Targeted Radionuclide Therapy of Human Tumors

Sergey V Gudkov, Natalya Yu Shilyagina, Vladimir A Vodeneev, Andrei V Zvyagin, Sergey V Gudkov, Natalya Yu Shilyagina, Vladimir A Vodeneev, Andrei V Zvyagin

Abstract

Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed.

Keywords: Auger electron; antibody; peptide; radio-immunotherapy; radionuclide; targeted therapy; α-emitter; β-emitter.

Figures

Figure 1
Figure 1
A pie chart of the prevalence of cancer treatments.
Figure 2
Figure 2
Schematic representation of ionization density along the path of α-, β-particles, and Auger electrons (α-particles are considered densely-ionizing radiation, β-particles are sparsely ionizing, and Auger electrons form clusters with a high density of ionization).
Figure 3
Figure 3
Schematic representation of conventional and pre-targeted radionuclide therapy. (A) Conventional targeted radionuclide therapy is realized only using monoclonal antibodies or other carrier molecules directly conjugated with a radionuclide; (B) Multi-step pre-targeted radionuclide therapy, “amplifier” mode. At first, antibodies conjugated with streptavidin are used and following antibody binding radiolabelled DOTA-biotin is introduced. It is presumed that each streptavidin molecule binds to four molecules of radionuclide-labeled biotin; (C) Multi-step pre-targeted radionuclide therapy, mode for specificity increase.

References

    1. Curcio C.G., Vasile C., Gianciotta A., Casali A., Gionfra T., Rinaldi M., Guadagni A., Le Pera V., Sega E. Short-term results of combined radioimmunotherapy in inoperable lung cancer. Tumori. 1976;62:587–598.
    1. Sfakianakis G.N., DeLand F.H. Radioimmunodiagnosis and radioimmunotherapy, 1982. J. Nucl. Med. 1982;23:840–850.
    1. Reilly R.M. Radioimmunotherapy of malignancies. Clin. Pharm. 1991;10:359–375.
    1. Goldenberg D.M., Chang C.H., Rossi E.A., McBride J.W., Sharkey R.M. Pretargeted molecular imaging and radioimmunotherapy. Theranostics. 2012;2:523–540. doi: 10.7150/thno.3582.
    1. Pouget J.P., Lozza C., Deshayes E., Boudousq V., Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front. Med. 2015;2 doi: 10.3389/fmed.2015.00012.
    1. Golden E.B., Apetoh L. Radiotherapy and immunogenic cell death. Semin. Radiat. Oncol. 2015;25:11–17. doi: 10.1016/j.semradonc.2014.07.005.
    1. Ward J.F. DNA damage produced by ionizing radiation in mammalian cells: Identities, mechanisms of formation, and reparability. Prog. Nucleic Acid Res. Mol. Biol. 1988;35:95–125.
    1. Jackson M.R., Falzone N., Vallis K.A. Advances in anticancer radiopharmaceuticals. Clin. Oncol. 2013;25:604–609. doi: 10.1016/j.clon.2013.06.004.
    1. Kassis A.I., Adelstein S.J. Radiobiologic principles in radionuclide therapy. J. Nucl. Med. 2005;46:4S–12S.
    1. Barendsen G.W., Beusker T.L., Vergroesen A.J., Budke L. Effects of different radiations on human cells in tissue culture. Ii. Biological experiments. Radiat. Res. 1960;13:841–849. doi: 10.2307/3570859.
    1. Qaim S.M. Therapeutic radionuclides and nuclear data. Radiochim. Acta. 2001;89:297–302. doi: 10.1524/ract.2001.89.4-5.297.
    1. Kuroda I. Effective use of strontium-89 in osseous metastases. Ann. Nucl. Med. 2012;26:197–206. doi: 10.1007/s12149-011-0560-5.
    1. Toohey R.E., Stabin M.G., Watson E.E. The aapm/rsna physics tutorial for residents: Internal radiation dosimetry: Principles and applications. Radiographics. 2000;20:533–546. doi: 10.1148/radiographics.20.2.g00mc33533.
    1. Ocean A.J., Pennington K.L., Guarino M.J., Sheikh A., Bekaii-Saab T., Serafini A.N., Lee D., Sung M.W., Gulec S.A., Goldsmith S.J., et al. Fractionated radioimmunotherapy with (90) y-clivatuzumab tetraxetan and low-dose gemcitabine is active in advanced pancreatic cancer: A phase 1 trial. Cancer. 2012;118:5497–5506. doi: 10.1002/cncr.27592.
    1. Kraeber-Bodere F., Rousseau C., Bodet-Milin C., Frampas E., Faivre-Chauvet A., Rauscher A., Sharkey R.M., Goldenberg D.M., Chatal J.F., Barbet J. A pretargeting system for tumor pet imaging and radioimmunotherapy. Front. Pharmacol. 2015;6 doi: 10.3389/fphar.2015.00054.
    1. Zalutsky M.R., Pruszynski M. Astatine-211: Production and availability. Curr. Radiopharm. 2011;4:177–185. doi: 10.2174/1874471011104030177.
    1. Abmel X.C., Chinol M., Jin X.-H., Knapp F.F., Jr., Rostislav K., van So L., Renata M., Fabiola M., Osso J.A., Jr., Park S.H., et al. Therapeutic Radionuclide Generators: 90sr/90y and 188w/188re Generators. International Atomic Energy Agency; Vienna, Austria: 2009. p. 235.
    1. Pillai M.R., Dash A., Knapp F.F., Jr. Rhenium-188: Availability from the (188)w/(188)re generator and status of current applications. Curr. Radiopharm. 2012;5:228–243. doi: 10.2174/1874471011205030228.
    1. Larson S.M., Carrasquillo J.A., Cheung N.K., Press O.W. Radioimmunotherapy of human tumours. Nat. Rev. Cancer. 2015;15:347–360. doi: 10.1038/nrc3925.
    1. Press O.W., Shan D., Howell-Clark J., Eary J., Appelbaum F.R., Matthews D., King D.J., Haines A.M., Hamann P., Hinman L., et al. Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res. 1996;56:2123–2129.
    1. Govindan S.V., Goldenberg D.M. New antibody conjugates in cancer therapy. Sci. World J. 2010;10:2070–2089. doi: 10.1100/tsw.2010.191.
    1. Seidl C. Radioimmunotherapy with alpha-particle-emitting radionuclides. Immunotherapy. 2014;6:431–458. doi: 10.2217/imt.14.16.
    1. Ogawa K., Aoki M. Radiolabeled apoptosis imaging agents for early detection of response to therapy. Sci. World J. 2014;2014:33. doi: 10.1155/2014/732603.
    1. Chung J.K., Cheon G.J. Radioiodine therapy in differentiated thyroid cancer: The first targeted therapy in oncology. Endocrinol. Metab. 2014;29:233–239. doi: 10.3803/EnM.2014.29.3.233.
    1. Seidlin S.M., Marinelli L.D., Oshry E. Radioactive iodine therapy: Effect on functioning metastases of adenocarcinoma of the thyroid. J. Am. Med. Assoc. 1990;40:299–317. doi: 10.3322/canjclin.40.5.299.
    1. Dai G., Levy O., Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature. 1996;379:458–460. doi: 10.1038/379458a0.
    1. Guo R., Zhang R., Pan Y., Xu H., Zhang M., Liang S., Wang L., Zhang Y., Li B. Feasibility of a novel positive feedback effect of 131i-promoted bac-egr1-hnis expression in malignant glioma through baculovirus: A comparative study with bac-cmv-hnis. Nucl. Med. Commun. 2011;32:402–409. doi: 10.1097/MNM.0b013e328344a1ad.
    1. Carvalho D.P., Ferreira A.C. The importance of sodium/iodide symporter (nis) for thyroid cancer management. Arq. Bras. Endocrinol. Metab. 2007;51:672–682. doi: 10.1590/S0004-27302007000500004.
    1. Puppin C., Arturi F., Ferretti E., Russo D., Sacco R., Tell G., Damante G., Filetti S. Transcriptional regulation of human sodium/iodide symporter gene: A role for redox factor-1. Endocrinology. 2004;145:1290–1293. doi: 10.1210/en.2003-1250.
    1. Nicola J.P., Nazar M., Mascanfroni I.D., Pellizas C.G., Masini-Repiso A.M. Nf-kappab p65 subunit mediates lipopolysaccharide-induced Na(+)/I(−) symporter gene expression by involving functional interaction with the paired domain transcription factor pax8. Mol. Endocrinol. 2010;24:1846–1862. doi: 10.1210/me.2010-0102.
