Pharmacogenetic-Whole blood and intracellular pharmacokinetic-Pharmacodynamic (PG-PK2-PD) relationship of tacrolimus in liver transplant recipients

Camille Tron, Jean-Baptiste Woillard, Pauline Houssel-Debry, Véronique David, Caroline Jezequel, Michel Rayar, David Balakirouchenane, Benoit Blanchet, Jean Debord, Antoine Petitcollin, Mickaël Roussel, Marie-Clémence Verdier, Eric Bellissant, Florian Lemaitre, Camille Tron, Jean-Baptiste Woillard, Pauline Houssel-Debry, Véronique David, Caroline Jezequel, Michel Rayar, David Balakirouchenane, Benoit Blanchet, Jean Debord, Antoine Petitcollin, Mickaël Roussel, Marie-Clémence Verdier, Eric Bellissant, Florian Lemaitre

Abstract

Tacrolimus (TAC) is the cornerstone of immunosuppressive therapy in liver transplantation. This study aimed at elucidating the interplay between pharmacogenetic determinants of TAC whole blood and intracellular exposures as well as the pharmacokinetic-pharmacodynamic relationship of TAC in both compartments. Complete pharmacokinetic profiles (Predose, and 20 min, 40 min, 1h, 2h, 3h, 4h, 6h, 8h, 12h post drug intake) of twice daily TAC in whole blood and peripheral blood mononuclear cells (PBMC) were collected in 32 liver transplanted patients in the first ten days post transplantation. A non-parametric population pharmacokinetic model was applied to explore TAC pharmacokinetics in blood and PBMC. Concurrently, calcineurin activity was measured in PBMC. Influence of donor and recipient genetic polymorphisms of ABCB1, CYP3A4 and CYP3A5 on TAC exposure was assessed. Recipient ABCB1 polymorphisms 1199G>A could influence TAC whole blood and intracellular exposure (p<0.05). No association was found between CYP3A4 or CYP3A5 genotypes and TAC whole blood or intracellular concentrations. Finally, intra-PBMC calcineurin activity appeared incompletely inhibited by TAC and less than 50% of patients were expected to achieve intracellular IC50 concentration (100 pg/millions of cells) at therapeutic whole blood concentration (i.e.: 4-10 ng/mL). Together, these data suggest that personalized medicine regarding TAC therapy might be optimized by ABCB1 pharmacogenetic biomarkers and by monitoring intracellular concentration whereas the relationship between intracellular TAC exposure and pharmacodynamics biomarkers more specific than calcineurin activity should be further investigated.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Model performances-diagnostic plots.
Fig 1. Model performances-diagnostic plots.
Individual predicted versus observed concentrations of tacrolimus in whole blood (A) and in PBMC (B), population predicted versus observed concentrations of tacrolimus in whole blood (C) and in PBMC (D), weighted residuals versus individual predicted concentrations of tacrolimus in whole blood (E) and in PBMC (F).
Fig 2. Relationship between area under the…
Fig 2. Relationship between area under the concentration–time curve from 0 to 12 h (AUC) of tacrolimus in whole blood (WB) and in peripheral mononuclear blood cells (PBMC).
The dotted line is the linear regression curve. (n = 32) (r2 = 0.51, p<0.001).
Fig 3. Influence of recipient ABCB1 1199G>A…
Fig 3. Influence of recipient ABCB1 1199G>A on whole blood and on intracellular (PBMC) areas under the tacrolimus (TAC) concentrations–time curve from 0 to 12 h (AUC).
Each symbol represents mean ± standard deviation of the mean. (n = 29 ABCB1 1199GG, n = 3 ABCB1 1199GA).
Fig 4. Tacrolimus (TAC) pharmacokinetic-pharmacodynamic relationship.
Fig 4. Tacrolimus (TAC) pharmacokinetic-pharmacodynamic relationship.
(A): Relationship between calcineurin maximum inhibition (CaNImax) and TAC maximum concentration (Cmax) in peripheral mononuclear cells (PBMC) or whole blood (WB). Black arrows show tacrolimus concentration inhibiting 37% (IC37) of calcineurin activity (65 pg/million of cells in PBMC and 11 ng/mL in whole blood) and greys arrows show tacrolimus concentration inhibiting 50% (IC50) of calcineurin activity (100 pg/million of cells in PBMC and 18 ng/mL in whole blood). (n = 32). Probability of intracellular target attainement (B). Targets are IC37 and IC50 in PBMC. IC: Inhibitory concentration.

