Brain structural covariance networks in obsessive-compulsive disorder: a graph analysis from the ENIGMA Consortium

Je-Yeon Yun, Premika S W Boedhoe, Chris Vriend, Neda Jahanshad, Yoshinari Abe, Stephanie H Ameis, Alan Anticevic, Paul D Arnold, Marcelo C Batistuzzo, Francesco Benedetti, Jan C Beucke, Irene Bollettini, Anushree Bose, Silvia Brem, Anna Calvo, Yuqi Cheng, Kang Ik K Cho, Valentina Ciullo, Sara Dallaspezia, Damiaan Denys, Jamie D Feusner, Jean-Paul Fouche, Mònica Giménez, Patricia Gruner, Derrek P Hibar, Marcelo Q Hoexter, Hao Hu, Chaim Huyser, Keisuke Ikari, Norbert Kathmann, Christian Kaufmann, Kathrin Koch, Luisa Lazaro, Christine Lochner, Paulo Marques, Rachel Marsh, Ignacio Martínez-Zalacaín, David Mataix-Cols, José M Menchón, Luciano Minuzzi, Pedro Morgado, Pedro Moreira, Takashi Nakamae, Tomohiro Nakao, Janardhanan C Narayanaswamy, Erika L Nurmi, Joseph O'Neill, John Piacentini, Fabrizio Piras, Federica Piras, Y C Janardhan Reddy, Joao R Sato, H Blair Simpson, Noam Soreni, Carles Soriano-Mas, Gianfranco Spalletta, Michael C Stevens, Philip R Szeszko, David F Tolin, Ganesan Venkatasubramanian, Susanne Walitza, Zhen Wang, Guido A van Wingen, Jian Xu, Xiufeng Xu, Qing Zhao, ENIGMA-OCD working group, Paul M Thompson, Dan J Stein, Odile A van den Heuvel, Jun Soo Kwon, Odile A van den Heuvel, Dan J Stein, Premika S W Boedhoe, Paul M Thompson, Neda Jahanshad, Chris Vriend, Yoshinari Abe, Stephanie H Ameis, Alan Anticevic, Paul D Arnold, Marcelo C Batistuzzo, Francesco Benedetti, Jan C Beucke, Irene Bollettini, Anushree Bose, Silvia Brem, Anna Calvo, Yuqi Cheng, Kang Ik, K Cho, Valentina Ciullo, Sara Dallaspezia, Damiaan Denys, Jamie D Feusner, Jean-Paul Fouche, Mònica Giménez, Patricia Gruner, Derrek P Hibar, Marcelo Q Hoexter, Hao Hu, Chaim Huyser, Keisuke Ikari, Norbert Kathmann, Christian Kaufmann, Kathrin Koch, Jun Soo Kwon, Luisa Lazaro, Christine Lochner, Paulo Marques, Rachel Marsh, Ignacio Martínez-Zalacaín, David Mataix-Cols, José M Menchón, Luciano Minuzzi, Pedro Morgado, Pedro Moreira, Takashi Nakamae, Tomohiro Nakao, Janardhanan C Narayanaswamy, Erica L Nurmi, Joseph O'Neill, John Piacentini, Fabrizio Piras, Federica Piras, Y C Janardhan Reddy, Joao R Sato, H Blair Simpson, Noam Soreni, Carles Soriano-Mas, Gianfranco Spalletta, Michael C Stevens, Philip R Szeszko, David F Tolin, Ganesan Venkatasubramanian, Susanne Walitza, Zhen Wang, Guido A van Wingen, Jian Xu, Xiufeng Xu, Je-Yeon Yun, Qing Zhao, Je-Yeon Yun, Premika S W Boedhoe, Chris Vriend, Neda Jahanshad, Yoshinari Abe, Stephanie H Ameis, Alan Anticevic, Paul D Arnold, Marcelo C Batistuzzo, Francesco Benedetti, Jan C Beucke, Irene Bollettini, Anushree Bose, Silvia Brem, Anna Calvo, Yuqi Cheng, Kang Ik K Cho, Valentina Ciullo, Sara Dallaspezia, Damiaan Denys, Jamie D Feusner, Jean-Paul Fouche, Mònica Giménez, Patricia Gruner, Derrek P Hibar, Marcelo Q Hoexter, Hao Hu, Chaim Huyser, Keisuke Ikari, Norbert Kathmann, Christian Kaufmann, Kathrin Koch, Luisa Lazaro, Christine Lochner, Paulo Marques, Rachel Marsh, Ignacio Martínez-Zalacaín, David Mataix-Cols, José M Menchón, Luciano Minuzzi, Pedro Morgado, Pedro Moreira, Takashi Nakamae, Tomohiro Nakao, Janardhanan C Narayanaswamy, Erika L Nurmi, Joseph O'Neill, John Piacentini, Fabrizio Piras, Federica Piras, Y C Janardhan Reddy, Joao R Sato, H Blair Simpson, Noam Soreni, Carles Soriano-Mas, Gianfranco Spalletta, Michael C Stevens, Philip R Szeszko, David F Tolin, Ganesan Venkatasubramanian, Susanne Walitza, Zhen Wang, Guido A van Wingen, Jian Xu, Xiufeng Xu, Qing Zhao, ENIGMA-OCD working group, Paul M Thompson, Dan J Stein, Odile A van den Heuvel, Jun Soo Kwon, Odile A van den Heuvel, Dan J Stein, Premika S W Boedhoe, Paul M Thompson, Neda Jahanshad, Chris Vriend, Yoshinari