamstring exercise; Soccer.

Figures

Fig. 1
Fig. 1
30 m sprint with 5 and 10 m split times, and Countermovement Jump height. Individual pre and post data, and median differences (black bars). CMJ Countermovement jump

References

    1. Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A, et al. The Football Association Medical Research Programme: an audit of injuries in professional football–analysis of hamstring injuries. Br J Sports Med. 2004;38:36–41. doi: 10.1136/bjsm.2002.002352.
    1. Brooks JHM, Fuller CW, Kemp SPT, Reddin DB. Incidence, risk, and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med. 2006;34:1297–1306. doi: 10.1177/0363546505286022.
    1. Orchard JW, Seward H, Orchard JJ. Results of 2 decades of injury surveillance and public release of data in the Australian Football League. Am J Sports Med. 2013;41:734–741. doi: 10.1177/0363546513476270.
    1. Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer) Am J Sports Med. 2011;39:1226–1232. doi: 10.1177/0363546510395879.
    1. Petersen J, Thorborg K, Nielsen MB, Budtz-Jørgensen E, Hölmich P. Preventive effect of eccentric training on acute hamstring injuries in men’s soccer: a cluster-randomized controlled trial. Am J Sports Med. 2011;39:2296–2303. doi: 10.1177/0363546511419277.
    1. van der Horst N, Smits D-W, Petersen J, Goedhart EA, Backx FJG. The preventive effect of the nordic hamstring exercise on hamstring injuries in amateur soccer players: a randomized controlled trial. Am J Sports Med. 2015;43:1316–1323. doi: 10.1177/0363546515574057.
    1. Bahr R, Thorborg K, Ekstrand J. Evidence-based hamstring injury prevention is not adopted by the majority of Champions League or Norwegian Premier League football teams: the Nordic Hamstring survey. Br J Sports Med. 2015;49:1466–1471. doi: 10.1136/bjsports-2015-094826.
    1. McCall A, Carling C, Nedelec M, Davison M, Gall FL, Berthoin S, et al. Risk factors, testing and preventative strategies for non-contact injuries in professional football: current perceptions and practices of 44 teams from various premier leagues. Br J Sports Med. 2014;48:1352–1357. doi: 10.1136/bjsports-2014-093439.
    1. Ekstrand J, Hägglund M, Kristenson K, Magnusson H, Waldén M. Fewer ligament injuries but no preventive effect on muscle injuries and severe injuries: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47:732–737. doi: 10.1136/bjsports-2013-092394.
    1. Burgess DJ. The research doesn’t always apply : practical solutions to evidence-based training load monitoring in elite team sports. Int J Sports Physiol Perform. 2016;12:1–19.
    1. O’Brien J, Finch CF. Injury prevention exercise programmes in professional youth soccer: understanding the perceptions of programme deliverers. BMJ Open Sport Exerc Med. 2016;2:e000075. doi: 10.1136/bmjsem-2015-000075.
    1. McCall A, Carling C, Davison M, Nedelec M, Le Gall F, Berthoin S, et al. Injury risk factors, screening tests and preventative strategies: a systematic review of the evidence that underpins the perceptions and practices of 44 football (soccer) teams from various premier leagues. Br J Sports Med. 2015;49:583–589. doi: 10.1136/bjsports-2014-094104.
    1. Gambetta V. More on Prevention as the Cause. Functional Path Training. . 2016. . Accessed 20 Jun 2016.
    1. Gambetta V, Benton D. A systematic approach to hamstring prevention and rehabilitation. Sports Coach. 2006;28:1–6.
    1. Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: implications for exercise. J Sports Sci. 2016;35:1–12.
    1. Van Hooren B, Bosch F. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part I: a critical review of the literature. J Sports Sci. 2016;35:1–9.
    1. Guex K, Millet GP. Conceptual framework for strengthening exercises to prevent hamstring strains. Sports Med Auckl NZ. 2013;43:1207–1215. doi: 10.1007/s40279-013-0097-y.
    1. Morin J-B, Gimenez P, Edouard P, Arnal P, Jiménez-Reyes P, Samozino P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. doi: 10.3389/fphys.2015.00404.
    1. de Hoyo M, Pozzo M, Sañudo B, Carrasco L, Gonzalo-Skok O, Domínguez-Cobo S, et al. Effects of a 10-week in-season eccentric-overload training program on muscle-injury prevention and performance in junior elite soccer players. Int J Sports Physiol Perform. 2015;10:46–52. doi: 10.1123/ijspp.2013-0547.
    1. Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13:244–250. doi: 10.1034/j.1600-0838.2003.00312.x.
    1. Mendiguchia J, Martinez-Ruiz E, Morin JB, Samozino P, Edouard P, Alcaraz PE, et al. Effects of hamstring-emphasized neuromuscular training on strength and sprinting mechanics in football players. Scand J Med Sci Sports. 2015;25:e621–e629. doi: 10.1111/sms.12388.
    1. Styles WJ, Matthews MJ, Comfort P. Effects of strength training on squat and sprint performance in soccer players. J Strength Cond Res. 2016;30:1534–1539. doi: 10.1519/JSC.0000000000001243.
    1. Lovell R, Siegler JC, Knox M, Brennan S, Marshall PWM. Acute neuromuscular and performance responses to Nordic hamstring exercises completed before or after football training. J Sports Sci. 2016;34:1–9.
    1. Clark R, Bryant A, Culgan J-P, Hartley B. The effects of eccentric hamstring strength training on dynamic jumping performance and isokinetic strength parameters: a pilot study on the implications for the prevention of hamstring injuries. Phys Ther Sport. 2005;6:67–73. doi: 10.1016/j.ptsp.2005.02.003.
    1. Sebelien C, Stiller C, Maher S, Qu X. Effects of implementing Nordic hamstring exercises for semi-professional soccer players in Akershus, Norway. Ortopeadic Pract. 2014;26:90–97.
    1. Reis I, Rebelo A, Krustrup P, Brito J. Performance enhancement effects of Fédération Internationale de Football Association’s “The 11+” injury prevention training program in youth futsal players. Clin J Sport Med Off J Can Acad Sport Med. 2013;23:318–320. doi: 10.1097/JSM.0b013e318285630e.
    1. Brito J, Figueiredo P, Fernandes L, Seabra A, Soares JM, Krustrup P, et al. Isokinetic strength effects of FIFA’s “The 11+” injury prevention training programme. Isokinet Exerc Sci. 2010;18:211–215.
    1. Shalfawi SAI, Haugen T, Jakobsen TA, Enoksen E, Tønnessen E. The effect of combined resisted agility and repeated sprint training vs. strength training on female elite soccer players. J Strength Cond Res. 2013;27:2966–2972. doi: 10.1519/JSC.0b013e31828c2889.
    1. Schulz KF, Altman DG, Moher D, CONSORT Group CONSORT statement: updated guidelines for reporting parallel group randomized trials. Ann Intern Med. 2010;2010(152):726–732. doi: 10.7326/0003-4819-152-11-201006010-00232.
    1. Mjølsnes R, Arnason A, Østhagen T, Raastad T, Bahr R. A 10-week randomized trial comparing eccentric vs. concentric hamstring strength training in well-trained soccer players. Scand J Med Sci Sports. 2004;14:311–317. doi: 10.1046/j.1600-0838.2003.367.x.
    1. Stefanyshyn DJ, Nigg BM. Energy aspects associated with sport shoes. Sportverletz Sportschaden Organ Ges Für Orthop-Traumatol Sportmed. 2000;14:82–89.
    1. Jakobsen MD, Sundstrup E, Randers MB, Kjær M, Andersen LL, Krustrup P, et al. The effect of strength training, recreational soccer and running exercise on stretch–shortening cycle muscle performance during countermovement jumping. Hum Mov Sci. 2012;31:970–986. doi: 10.1016/j.humov.2011.10.001.
    1. Weissgerber TL, Milic NM, Winham SJ, Garovic VD. Beyond bar and line graphs: time for a new data presentation paradigm. PLoS Biol. 2015;13:e1002128. doi: 10.1371/journal.pbio.1002128.
    1. Halsey LG, Curran-Everett D, Vowler SL, Drummond GB. The fickle P value generates irreproducible results. Nat Methods. 2015;12:179–185. doi: 10.1038/nmeth.3288.
    1. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13. doi: 10.1249/MSS.0b013e31818cb278.
    1. Weissgerber TL, Garovic VD, Savic M, Winham SJ, Milic NM. From static to interactive: transforming data visualization to improve transparency. PLoS Biol. 2016;14:e1002484. doi: 10.1371/journal.pbio.1002484.
    1. Haugen TA, Tønnessen E, Hisdal J, Seiler S. The role and development of sprinting speed in soccer. Int J Sports Physiol Perform. 2014;9:432–441. doi: 10.1123/ijspp.2013-0121.
    1. Wood L, Egger M, Gluud LL, Schulz KF, Jüni P, Altman DG, et al. Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ. 2008;336:601–605. doi: 10.1136/.
    1. Thabane L, Ma J, Chu R, Cheng J, Ismaila A, Rios LP, et al. A tutorial on pilot studies: the what, why and how. BMC Med Res Methodol. 2010;10:1. doi: 10.1186/1471-2288-10-1.
    1. Eldridge S, Bond C, Campbell M, Lancaster G, Thabane L, Hopwell S. Definition and reporting of pilot and feasibility studies. Trials. 2013;14(Suppl 1):O18. doi: 10.1186/1745-6215-14-S1-O18.

Source: PubMed

3
Předplatit