References

    1. Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit. déc 1995;17(6):584–91.
    1. Brunet M, van Gelder T, Åsberg A, Haufroid V, Hesselink DA, Langman L, et al. Therapeutic Drug Monitoring of Tacrolimus-Personalized Therapy: Second Consensus Report. Ther Drug Monit. juin 2019;41(3):261–307.
    1. Staatz CE, Tett SE. Clinical Pharmacokinetics and Pharmacodynamics of Tacrolimus in Solid Organ Transplantation: Clinical Pharmacokinetics. 2004;43(10):623–53. 10.2165/00003088-200443100-00001
    1. Capron A, Lerut J, Latinne D, Rahier J, Haufroid V, Wallemacq P. Correlation of tacrolimus levels in peripheral blood mononuclear cells with histological staging of rejection after liver transplantation: preliminary results of a prospective study: PBMCs tacrolimus levels and graft rejection. Transplant International. janv 2012;25(1):41–7.
    1. Capron A, Musuamba F, Latinne D, Mourad M, Lerut J, Haufroid V, et al. Validation of a liquid chromatography-mass spectrometric assay for tacrolimus in peripheral blood mononuclear cells. Therapeutic drug monitoring. 2009;31(2):178–186. 10.1097/FTD.0b013e3181905aaa
    1. Lemaitre F, Antignac M, Fernandez C. Monitoring of tacrolimus concentrations in peripheral blood mononuclear cells: Application to cardiac transplant recipients. Clinical Biochemistry. oct 2013;46(15):1538–41.
    1. Pensi D, De Nicolò A, Pinon M, Calvo PL, Nonnato A, Brunati A, et al. An UPLC–MS/MS method coupled with automated on-line SPE for quantification of tacrolimus in peripheral blood mononuclear cells. Journal of Pharmaceutical and Biomedical Analysis. mars 2015;107:512–7. 10.1016/j.jpba.2015.01.054
    1. Capron A, Haufroid V, Wallemacq P. Intra-cellular immunosuppressive drugs monitoring: A step forward towards better therapeutic efficacy after organ transplantation? Pharmacol Res. sept 2016;111:610–8.
    1. Lemaitre F, Antignac M, Verdier M-C, Bellissant E, Fernandez C. Opportunity to monitor immunosuppressive drugs in peripheral blood mononuclear cells: Where are we and where are we going? Pharmacological Research. août 2013;74:109–12.
    1. Han SS, Yang SH, Kim MC, Cho J-Y, Min S-I, Lee JP, et al. Monitoring the Intracellular Tacrolimus Concentration in Kidney Transplant Recipients with Stable Graft Function. PLoS ONE. 2016;11(4):e0153491 10.1371/journal.pone.0153491
    1. Bahmany S, de Wit LEA, Hesselink DA, van Gelder T, Shuker NM, Baan C, et al. Highly sensitive and rapid determination of tacrolimus in peripheral blood mononuclear cells by liquid chromatography-tandem mass spectrometry. Biomed Chromatogr. janv 2019;33(1):e4416.
    1. Goto M, Masuda S, Kiuchi T, Ogura Y, Oike F, Tanaka K, et al. Relation between mRNA expression level of multidrug resistance 1/ABCB1 in blood cells and required level of tacrolimus in pediatric living-donor liver transplantation. J Pharmacol Exp Ther. mai 2008;325(2):610–6. 10.1124/jpet.107.135665
    1. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: Part I. Clin Pharmacokinet. Mars 2010;49(3):141–75. 10.2165/11317350-000000000-00000
    1. Picard N, Bergan S, Marquet P, van Gelder T, Wallemacq P, Hesselink DA, et al. Pharmacogenetic biomarkers predictive of the pharmacokinetics and pharmacodynamics of immunosuppressive drugs. Therapeutic drug monitoring. 2016;38:S57–S69. 10.1097/FTD.0000000000000255
    1. Hesselink DA, Bouamar R, Elens L, van Schaik RHN, van Gelder T. The Role of Pharmacogenetics in the Disposition of and Response to Tacrolimus in Solid Organ Transplantation. Clinical Pharmacokinetics. Févr 2014;53(2):123–39. 10.1007/s40262-013-0120-3
    1. Haufroid V, Mourad M, Van Kerckhove V, Wawrzyniak J, De Meyer M, Eddour DC, et al. The effect of CYP3A5 and MDR1 (ABCB1) polymorphisms on cyclosporine and tacrolimus dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenetics. mars 2004;14(3):147–54.
    1. Tron C, Lemaitre F, Verstuyft C, Petitcollin A, Verdier M-C, Bellissant E. Pharmacogenetics of Membrane Transporters of Tacrolimus in Solid Organ Transplantation. Clin Pharmacokinet. mai 2019;58(5):593–613.
    1. Capron A, Mourad M, De Meyer M, De Pauw L, Eddour DC, Latinne D, et al. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics. Mai 2010;11(5):703–14. 10.2217/pgs.10.43
    1. Vafadari R, Bouamar R, Hesselink DA, Kraaijeveld R, van Schaik RH, Weimar W, et al. Genetic polymorphisms in ABCB1 influence the pharmacodynamics of tacrolimus. Therapeutic drug monitoring. 2013;35(4):459–465. 10.1097/FTD.0b013e31828c1581
    1. Elens L, Capron A, Kerckhove VV, Lerut J, Mourad M, Lison D, et al. 1199G&gt;A and 2677G&gt;T/A polymorphisms of ABCB1 independently affect tacrolimus concentration in hepatic tissue after liver transplantation: Pharmacogenetics and Genomics. October 2007;17(10):873–83. 10.1097/FPC.0b013e3282e9a533
    1. Dessilly G, Elens L, Panin N, Capron A, Decottignies A, Demoulin J-B, et al. ABCB1 1199G&gt;A Genetic Polymorphism (Rs2229109) Influences the Intracellular Accumulation of Tacrolimus in HEK293 and K562 Recombinant Cell Lines. Zhang J-T, éditeur. PLoS ONE. 12 Mars 2014;9(3):e91555 10.1371/journal.pone.0091555
    1. Woillard J-B, Gatault P, Picard N, Arnion H, Anglicheau D, Marquet P. A donor and recipient candidate gene association study of allograft loss in renal transplant recipients receiving a tacrolimus-based regimen. Am J Transplant. Déc 2018;18(12):2905–13. 10.1111/ajt.14894
    1. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin Pharmacol Ther. Juill 2015;98(1):19–24. 10.1002/cpt.113
    1. Brunet M, Shipkova M, van Gelder T, Wieland E, Sommerer C, Budde K, et al. Barcelona consensus on biomarker-based immunosuppressive drugs management in solid organ transplantation. Therapeutic drug monitoring. 2016;38:S1–S20. 10.1097/FTD.0000000000000287
    1. Sanquer S, Amrein C, Grenet D, Guillemain R, Philippe B, Boussaud V, et al. Expression of Calcineurin Activity after Lung Transplantation: A 2-Year Follow-Up. Gregson A, éditeur. PLoS ONE. 25 Mars 2013;8(3):e59634 10.1371/journal.pone.0059634
    1. Fukudo M, Yano I, Katsura T, Ito N, Yamamoto S, Kamoto T, et al. A transient increase of calcineurin phosphatase activity in living-donor kidney transplant recipients with acute rejection. Drug Metab Pharmacokinet. 2010;25(5):411–7. 10.2133/dmpk.dmpk-10-rg-026
    1. Yano I, Masuda S, Egawa H, Sugimoto M, Fukudo M, Yoshida Y, et al. Significance of trough monitoring for tacrolimus blood concentration and calcineurin activity in adult patients undergoing primary living-donor liver transplantation. European Journal of Clinical Pharmacology. Mars 2012;68(3):259–66. 10.1007/s00228-011-1129-x
    1. Blanchet B, Duvoux C, Costentin CE, Barrault C, Ghaleh B, Salvat A, et al. Pharmacokinetic-pharmacodynamic assessment of tacrolimus in liver-transplant recipients during the early post-transplantation period. Therapeutic drug monitoring. 2008;30(4):412–418. 10.1097/FTD.0b013e318178e31b
    1. Iwasaki M, Yano I, Fukatsu S, Hashi S, Yamamoto Y, Sugimoto M, et al. Pharmacokinetics and Pharmacodynamics of Once-Daily Tacrolimus Compared With Twice-Daily Tacrolimus in the Early Stage After Living Donor Liver Transplantation. Ther Drug Monit. 2018;40(6):675–81. 10.1097/FTD.0000000000000551
    1. Lemaitre F, Blanchet B, Latournerie M, Antignac M, Houssel-Debry P, Verdier M-C, et al. Pharmacokinetics and pharmacodynamics of tacrolimus in liver transplant recipients: inside the white blood cells. Clinical Biochemistry. Avr 2015;48(6):406–11. 10.1016/j.clinbiochem.2014.12.018
    1. Tron C, Allard M, Petitcollin A, Ferrand-Sorre M-J, Verdier M-C, Querzerho-Raguideau J, et al. Tacrolimus diffusion across the peripheral mononuclear blood cell membrane: impact of drug transporters. Fundam Clin Pharmacol. Févr 2019;33(1):113–21. 10.1111/fcp.12412
    1. Neely MN, van Guilder MG, Yamada WM, Schumitzky A, Jelliffe RW. Accurate detection of outliers and subpopulations with Pmetrics, a nonparametric and parametric pharmacometric modeling and simulation package for R. Ther Drug Monit. Août 2012;34(4):467–76. 10.1097/FTD.0b013e31825c4ba6
    1. Robertsen I, Debord J, Åsberg A, Marquet P, Woillard J-B. A Limited Sampling Strategy to Estimate Exposure of Everolimus in Whole Blood and Peripheral Blood Mononuclear Cells in Renal Transplant Recipients Using Population Pharmacokinetic Modeling and Bayesian Estimators. Clin Pharmacokinet. nov 2018;57(11):1459–69.
    1. Bogusz MJ, Enazi EA, Hassan H, Abdel-Jawaad J, Ruwaily JA, Tufail MA. Simultaneous LC-MS-MS determination of cyclosporine A, tacrolimus, and sirolimus in whole blood as well as mycophenolic acid in plasma using common pretreatment procedure. J Chromatogr B Analyt Technol Biomed Life Sci. 1 Mai 2007;850(1‑2):471–80.
    1. Blanchet B, Hulin A, Duvoux C, Astier A. Determination of serine/threonine protein phosphatase type 2B (PP2B) in lymphocytes by HPLC. Analytical biochemistry. 2003;312(1):1–6. 10.1016/s0003-2697(02)00214-2
    1. Pensi D, De Nicolò A, Pinon M, Pisciotta C, Calvo PL, Nonnato A, et al. First UHPLC-MS/MS method coupled with automated online SPE for quantification both of tacrolimus and everolimus in peripheral blood mononuclear cells and its application on samples from co-treated pediatric patients. J Mass Spectrom. 2017;52(3):187–95. 10.1002/jms.3909
    1. Hawwa AF, McElnay JC. Impact of ATP-binding cassette, subfamily B, member 1 pharmacogenetics on tacrolimus-associated nephrotoxicity and dosage requirements in paediatric patients with liver transplant. Expert Opin Drug Saf. janv 2011;10(1):9–22.
    1. Kravljaca M, Perovic V, Pravica V, Brkovic V, Milinkovic M, Lausevic M, et al. The importance of MDR1 gene polymorphisms for tacrolimus dosage. Eur J Pharm Sci. 15 Févr 2016;83:109–13. 10.1016/j.ejps.2015.12.020
    1. Klaasen RA, Bergan S, Bremer S, Daleq L, Andersen AM, Midtvedt K, et al. Longitudinal Study of Tacrolimus in Lymphocytes During the First Year After Kidney Transplantation. Ther Drug Monit. 2018;40(5):558–66. 10.1097/FTD.0000000000000539
    1. Marquet P, Albano L, Woillard J-B, Rostaing L, Kamar N, Sakarovitch C, et al. Comparative clinical trial of the variability factors of the exposure indices used for the drug monitoring of two tacrolimus formulations in kidney transplant recipients. Pharmacol Res. 2018;129:84–94. 10.1016/j.phrs.2017.12.005
    1. Noceti OM, Woillard J-B, Boumediene A, Esperon P, Taupin J-L, Gerona S, et al. Tacrolimus Pharmacodynamics and Pharmacogenetics along the Calcineurin Pathway in Human Lymphocytes. Clinical Chemistry. 1 October 2014;60(10):1336–45. 10.1373/clinchem.2014.223511
    1. Fukudo M, Yano I, Masuda S, Fukatsu S, Katsura T, Ogura Y, et al. Pharmacodynamic analysis of tacrolimus and cyclosporine in living-donor liver transplant patients. Clinical Pharmacology & Therapeutics. Août 2005;78(2):168–81.
    1. Daher Abdi Z, Prémaud A, Essig M, Alain S, Munteanu E, Garnier F, et al. Exposure to mycophenolic acid better predicts immunosuppressive efficacy than exposure to calcineurin inhibitors in renal transplant patients. Clin Pharmacol Ther. October 2014;96(4):508–15. 10.1038/clpt.2014.140

Source: PubMed

3
Předplatit