Abe, Stephanie H Ameis, Alan Anticevic, Paul D Arnold, Marcelo C Batistuzzo, Francesco Benedetti, Jan C Beucke, Irene Bollettini, Anushree Bose, Silvia Brem, Anna Calvo, Yuqi Cheng, Kang Ik, K Cho, Valentina Ciullo, Sara Dallaspezia, Damiaan Denys, Jamie D Feusner, Jean-Paul Fouche, Mònica Giménez, Patricia Gruner, Derrek P Hibar, Marcelo Q Hoexter, Hao Hu, Chaim Huyser, Keisuke Ikari, Norbert Kathmann, Christian Kaufmann, Kathrin Koch, Jun Soo Kwon, Luisa Lazaro, Christine Lochner, Paulo Marques, Rachel Marsh, Ignacio Martínez-Zalacaín, David Mataix-Cols, José M Menchón, Luciano Minuzzi, Pedro Morgado, Pedro Moreira, Takashi Nakamae, Tomohiro Nakao, Janardhanan C Narayanaswamy, Erica L Nurmi, Joseph O'Neill, John Piacentini, Fabrizio Piras, Federica Piras, Y C Janardhan Reddy, Joao R Sato, H Blair Simpson, Noam Soreni, Carles Soriano-Mas, Gianfranco Spalletta, Michael C Stevens, Philip R Szeszko, David F Tolin, Ganesan Venkatasubramanian, Susanne Walitza, Zhen Wang, Guido A van Wingen, Jian Xu, Xiufeng Xu, Je-Yeon Yun, Qing Zhao

Abstract

Brain structural covariance networks reflect covariation in morphology of different brain areas and are thought to reflect common trajectories in brain development and maturation. Large-scale investigation of structural covariance networks in obsessive-compulsive disorder (OCD) may provide clues to the pathophysiology of this neurodevelopmental disorder. Using T1-weighted MRI scans acquired from 1616 individuals with OCD and 1463 healthy controls across 37 datasets participating in the ENIGMA-OCD Working Group, we calculated intra-individual brain structural covariance networks (using the bilaterally-averaged values of 33 cortical surface areas, 33 cortical thickness values, and six subcortical volumes), in which edge weights were proportional to the similarity between two brain morphological features in terms of deviation from healthy controls (i.e. z-score transformed). Global networks were characterized using measures of network segregation (clustering and modularity), network integration (global efficiency), and their balance (small-worldness), and their community membership was assessed. Hub profiling of regional networks was undertaken using measures of betweenness, closeness, and eigenvector centrality. Individually calculated network measures were integrated across the 37 datasets using a meta-analytical approach. These network measures were summated across the network density range of K = 0.10-0.25 per participant, and were integrated across the 37 datasets using a meta-analytical approach. Compared with healthy controls, at a global level, the structural covariance networks of OCD showed lower clustering (P < 0.0001), lower modularity (P < 0.0001), and lower small-worldness (P = 0.017). Detection of community membership emphasized lower network segregation in OCD compared to healthy controls. At the regional level, there were lower (rank-transformed) centrality values in OCD for volume of caudate nucleus and thalamus, and surface area of paracentral cortex, indicative of altered distribution of brain hubs. Centrality of cingulate and orbito-frontal as well as other brain areas was associated with OCD illness duration, suggesting greater involvement of these brain areas with illness chronicity. In summary, the findings of this study, the largest brain structural covariance study of OCD to date, point to a less segregated organization of structural covariance networks in OCD, and reorganization of brain hubs. The segregation findings suggest a possible signature of altered brain morphometry in OCD, while the hub findings point to OCD-related alterations in trajectories of brain development and maturation, particularly in cingulate and orbitofrontal regions.

Keywords: brain structural covariance network; graph theory; illness duration; obsessive-compulsive disorder; pharmacotherapy.

© The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain.

Figures

Figure 1
Figure 1
Schematic description of the study procedures: construction of intra-individual brain structural covariance networks. HC = healthy controls; L = left; M = mean; R = right; ROI = region of interest; SD = standard deviation.
Figure 2
Figure 2
Schematic description of the study procedures. (A) Calculation of graph theory metrics from the intra-individual brain structural covariance networks at single-subject level and (B) meta-analytic integration of graph theory metrics for 37 datasets. HC = healthy controls; ROI = region of interest.
Figure 3
Figure 3
Forest plots of the meta-analysis of global graph metrics comparying the OCD and healthy control groups. (A) Global clustering, (B) small-worldness, (C) modularity, (D) global efficiency, and (E) dice similarity coefficient. HC = healthy controls; ROI = region of interest.
Figure 4
Figure 4
Meta-analysis of community membership and hubs. (A) Healthy bontrols (HC); and (B) OCD. Spheres represent nodes [= bilaterally-averaged values of 33 cortical surface areas (CSAs), 33 cortical thickness (CT), and six subcortical volumes (vol)] comprising the intra-individual structural covariance network. Larger spheres represent hubs, and differential colours were used to denote the spheres (or network nodes) segregated as different modules.
Figure 5
Figure 5
Meta-analysis of regional network characteristics (= rank-transformed betweenness, closeness, and eigenvector centralities). (A) Comparing OCD and healthy controls (HC); (B) comparing medicated OCD with unmedicated OCD; and (C) estimating the degrees of relationship with illness duration for OCD. CSA = cortical surface areas; CT = cortical thickness.

References

    1. Aboud KS, Huo Y, Kang H, Ealey A, Resnick SM, Landman BA, et al.Structural covariance across the lifespan: brain development and aging through the lens of inter-network relationships. Hum Brain Mapp 2019; 40: 125–36.
    1. Alexander-Bloch A, Raznahan A, Bullmore E, Giedd J. The convergence of maturational change and structural covariance in human cortical networks. J Neurosci 2013; 33: 2889–99.
    1. Amlien IK, Fjell AM, Tamnes CK, Grydeland H, Krogsrud SK, Chaplin TA, et al.Organizing principles of human cortical development–thickness and area from 4 to 30 years: insights from comparative primate neuroanatomy. Cereb Cortex 2016; 26: 257–67.
    1. Anticevic A, Hu S, Zhang S, Savic A, Billingslea E, Wasylink S, et al.Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol Psychiatry 2014; 75: 595–605.
    1. Armstrong CC, Moody TD, Feusner JD, McCracken JT, Chang S, Levitt JG, et al.Graph-theoretical analysis of resting-state fMRI in pediatric obsessive-compulsive disorder. J Affect Disord 2016; 193: 175–84.
    1. Boedhoe PSW, Schmaal L, Abe Y, Alonso P, Ameis SH, Anticevic A, et al.Cortical abnormalities associated with pediatric and adult obsessive-compulsive disorder: findings from the ENIGMA obsessive-compulsive disorder working group. Am J Psychiatry 2018; 175: 453–62.
    1. Boedhoe PS, Schmaal L, Abe Y, Ameis SH, Arnold PD, Batistuzzo MC, et al.Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis. Am J Psychiatry 2017; 174: 60–9.
    1. Cao M, Huang H, Peng Y, Dong Q, He Y. Toward developmental connectomics of the human brain. Front Neuroanat 2016; 10: 25.
    1. Das T, Borgwardt S, Hauke DJ, Harrisberger F, Lang UE, Riecher-Rossler A, et al.Disorganized gyrification network properties during the transition to psychosis. JAMA Psychiatry 2018; 75: 613–22.
    1. de Vries FE, de Wit SJ, van den Heuvel OA, Veltman DJ, Cath DC, van Balkom A, et al.Cognitive control networks in OCD: a resting-state connectivity study in unmedicated patients with obsessive-compulsive disorder and their unaffected relatives. World J Biol Psychiatry 2017; 20: 230–42.
    1. de Wit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchon JM, et al.Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. Am J Psychiatry 2014; 171: 340–9.
    1. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006; 31: 968–80.
    1. Dice LR. Measures of the amount of ecologic association between species. Ecology 1945; 26: 297–302.
    1. Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Neuroplasticity: changes in grey matter induced by training. Nature 2004; 427: 311–2.
    1. Dwyer DB, Harrison BJ, Yucel M, Whittle S, Zalesky A, Pantelis C, et al.Large-scale brain network dynamics supporting adolescent cognitive control. J Neurosci 2014; 34: 14096–107.
    1. Eickhoff SB, Laird AR, Fox PM, Lancaster JL, Fox PT. Implementation errors in the GingerALE Software: description and recommendations. Hum Brain Mapp 2017; 38: 7–11.
    1. Ferrer I, Blanco R, Carulla M, Condom M, Alcantara S, Olive M, et al.Transforming growth factor-alpha immunoreactivity in the developing and adult brain. Neuroscience 1995; 66: 189–99.
    1. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured clinical interview for DSM-IV-TR axis I disorders (SCID-I). New York, NY: New York State Psychiatric Institute, Biometrics Department; 2002.
    1. Fischl B. FreeSurfer. Neuroimage 2012; 62: 774–81.
    1. Fornito A, Zalesky A, Bullmore ET. Fundamentals of brain network analysis. London: Elsevier; 2016.
    1. Fortunato S. Community detection in graphs. Phys Rep 2010; 486: 75–174.
    1. Fouche JP, Du Plessis S, Hattingh C, Roos A, Lochner C, Soriano-Mas C, et al.Cortical thickness in obsessive-compulsive disorder: multisite mega-analysis of 780 brain scans from six centres. Br J Psychiatry 2017; 210: 67–74.
    1. Gottlich M, Kramer UM, Kordon A, Hohagen F, Zurowski B. Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder. Hum Brain Mapp 2014; 35: 5617–32.
    1. Grisham JR, Brown TA, Campbell LA. The anxiety disorders interview schedule for DSM-IV (ADIS-IV). Comprehensive handbook of psychological assessment, vol 2: personality assessment. Hoboken, NJ: John Wiley & Sons Inc; 2004. p. 163–77.
    1. Gürsel DA, Avram M, Sorg C, Brandl F, Koch K. Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of resting-state functional connectivity. Neurosci Biobehav Rev 2018; 87: 151–60.
    1. Guye M, Bettus G, Bartolomei F, Cozzone PJ. Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. MAGMA 2010; 23: 409–21.
    1. Hedges LV, Vevea JL. Fixed- and random-effects models in meta-analysis. Psychol Methods 1998; 3: 486–504.
    1. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–60.
    1. Hoagey DA, Rieck JR, Rodrigue KM, Kennedy KM. Joint contributions of cortical morphometry and white matter microstructure in healthy brain aging: a partial least squares correlation analysis. Hum Brain Mapp 2019; 40: 5315–29.
    1. Hunt BA, Tewarie PK, Mougin OE, Geades N, Jones DK, Singh KD, et al.Relationships between cortical myeloarchitecture and electrophysiological networks. Proc Natl Acad Sci USA 2016; 113: 13510–5.
    1. Jung WM, Lee IS, Wallraven C, Ryu YH, Park HJ, Chae Y. Cortical activation patterns of bodily attention triggered by acupuncture stimulation. Sci Rep 2015; 5: 12455..
    1. Jung WH, Yucel M, Yun JY, Yoon YB, Cho KI, Parkes L, et al.Altered functional network architecture in orbitofronto-striato-thalamic circuit of unmedicated patients with obsessive-compulsive disorder. Hum Brain Mapp 2017; 38: 109–19.
    1. Kaczkurkin AN, Park SS, Sotiras A, Moore TM, Calkins ME, Cieslak M, et al.Evidence for dissociable linkage of dimensions of psychopathology to brain structure in youths. Am J Psychiatry 2019; 176: 1000–9.
    1. Kambeitz J, Kambeitz-Ilankovic L, Cabral C, Dwyer DB, Calhoun VD, van den Heuvel MP, et al.Aberrant functional whole-brain network architecture in patients with schizophrenia: a meta-analysis. Schizophr Bull 2016; 42: S13–21.
    1. Kaufman J, Schweder AE. The schedule for affective disorders and schizophrenia for school age children: present and lifetime version (K-SADS-PL) In: Hersen M, Segal DM, Hilsenroth M, editors. The comprehensive handbook of psychological assessment (CHOPA), volume 2: personality assessment. New York: John Wiley and Sons; 2003.
    1. Kawamoto T, Rosvall M. Estimating the resolution limit of the map equation in community detection. Phys Rev E Stat Nonlin Soft Matter Phys 2015; 91: 012809.
    1. Kong XZ, Boedhoe PSW, Abe Y, Alonso P, Ameis SH, Arnold PD, et al.Mapping cortical and subcortical asymmetry in obsessive-compulsive disorder: findings from the ENIGMA Consortium. Biol Psychiatry 2019; pii: S0006-3223(19)31292-2.
    1. Kremen WS, Fennema-Notestine C, Eyler LT, Panizzon MS, Chen CH, Franz CE, et al.Genetics of brain structure: contributions from the Vietnam era twin study of aging. Am J Med Genet B Genet 2013; 162: b751–61.
    1. Krongold M, Cooper C, Bray S. Modular development of cortical gray matter across childhood and adolescence. Cereb Cortex 2017; 27: 1125–36.
    1. Lancichinetti A, Fortunato S. Community detection algorithms: a comparative analysis. Phys Rev E 2009; 80: 056117.
    1. Latora V, Marchiori M. Efficient behavior of small-world networks. Phys Rev Lett 2001; 87: 198701..
    1. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain 2014; 137 (Pt 1): 12–32.
    1. Lefort-Besnard J, Bassett DS, Smallwood J, Margulies DS, Derntl B, Gruber O, et al.Different shades of default mode disturbance in schizophrenia: subnodal covariance estimation in structure and function. Hum Brain Mapp 2018; 39: 644–61.
    1. Makowski C, Lewis JD, Lepage C, Malla AK, Joober R, Lepage M, et al.Structural associations of cortical contrast and thickness in first episode psychosis. Cerebral Cortex 2019; 29: 5009–21.
    1. Mao CV, Araujo MF, Nishimaru H, Matsumoto J, Tran AH, Hori E, et al.Pregenual anterior cingulate gyrus involvement in spontaneous social interactions in primates-evidence from behavioral, pharmacological, neuropsychiatric, and neurophysiological findings. Front Neurosci 2017; 11: 34.
    1. Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 2007; 37: 579–88.
    1. Mechelli A, Friston KJ, Frackowiak RS, Price CJ. Structural covariance in the human cortex. J Neurosci 2005; 25: 8303–10.
    1. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 2008; 32: 525–49.
    1. Milad MR, Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci 2012; 16: 43–51.
    1. Newman ME. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006; 103: 8577–82.
    1. Palaniyappan L, Marques TR, Taylor H, Mondelli V, Reinders A, Bonaccorso S, et al.Globally efficient brain organization and treatment response in psychosis: a connectomic study of gyrification. Schizophr Bull 2016; 42: 1446–56.
    1. Piras F, Piras F, Chiapponi C, Girardi P, Caltagirone C, Spalletta G. Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. Cortex 2015; 62: 89–108.
    1. Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Hum Brain Mapp 2014; 35: 2852–60.
    1. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, et al.Functional network organization of the human brain. Neuron 2011; 72: 665–78.
    1. Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE. Evidence for hubs in human functional brain networks. Neuron 2013; 79: 798–813.
    1. Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchon JM, Deus J, et al.Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry 2004; 61: 720–30.
    1. Qi T, Schaadt G, Cafiero R, Brauer J, Skeide MA, Friederici AD. The emergence of long-range language network structural covariance and language abilities. Neuroimage 2019; 191: 36–48.
    1. Raudenbush SW. Analyzing effect sizes: random effects models. New York: Russell Sage Foundation; 2009.
    1. Reess TJ, Rus OG, Gursel DA, Schmitz-Koep B, Wagner G, Berberich G, et al.Network-based decoupling of local gyrification in obsessive-compulsive disorder. Hum Brain Mapp 2018a; 39: 3216–26.
    1. Reess TJ, Rus OG, Gürsel DA, Schmitz-Koep B, Wagner G, Berberich G, et al.Network-based decoupling of local gyrification in obsessive-compulsive disorder. Hum Brain Mapp 2018b; 39: 3216–26.
    1. Reess TJ, Rus OG, Schmidt R, de Reus MA, Zaudig M, Wagner G, et al.Connectomics-based structural network alterations in obsessive-compulsive disorder. Transl Psychiatry 2016; 6: e882..
    1. Reichardt J, Bornholdt S. Statistical mechanics of community detection. Phys Rev E Stat Nonlin Soft Matter Phys 2006; 74 (Pt 2): 016110.
    1. Richmond S, Johnson KA, Seal ML, Allen NB, Whittle S. Development of brain networks and relevance of environmental and genetic factors: a systematic review. Neurosci Biobehav Rev 2016; 71: 215–39.
    1. Rosvall M, Bergstrom CT. An information-theoretic framework for resolving community structure in complex networks. Proc Natl Acad Sci USA 2007; 104: 7327–31.
    1. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 2010; 52: 1059–69.
    1. Schmaal L, Yucel M, Ellis R, Vijayakumar N, Simmons JG, Allen NB, et al.Brain structural signatures of adolescent depressive symptom trajectories: a longitudinal magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 2017; 56: 593–601.e9.
    1. Schmidt FL, Oh IS, Hayes TL. Fixed- versus random-effects models in meta-analysis: model properties and an empirical comparison of differences in results. Br J Math Stat Psychol 2009; 62 (Pt 1): 97–128.
    1. Seidlitz J, Vasa F, Shinn M, Romero-Garcia R, Whitaker KJ, Vertes PE, et al.Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 2018a; 97: 231–47.e7.
    1. Seidlitz J, Váša F, Shinn M, Romero-Garcia R, Whitaker KJ, Vértes PE, et al.Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron 2018b; 97: 231–47.e7.
    1. Sharda M, Foster NEV, Tryfon A, Doyle-Thomas KAR, Ouimet T, Anagnostou E, et al.Language ability predicts cortical structure and covariance in boys with autism spectrum disorder. Cereb Cortex 2017; 27: 1849–62.
    1. Shaw P, Sharp W, Sudre G, Wharton A, Greenstein D, Raznahan A, et al.Subcortical and cortical morphological anomalies as an endophenotype in obsessive-compulsive disorder. Mol Psychiatry 2015; 20: 224–31.
    1. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al.The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998; 59: 22–33; quiz 4-57.
    1. Shin DJ, Jung WH, He Y, Wang J, Shim G, Byun MS, et al.The effects of pharmacological treatment on functional brain connectome in obsessive-compulsive disorder. Biol Psychiatry 2014; 75: 606–14.
    1. Silverman WK, Saavedra LM, Pina AA. Test-retest reliability of anxiety symptoms and diagnoses with the Anxiety Disorders Interview Schedule for DSM-IV: child and parent versions. J Am Acad Child Adolesc Psychiatry 2001; 40: 937–44.
    1. Solé-Casals J, Serra-Grabulosa JM, Romero-Garcia R, Vilaseca G, Adan A, Vilaro N, et al.Structural brain network of gifted children has a more integrated and versatile topology. Brain Struct Funct 2019; 224: 2373–83.
    1. Soriano-Mas C, Harrison BJ. Brain functional connectivity in Obsessive-Compulsive disorder. Oxford: Oxford University Press; 2017.
    1. Soriano-Mas C, Harrison BJ, Pujol J, Lopez-Sola M, Hernandez-Ribas R, Alonso P, et al.Structural covariance of the neostriatum with regional gray matter volumes. Brain Struct Funct 2013; 218: 697–709.
    1. Spreng RN, DuPre E, Ji JL, Yang G, Diehl C, Murray JD, et al.Structural covariance reveals alterations in control and salience network integrity in chronic schizophrenia. Cereb Cortex 2019; 29: 5269–84.
    1. Subira M, Cano M, de Wit SJ, Alonso P, Cardoner N, Hoexter MQ, et al.Structural covariance of neostriatal and limbic regions in patients with obsessive-compulsive disorder. J Psychiatry Neurosci 2016; 41: 115–23.
    1. Sussman D, Leung RC, Chakravarty MM, Lerch JP, Taylor MJ. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy. Brain Behav 2016; 6: e00457..
    1. Takagi Y, Sakai Y, Lisi G, Yahata N, Abe Y, Nishida S, et al.A neural marker of obsessive-compulsive disorder from whole-brain functional connectivity. Sci Rep 2017; 7: 7538..
    1. Uehara T, Yamasaki T, Okamoto T, Koike T, Kan S, Miyauchi S, et al.Efficiency of a “small-world” brain network depends on consciousness level: a resting-state FMRI study. Cereb Cortex 2014; 24: 1529–39.
    1. Vaghi MM, Vertes PE, Kitzbichler MG, Apergis-Schoute AM, van der Flier FE, Fineberg NA, et al.Specific frontostriatal circuits for impaired cognitive flexibility and goal-directed planning in obsessive-compulsive disorder: evidence from resting-state functional connectivity. Biol Psychiatry 2017; 81: 708–17.
    1. van den Heuvel OA, van Wingen G, Soriano-Mas C, Alonso P, Chamberlain SR, Nakamae T, et al.Brain circuitry of compulsivity. Eur Neuropsychopharmacol 2016; 26: 810–27.
    1. Viechtbauer W. Conducting meta-analyses in R with the metafor Package. J Stat Soft 2010; 36: 1–48.
    1. Vijayakumar N, Allen NB, Youssef G, Dennison M, Yucel M, Simmons JG, et al.Brain development during adolescence: a mixed-longitudinal investigation of cortical thickness, surface area, and volume. Hum Brain Mapp 2016; 37: 2027–38.
    1. Vriend C, van den Heuvel OA, Berendse HW, van der Werf YD, Douw L. Global and subnetwork changes of the structural connectome in de novo Parkinson's disease. Neuroscience 2018; 386: 295–308.
    1. Vuoksimaa E, Panizzon MS, Chen CH, Fiecas M, Eyler LT, Fennema-Notestine C, et bigger always better? The importance of cortical configuration with respect to cognitive ability. Neuroimage 2016; 129: 356–66.
    1. Wannan CMJ, Cropley VL, Chakravarty MM, Bousman C, Ganella EP, Bruggemann JM, et al.Evidence for network-based cortical thickness reductions in schizophrenia. Am J Psychiatry 2019; 176: 552–63.
    1. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature 1998; 393: 440–2.
    1. Wee CY, Yap PT, Shen D. Prediction of Alzheimer's disease and mild cognitive impairment using cortical morphological patterns. Hum Brain Mapp 2013; 34: 3411–25.
    1. Weinberg D, Lenroot R, Jacomb I, Allen K, Bruggemann J, Wells R, et al.Cognitive subtypes of schizophrenia characterized by differential brain volumetric reductions and cognitive decline. JAMA Psychiatry 2016; 73: 1251–9.
    1. Yun JY, Jang JH, Kim SN, Jung WH, Kwon JS. Neural correlates of response to pharmacotherapy in obsessive-compulsive disorder: individualized cortical morphology-based structural covariance. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63: 126–33.
    1. Yun JY, Kim SN, Lee TY, Chon MW, Kwon JS. Individualized covariance profile of cortical morphology for auditory hallucinations in first-episode psychosis. Hum Brain Mapp 2016; 37: 1051–65.
    1. Zaremba D, Dohm K, Redlich R, Grotegerd D, Strojny R, Meinert S, et al.Association of brain cortical changes with relapse in patients with major depressive disorder. JAMA Psychiatry 2018; 75: 484–92.
    1. Zhang T, Wang J, Yang Y, Wu Q, Li B, Chen L, et al.Abnormal small-world architecture of top-down control networks in obsessive-compulsive disorder. J Psychiatry Neurosci 2011; 36: 23–31.
    1. Zhong Z, Zhao T, Luo J, Guo Z, Guo M, Li P, et al.Abnormal topological organization in white matter structural networks revealed by diffusion tensor tractography in unmedicated patients with obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51: 39–50.
    1. Zielinski BA, Gennatas ED, