CSF biomarkers distinguish idiopathic normal pressure hydrocephalus from its mimics

Anna Jeppsson, Carsten Wikkelsö, Kaj Blennow, Henrik Zetterberg, Radu Constantinescu, Anne M Remes, Sanna-Kaisa Herukka, Tuomas Rauramaa, Katarina Nagga, Ville Leinonen, Mats Tullberg, Anna Jeppsson, Carsten Wikkelsö, Kaj Blennow, Henrik Zetterberg, Radu Constantinescu, Anne M Remes, Sanna-Kaisa Herukka, Tuomas Rauramaa, Katarina Nagga, Ville Leinonen, Mats Tullberg

Abstract

Objective: To examine the differential diagnostic significance of cerebrospinal fluid (CSF) biomarkers reflecting Alzheimer's disease-related amyloid β (Aβ) production and aggregation, cortical neuronal damage, tau pathology, damage to long myelinated axons and astrocyte activation, which hypothetically separates patients with idiopathic normal pressure hydrocephalus (iNPH) from patients with other neurodegenerative disorders.

Methods: The study included lumbar CSF samples from 82 patients with iNPH, 75 with vascular dementia, 70 with Parkinson's disease, 34 with multiple system atrophy, 34 with progressive supranuclear palsy, 15 with corticobasal degeneration, 50 with Alzheimer's disease, 19 with frontotemporal lobar degeneration and 54 healthy individuals (HIs). We analysed soluble amyloid precursor protein alpha (sAPPα) and beta (sAPPβ), Aβ species (Aβ38, Aβ40 and Aβ42), total tau (T-tau), phosphorylated tau, neurofilament light and monocyte chemoattractant protein 1 (MCP-1).

Results: Patients with iNPH had lower concentrations of tau and APP-derived proteins in combination with elevated MCP-1 compared with HI and the non-iNPH disorders. T-tau, Aβ40 and MCP-1 together yielded an area under the curve of 0.86, differentiating iNPH from the other disorders. A prediction algorithm consisting of T-tau, Aβ40 and MCP-1 was designed as a diagnostic tool using CSF biomarkers.

Conclusions: The combination of the CSF biomarkers T-tau, Aβ40 and MCP-1 separates iNPH from cognitive and movement disorders with good diagnostic sensitivity and specificity. This may have important implications for diagnosis and clinical research on disease mechanisms for iNPH.

Keywords: Alzheimer’s disease; CSF; Multiple systems atrophy; Parkinson’s disease; Progressive supranuclear palsy; biomarkers; corticobasal degeneration; frontotemporal dementia; idiopathic normal pressure hydrocephalus; vascular dementia.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

Figures

Figure 1
Figure 1
Biomarker concentrations in CSF as individual values in each diagnostic group. Biomarker concentrations in CSF plotted as individual values for each group. In each graph, values are given for HIs, iNPH, AD, FTLD, VAD, PD, MSA, PSP and CBD. (A) Concentration of T-tau, (B) P-tau, (C) NFL, (D) Aβ38, (E) Aβ40, (F) Aβ42, (G) sAPPα, (H) sAPPβ and (I) MCP-1. Bar indicates mean value. Y-axes are broken to enhance visibility. Aβ, AD-related amyloid β; AD, Alzheimer’s disease; CBD, corticobasal degeneration; CSF, cerebrospinal fluid; FTLD, frontotemporal lobar degeneration; HIs, healthy individuals; iNPH, idiopathic normal pressure hydrocephalus; MCP-1, monocyte chemoattractant protein 1; MSA, multiple system atrophy; NFL, neurofilament light; PD, Parkinson’s disease; PSP, progressive supranuclear palsy; P-tau, phosphorylated tau; sAPP, soluble amyloid precursor protein; T-tau, total tau; VAD, vascular dementia.
Figure 2
Figure 2
ROC curves to separate iNPH with the multivariable model 10*MCP-1 *- Aβ40–5*T-tau. ROC curves for the simplified model 10*MCP-1-Aβ40-5*T-tau. ROC curves are given for (A) iNPH versus HI (AUC = 0.8715), (B) iNPH versus non-iNPH (AUC = 0.8581), (C) iNPH versus cognitive disorders (AUC = 0.9161) and (D) iNPH versus movement disorders (AUC = 0.8035). Aβ, AD-related amyloid β; iNPH, iNPH=idiopathic normal pressure hydrocephalus; HI, healthy control; MCP-1, monocyte chemoattractant protein 1; T-tau; total tau.
Figure 3
Figure 3
Prediction plot of iNPH versus non-iNPH disorders. Prediction plot showing probability of iNPH. T-tau is given in four concentrations, Aβ40 is given in eight different intervals, whereas MCP-1 is shown as a continuous variable on the X-axes. Estimated probability of iNPH is given on the Y-axes. Aβ, AD-related amyloid β; iNPH, iNPH=idiopathic normal pressure hydrocephalus; MCP-1, monocyte chemoattractant protein 1; T-tau, total tau.

References

    1. Hakim S, Adams RD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 1965;2:307–27.
    1. Andrén K, Wikkelsø C, Tisell M, et al. . Natural course of idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 2014;85:806–10. 10.1136/jnnp-2013-306117
    1. Jaraj D, Rabiei K, Marlow T, et al. . Prevalence of idiopathic normal-pressure hydrocephalus. Neurology 2014;82:1449–54. 10.1212/WNL.0000000000000342
    1. Tisell M, Höglund M, Wikkelsø C. National and regional incidence of surgery for adult hydrocephalus in Sweden. Acta Neurol Scand 2005;112:72–5. 10.1111/j.1600-0404.2005.00451.x
    1. Molde K, Söderström L, Laurell K. Parkinsonian symptoms in normal pressure hydrocephalus: a population-based study. J Neurol 2017;264:2141–8. 10.1007/s00415-017-8598-5
    1. Relkin N, Marmarou A, Klinge P, et al. . Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005;57(suppl_3):S2-4–S2-16. 10.1227/01.NEU.0000168185.29659.C5
    1. Tullberg M, Jensen C, Ekholm S, et al. . Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. AJNR Am J Neuroradiol 2001;22:1665–73.
    1. Schirinzi T, Sancesario GM, Ialongo C, et al. . A clinical and biochemical analysis in the differential diagnosis of idiopathic normal pressure hydrocephalus. Front Neurol 2015;6 10.3389/fneur.2015.00086
    1. Jeppsson A, Zetterberg H, Blennow K, et al. . Idiopathic normal-pressure hydrocephalus: pathophysiology and diagnosis by CSF biomarkers. Neurology 2013;80:1385–92. 10.1212/WNL.0b013e31828c2fda
    1. Miyajima M, Nakajima M, Ogino I, et al. . Soluble amyloid precursor protein α in the cerebrospinal fluid as a diagnostic and prognostic biomarker for idiopathic normal pressure hydrocephalus. Eur J Neurol 2013;20:236–42. 10.1111/j.1468-1331.2012.03781.x
    1. Moriya M, Miyajima M, Nakajima M, et al. . Impact of cerebrospinal fluid shunting for idiopathic normal pressure hydrocephalus on the AMYLOID cascade. PLoS One 2015;10 10.1371/journal.pone.0119973
    1. Craven CL, Baudracco I, Zetterberg H, et al. . The predictive value of t-tau and AB1-42 levels in Idiopathic normal pressure hydrocephalus. Acta Neurochir 2017;159:2293–300. 10.1007/s00701-017-3314-x
    1. Pyykkö OT, Lumela M, Rummukainen J, et al. . Cerebrospinal fluid biomarker and brain biopsy findings in Idiopathic normal pressure hydrocephalus. PLoS One 2014;9 10.1371/journal.pone.0091974
    1. Hellström P, Klinge P, Tans J, et al. . A new scale for assessment of severity and outcome in iNPH. Acta Neurol Scand 2012;126:229–37. 10.1111/j.1600-0404.2012.01677.x
    1. Hughes AJ, Daniel SE, Kilford L, et al. . Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181–4. 10.1136/jnnp.55.3.181
    1. Gilman S, Wenning GK, Low PA, et al. . Second consensus statement on the diagnosis of multiple system atrophy. Neurology 2008;71:670–6. 10.1212/01.wnl.0000324625.00404.15
    1. Litvan I, Bhatia KP, Burn DJ, et al. . Movement disorders Society scientific issues Committee report: sic Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov Disord 2003;18:467–86. 10.1002/mds.10459
    1. Armstrong MJ, Litvan I, Lang AE, et al. . Criteria for the diagnosis of corticobasal degeneration. Neurology 2013;80:496–503. 10.1212/WNL.0b013e31827f0fd1
    1. McKhann G, Drachman D, Folstein M, et al. . Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA work group under the auspices of department of health and Human Services Task Force on Alzheimer's disease. Neurology 1984;34:939–44. 10.1212/WNL.34.7.939
    1. Neary D, Snowden JS, Gustafson L, et al. . Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 1998;51:1546–54. 10.1212/WNL.51.6.1546
    1. Román GC, Tatemichi TK, Erkinjuntti T, et al. . Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International workshop. Neurology 1993;43:250–60. 10.1212/WNL.43.2.250
    1. Nägga K, Gottfries J, Blennow K, et al. . Cerebrospinal fluid phospho-tau, total tau and beta-amyloid(1-42) in the differentiation between Alzheimer's disease and vascular dementia. Dement Geriatr Cogn Disord 2002;14:183–90. 10.1159/000066023
    1. Haapalinna F, Kokki M, Jääskeläinen O, et al. . Subtle cognitive impairment and Alzheimer's Disease-Type pathological changes in cerebrospinal fluid are common among neurologically healthy subjects. J Alzheimers Dis 2018;62:165–74. 10.3233/JAD-170534
    1. Gaetani L, Höglund K, Parnetti L, et al. . A new enzyme-linked immunosorbent assay for neurofilament light in cerebrospinal fluid: analytical validation and clinical evaluation. Alzheimers Res Ther 2018;10 10.1186/s13195-018-0339-1
    1. Zetterberg H, Andreasson U, Hansson O, et al. . Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol 2008;65:1102–7. 10.1001/archneur.65.8.1102
    1. Ziegelitz D, Starck G, Kristiansen D, et al. . Cerebral perfusion measured by dynamic susceptibility contrast MRI is reduced in patients with idiopathic normal pressure hydrocephalus. J Magn Reson Imaging 2014;39:1533–42. 10.1002/jmri.24292
    1. Momjian S, Owler BK, Czosnyka Z, et al. . Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain 2004;127:965–72. 10.1093/brain/awh131
    1. Priller C, Bauer T, Mitteregger G, et al. . Synapse formation and function is modulated by the amyloid precursor protein. J Neurosci 2006;26:7212–21. 10.1523/JNEUROSCI.1450-06.2006
    1. Zheng H, Koo EH. The amyloid precursor protein: beyond amyloid. Mol Neurodegener 2006;1 10.1186/1750-1326-1-5
    1. Ziegelitz D, Arvidsson J, Hellström P, et al. . In patients with idiopathic normal pressure hydrocephalus postoperative cerebral perfusion changes measured by dynamic susceptibility contrast magnetic resonance imaging correlate with clinical improvement. J Comput Assist Tomogr 2015;39:531–40. 10.1097/RCT.0000000000000254
    1. Agren-Wilsson A, Lekman A, Sjöberg W, et al. . CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand 2007;116:333–9. 10.1111/j.1600-0404.2007.00890.x
    1. Semple BD, Bye N, Rancan M, et al. . Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 2010;30:769–82. 10.1038/jcbfm.2009.262
    1. Del Bigio MR, Cardoso ER, Halliday WC. Neuropathological changes in chronic adult hydrocephalus: cortical biopsies and autopsy findings. Can J Neurol Sci 1997;24:121–6. 10.1017/S0317167100021442
    1. Graff-Radford NR. Alzheimer CSF biomarkers may be misleading in normal-pressure hydrocephalus. Neurology 2014;83:1573–5. 10.1212/WNL.0000000000000916
    1. Jeppsson A, Höltta M, Zetterberg H, et al. . Amyloid mis-metabolism in Idiopathic normal pressure hydrocephalus. Fluids Barriers CNS 2016;13 10.1186/s12987-016-0037-y
    1. Herukka S-K, Rummukainen J, Ihalainen J, et al. . Amyloid-β and tau dynamics in human brain interstitial fluid in patients with suspected normal pressure hydrocephalus. J Alzheimers Dis 2015;46:261–9. 10.3233/JAD-142862
    1. Abu Hamdeh S, Virhammar J, Sehlin D, et al. . Brain tissue Aβ42 levels are linked to shunt response in Idiopathic normal pressure hydrocephalus. J Neurosurg 2018;130:121–9. 10.3171/2017.7.JNS171005
    1. Blennow K, Hampel H, Weiner M, et al. . Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010;6:131–44. 10.1038/nrneurol.2010.4
    1. Manniche C, Hejl A-M, Hasselbalch SG, et al. . Cerebrospinal fluid biomarkers in Idiopathic normal pressure hydrocephalus versus Alzheimer's disease and subcortical ischemic vascular disease: a systematic review. J Alzheimers Dis 2019;68:JAD-180816 10.3233/JAD-180816
    1. Schirinzi T, Sancesario GM, Di Lazzaro G, et al. . Cerebrospinal fluid biomarkers profile of idiopathic normal pressure hydrocephalus. J Neural Transm 2018;125:673–9. 10.1007/s00702-018-1842-z
    1. Nakajima M, Miyajima M, Ogino I, et al. . Preoperative phosphorylated tau concentration in the cerebrospinal fluid can predict cognitive function three years after shunt surgery in patients with idiopathic normal pressure hydrocephalus. J Alzheimers Dis 2018;66:319–31. 10.3233/JAD-180557
    1. Kazui H, Kanemoto H, Yoshiyama K, et al. . Association between high biomarker probability of Alzheimer's disease and improvement of clinical outcomes after shunt surgery in patients with idiopathic normal pressure hydrocephalus. J Neurol Sci 2016;369:236–41. 10.1016/j.jns.2016.08.040
    1. Andrén K, Wikkelsö C, Sundström N, et al. . Long-term effects of complications and vascular comorbidity in Idiopathic normal pressure hydrocephalus: a quality registry study. J Neurol 2018;265:178–86. 10.1007/s00415-017-8680-z

Source: PubMed

3
Předplatit