    1. Chung J.-K., Youn H.W., Kang J.H., Lee H.Y., Kang K.W. Sodium iodide symporter and the radioiodine treatment of thyroid carcinoma. Nucl. Med. Mol. Imaging. 2010;44:4–14. doi: 10.1007/s13139-009-0016-1.
    1. Pandit-Taskar N., Larson S.M., Carrasquillo J.A. Bone-seeking radiopharmaceuticals for treatment of osseous metastases, part 1: Alpha therapy with 223ra-dichloride. J. Nucl. Med. 2014;55:268–274. doi: 10.2967/jnumed.112.112482.
    1. Tomblyn M. The role of bone-seeking radionuclides in the palliative treatment of patients with painful osteoblastic skeletal metastases. Cancer Control. 2012;19:137–144.
    1. Maffioli L., Florimonte L., Costa D.C., Correia Castanheira J., Grana C., Luster M., Bodei L., Chinol M. New radiopharmaceutical agents for the treatment of castration-resistant prostate cancer. Q. J. Nucl. Med. Mol. Imaging. 2015;59:420–438.
    1. Allen B. Systemic targeted alpha radiotherapy for cancer. J. Biomed. Phys. Eng. 2013;3:67–80. doi: 10.3329/bjmp.v6i1.19755.
    1. Dash A., Knapp F.F., Pillai M.R. Targeted radionuclide therapy—An overview. Curr. Radiopharm. 2013;6:152–180. doi: 10.2174/18744710113066660023.
    1. Scott A.M., Wolchok J.D., Old L.J. Antibody therapy of cancer. Nat. Rev. Cancer. 2012;12:278–287. doi: 10.1038/nrc3236.
    1. Weiner G.J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer. 2015;15:361–370. doi: 10.1038/nrc3930.
    1. Bodei L., Cremonesi M., Kidd M., Grana C.M., Severi S., Modlin I.M., Paganelli G. Peptide receptor radionuclide therapy for advanced neuroendocrine tumors. Thorac. Surg. Clin. 2014;24:333–349. doi: 10.1016/j.thorsurg.2014.04.005.
    1. Shapira S., Fokra A., Arber N., Kraus S. Peptides for diagnosis and treatment of colorectal cancer. Curr. Med. Chem. 2014;21:2410–2416. doi: 10.2174/0929867321666140205134616.
    1. Cole J.T., Holland N.B. Multifunctional nanoparticles for use in theranostic applications. Drug Deliv. Transl. Res. 2015;5:295–309. doi: 10.1007/s13346-015-0218-2.
    1. Maeda H. Toward a full understanding of the epr effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 2015;91:3–6. doi: 10.1016/j.addr.2015.01.002.
    1. Anderson P.M., Subbiah V., Rohren E. Bone-seeking radiopharmaceuticals as targeted agents of osteosarcoma: Samarium-153-edtmp and radium-223. Adv. Exp. Med. Biol. 2014;804:291–304.
    1. Hofmeister V., Schrama D., Becker J.C. Anti-cancer therapies targeting the tumor stroma. Cancer Immunol. Immunother. 2008;57:1–17. doi: 10.1007/s00262-007-0365-5.
    1. Jabbour E., O’Brien S., Ravandi F., Kantarjian H. Monoclonal antibodies in acute lymphoblastic leukemia. Blood. 2015;125:4010–4016. doi: 10.1182/blood-2014-08-596403.
    1. Seifert R.P., Bulkeley W., 3rd, Zhang L., Menes M., Bui M.M. A practical approach to diagnose soft tissue myeloid sarcoma preceding or coinciding with acute myeloid leukemia. Ann. Diagn. Pathol. 2014;18:253–260. doi: 10.1016/j.anndiagpath.2014.06.001.
    1. Slovin S. Biomarkers for immunotherapy in genitourinary malignancies. Urol. Oncol. 2015;18:253–260. doi: 10.1016/j.urolonc.2015.02.007.
    1. Ronca R., Sozzani S., Presta M., Alessi P. Delivering cytokines at tumor site: The immunocytokine-conjugated anti-edb-fibronectin antibody case. Immunobiology. 2009;214:800–810. doi: 10.1016/j.imbio.2009.06.005.
    1. Garinchesa P., Sakamoto J., Welt S., Real F., Rettig W., Old L. Organ-specific expression of the colon cancer antigen a33, a cell surface target for antibody-based therapy. Int. J. Oncol. 1996;9:465–471. doi: 10.3892/ijo.9.3.465.
    1. Huang C.Y., Pourgholami M.H., Allen B.J. Optimizing radioimmunoconjugate delivery in the treatment of solid tumor. Cancer Treat. Rev. 2012;38:854–860. doi: 10.1016/j.ctrv.2011.12.005.
    1. Jurcic J.G. Radioimmunotherapy for hematopoietic cell transplantation. Immunotherapy. 2013;5:383–394. doi: 10.2217/imt.13.11.
    1. Tabata R., Iwama H., Tabata C., Yasumizu R., Kojima M. Cd5- and cd23-positive splenic diffuse large b-cell lymphoma with very low cd20 expression. J. Clin. Exp. Hematop. 2014;54:155–161. doi: 10.3960/jslrt.54.155.
    1. Koon H.B., Junghans R.P. Anti-cd30 antibody-based therapy. Curr. Opin. Oncol. 2000;12:588–593. doi: 10.1097/00001622-200011000-00012.
    1. Zhang M., Yao Z., Zhang Z., Garmestani K., Talanov V.S., Plascjak P.S., Yu S., Kim H.S., Goldman C.K., Paik C.H., et al. The anti-cd25 monoclonal antibody 7g7/b6, armed with the alpha-emitter 211at, provides effective radioimmunotherapy for a murine model of leukemia. Cancer Res. 2006;66:8227–8232. doi: 10.1158/0008-5472.CAN-06-1189.
    1. Liersch T., Meller J., Kulle B., Behr T.M., Markus P., Langer C., Ghadimi B.M., Wegener W.A., Kovacs J., Horak I.D., et al. Phase ii trial of carcinoembryonic antigen radioimmunotherapy with 131i-labetuzumab after salvage resection of colorectal metastases in the liver: Five-year safety and efficacy results. J. Clin. Oncol. 2005;23:6763–6770. doi: 10.1200/JCO.2005.18.622.
    1. Tagawa S.T., Milowsky M.I., Morris M., Vallabhajosula S., Christos P., Akhtar N.H., Osborne J., Goldsmith S.J., Larson S., Taskar N.P., et al. Phase ii study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody j591 for metastatic castration-resistant prostate cancer. Clin. Cancer Res. 2013;19:5182–5191. doi: 10.1158/1078-0432.CCR-13-0231.
    1. Raja C., Graham P., Abbas Rizvi S.M., Song E., Goldsmith H., Thompson J., Bosserhoff A., Morgenstern A., Apostolidis C., Kearsley J., et al. Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 2007;6:846–852. doi: 10.4161/cbt.6.6.4089.
    1. Allen B.J., Singla A.A., Rizvi S.M., Graham P., Bruchertseifer F., Apostolidis C., Morgenstern A. Analysis of patient survival in a phase I trial of systemic targeted alpha-therapy for metastatic melanoma. Immunotherapy. 2011;3:1041–1050. doi: 10.2217/imt.11.97.
    1. Sansovini M., Severi S., Ambrosetti A., Monti M., Nanni O., Sarnelli A., Bodei L., Garaboldi L., Bartolomei M., Paganelli G. Treatment with the radiolabelled somatostatin analog lu-dotatate for advanced pancreatic neuroendocrine tumors. Neuroendocrinology. 2013;97:347–354. doi: 10.1159/000348394.
    1. Forrer F., Waldherr C., Maecke H.R., Mueller-Brand J. Targeted radionuclide therapy with 90y-dotatoc in patients with neuroendocrine tumors. Anticancer Res. 2006;26:703–707.
    1. Waldherr C., Pless M., Maecke H.R., Schumacher T., Crazzolara A., Nitzsche E.U., Haldemann A., Mueller-Brand J. Tumor response and clinical benefit in neuroendocrine tumors after 7.4 gbq (90)y-dotatoc. J. Nucl. Med. 2002;43:610–616.
    1. Nisa L., Savelli G., Giubbini R. Yttrium-90 dotatoc therapy in gep-net and other sst2 expressing tumors: A selected review. Ann. Nucl. Med. 2011;25:75–85. doi: 10.1007/s12149-010-0444-0.
    1. Shah M., da Silva R., Gravekamp C., Libutti S.K., Abraham T., Dadachova E. Targeted radionuclide therapies for pancreatic cancer. Cancer Gene Ther. 2015;22:375–379. doi: 10.1038/cgt.2015.32.
    1. Kraeber-Bodere F., Bodet-Milin C., Rousseau C., Eugene T., Pallardy A., Frampas E., Carlier T., Ferrer L., Gaschet J., Davodeau F., et al. Radioimmunoconjugates for the treatment of cancer. Semin. Oncol. 2014;41:613–622. doi: 10.1053/j.seminoncol.2014.07.004.
    1. Khaled S., Held K.D. Radiation Biology: A Handbook for Teachers and Students. International Atomic Energy Agency; Vienna, Austria: 2010. p. 166.
    1. Burnet N.G., Wurm R., Nyman J., Peacock J.H. Normal tissue radiosensitivity--how important is it? Clin. Oncol. 1996;8:25–34. doi: 10.1016/S0936-6555(05)80035-4.
    1. Bruland O.S., Nilsson S., Fisher D.R., Larsen R.H. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223ra: Adjuvant or alternative to conventional modalities? Clin. Cancer Res. 2006;12:6250s–6257s. doi: 10.1158/1078-0432.CCR-06-0841.
    1. Trieu M., DuBois S.G., Pon E., Nardo L., Hawkins R.A., Marachelian A., Twist C.J., Park J.R., Matthay K.K. Impact of whole-body radiation dose on response and toxicity in patients with neuroblastoma after therapy with i-metaiodobenzylguanidine (mibg) Pediatr. Blood Cancer. 2016;63 doi: 10.1002/pbc.25816.
    1. Seo Y., Gustafson W.C., Dannoon S.F., Nekritz E.A., Lee C.L., Murphy S.T., VanBrocklin H.F., Hernandez-Pampaloni M., Haas-Kogan D.A., Weiss W.A., et al. Tumor dosimetry using [124i]m-iodobenzylguanidine micropet/ct for [131i]m-iodobenzylguanidine treatment of neuroblastoma in a murine xenograft model. Mol. Imaging Biol. 2012;14:735–742. doi: 10.1007/s11307-012-0552-4.
    1. Huang S.Y., Bolch W.E., Lee C., van Brocklin H.F., Pampaloni M.H., Hawkins R.A., Sznewajs A., DuBois S.G., Matthay K.K., Seo Y. Patient-specific dosimetry using pretherapy [124I]m-iodobenzylguanidine ([124I]mibg) dynamic pet/ct imaging before [131I]mibg targeted radionuclide therapy for neuroblastoma. Mol. Imaging Biol. 2015;17:284–294. doi: 10.1007/s11307-014-0783-7.
    1. Sgouros G. Yttrium-90 biodistribution by yttrium-87 imaging: A theoretical feasibility analysis. Med. Phys. 1998;25:1487–1490. doi: 10.1118/1.598323.
    1. Gulec S.A., Cohen S.J., Pennington K.L., Zuckier L.S., Hauke R.J., Horne H., Wegener W.A., Teoh N., Gold D.V., Sharkey R.M., et al. Treatment of advanced pancreatic carcinoma with 90y-clivatuzumab tetraxetan: A phase I single-dose escalation trial. Clin. Cancer Res. 2011;17:4091–4100. doi: 10.1158/1078-0432.CCR-10-2579.
    1. Yeong C.H., Cheng M.H., Ng K.H. Therapeutic radionuclides in nuclear medicine: Current and future prospects. J. Zhejiang Univ. Sci. B. 2014;15:845–863. doi: 10.1631/jzus.B1400131.
    1. Sanchez Ruiz A.C., de la Cruz-Merino L., Provencio Pulla M. Role of consolidation with yttrium-90 ibritumomab tiuxetan in patients with advanced-stage follicular lymphoma. Ther. Adv. Hematol. 2014;5:78–90. doi: 10.1177/2040620714532282.
    1. Morschhauser F., Radford J., van Hoof A., Botto B., Rohatiner A.Z., Salles G., Soubeyran P., Tilly H., Bischof-Delaloye A., van Putten W.L., et al. 90yttrium-ibritumomab tiuxetan consolidation of first remission in advanced-stage follicular non-hodgkin lymphoma: Updated results after a median follow-up of 7. 3 years from the international, randomized, phase iii first-lineindolent trial. J. Clin. Oncol. 2013;31:1977–1983. doi: 10.1200/JCO.2012.45.6400.
    1. Morschhauser F., Radford J., van Hoof A., Vitolo U., Soubeyran P., Tilly H., Huijgens P.C., Kolstad A., d’Amore F., Gonzalez Diaz M., et al. Phase iii trial of consolidation therapy with yttrium-90-ibritumomab tiuxetan compared with no additional therapy after first remission in advanced follicular lymphoma. J. Clin. Oncol. 2008;26:5156–5164. doi: 10.1200/JCO.2008.17.2015.
    1. Leonard J.P., Coleman M., Ketas J.C., Chadburn A., Furman R., Schuster M.W., Feldman E.J., Ashe M., Schuster S.J., Wegener W.A., et al. Epratuzumab, a humanized anti-cd22 antibody, in aggressive non-hodgkin's lymphoma: Phase i/ii clinical trial results. Clin. Cancer Res. 2004;10:5327–5334. doi: 10.1158/1078-0432.CCR-04-0294.
    1. Beatson R.E., Taylor-Papadimitriou J., Burchell J.M. Muc1 immunotherapy. Immunotherapy. 2010;2:305–327. doi: 10.2217/imt.10.17.
    1. Han S., Jin G., Wang L., Li M., He C., Guo X., Zhu Q. The role of pam4 in the management of pancreatic cancer: Diagnosis, radioimmunodetection, and radioimmunotherapy. J. Immunol. Res. 2014;2014:33. doi: 10.1155/2014/268479.
    1. Goldsmith S.J. Radioimmunotherapy of lymphoma: Bexxar and zevalin. Semin. Nucl. Med. 2010;40:122–135. doi: 10.1053/j.semnuclmed.2009.11.002.
    1. Press O.W., Unger J.M., Rimsza L.M., Friedberg J.W., LeBlanc M., Czuczman M.S., Kaminski M., Braziel R.M., Spier C., Gopal A.K., et al. Phase iii randomized intergroup trial of chop plus rituximab compared with chop chemotherapy plus (131)iodine-tositumomab for previously untreated follicular non-hodgkin lymphoma: Swog s0016. J. Clin. Oncol. 2013;31:314–320. doi: 10.1200/JCO.2012.42.4101.
    1. Vose J.M., Carter S., Burns L.J., Ayala E., Press O.W., Moskowitz C.H., Stadtmauer E.A., Mineshi S., Ambinder R., Fenske T., et al. Phase iii randomized study of rituximab/carmustine, etoposide, cytarabine, and melphalan (beam) compared with iodine-131 tositumomab/beam with autologous hematopoietic cell transplantation for relapsed diffuse large b-cell lymphoma: Results from the bmt ctn 0401 trial. J. Clin. Oncol. 2013;31:1662–1668.
    1. Press O.W., Unger J.M., Rimsza L.M., Friedberg J.W., LeBlanc M., Czuczman M.S., Kaminski M., Braziel R.M., Spier C., Gopal A.K., et al. A comparative analysis of prognostic factor models for follicular lymphoma based on a phase iii trial of chop-rituximab versus chop + 131iodine—Tositumomab. Clin. Cancer Res. 2013;19:6624–6632. doi: 10.1158/1078-0432.CCR-13-1120.
    1. Dechant M., Bruenke J., Valerius T. Hla class ii antibodies in the treatment of hematologic malignancies. Semin. Oncol. 2003;30:465–475. doi: 10.1016/S0093-7754(03)00252-5.
    1. Hdeib A., Sloan A. Targeted radioimmunotherapy: The role of 131I-chtnt-1/b mab (cotara) for treatment of high-grade gliomas. Future Oncol. 2012;8:659–669. doi: 10.2217/fon.12.58.
    1. Fujiki M., Aucejo F., Kim R. Adjuvant treatment of hepatocellular carcinoma after orthotopic liver transplantation: Do we really need this? Clin. Transplant. 2013;27:169–177. doi: 10.1111/ctr.12042.
    1. Erba P.A., Sollini M., Orciuolo E., Traino C., Petrini M., Paganelli G., Bombardieri E., Grana C., Giovannoni L., Neri D., et al. Radioimmunotherapy with radretumab in patients with relapsed hematologic malignancies. J. Nucl. Med. 2012;53:922–927. doi: 10.2967/jnumed.111.101006.
    1. FDA_USA Xofigo (radium ra 223 dichloride) injection: Prescribing information. [(accessed on 31 October 2015)]; Available online: .
    1. Humm J.L., Sartor O., Parker C., Bruland O.S., Macklis R. Radium-223 in the treatment of osteoblastic metastases: A critical clinical review. Int. J. Radiat. Oncol. Biol. Phys. 2015;91:898–906. doi: 10.1016/j.ijrobp.2014.12.061.
    1. Parker C., Nilsson S., Heinrich D., Helle S.I., O'Sullivan J.M., Fossa S.D., Chodacki A., Wiechno P., Logue J., Seke M., et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 2013;369:213–223. doi: 10.1056/NEJMoa1213755.
    1. Strosberg J., Wolin E., Chasen B., Kulke M., Bushnell D., Caplin M., Baum R.P., Mittra E., Hobday T., Hendifar A., et al. 177-Lu-dotatate significantly improves progression-free survival in patients with midgut neuroendocrine tumours: Results of the Phase III NETTER-1 trial; Proceedings of the 2015 European Cancer Congress; Vienna, Austria. 25–29 September 2015; p. 6LBA.
    1. Kayano D., Kinuya S. Iodine-131 metaiodobenzylguanidine therapy for neuroblastoma: Reports so far and future perspective. Sci. World J. 2015;2015:1–9. doi: 10.1155/2015/189135.
    1. Quach A., Ji L., Mishra V., Sznewajs A., Veatch J., Huberty J., Franc B., Sposto R., Groshen S., Wei D., et al. Thyroid and hepatic function after high dose (131)i-metaiodobenzylguanidine ((131)i-mibg) therapy for neuroblastoma. Pediatr. Blood Cancer. 2011;56:191–201. doi: 10.1002/pbc.22767.
    1. DuBois S.G., Groshen S., Park J.R., Haas-Kogan D.A., Yang X., Geier E., Chen E., Giacomini K., Weiss B., Cohn S.L., et al. Phase I study of vorinostat as a radiation sensitizer with 131i-metaiodobenzylguanidine (131i-mibg) for patients with relapsed or refractory neuroblastoma. Clin. Cancer Res. 2015;21:2715–2721. doi: 10.1158/1078-0432.CCR-14-3240.
    1. Zhou M.J., Doral M.Y., DuBois S.G., Villablanca J.G., Yanik G.A., Matthay K.K. Different outcomes for relapsed versus refractory neuroblastoma after therapy with (131)i-metaiodobenzylguanidine ((131)i-mibg) Eur. J. Cancer. 2015;51:2465–2472. doi: 10.1016/j.ejca.2015.07.023.
    1. Gudkov S.V., Popova N.R., Bruskov V.I. Radioprotective substances: History, trends and prospects. Biophysics. 2015;60:659–667. doi: 10.1134/S0006350915040120.
    1. Gudkov S.V., Shtarkman I.N., Smirnova V.S., Chernikov A.V., Bruskov V.I. Guanosine and inosine display antioxidant activity, protect DNA in vitro from oxidative damage induced by reactive oxygen species, and serve as radioprotectors in mice. Radiat. Res. 2006;165:538–545. doi: 10.1667/RR3552.1.
    1. Gudkov S.V., Gudkova O.Y., Chernikov A.V., Bruskov V.I. Protection of mice against X-ray injuries by the post-irradiation administration of guanosine and inosine. Int. J. Radiat. Biol. 2009;85:116–125. doi: 10.1080/09553000802641144.
    1. Asadullina N.R., Usacheva A.M., Smirnova V.S., Gudkov S.V. Antioxidative and radiation modulating properties of guanosine-5′-monophosphate. Nucleosides Nucleotides Nucleic Acid. 2010;29:786–799. doi: 10.1080/15257770.2010.518576.

Source: PubMed

3
Předplatit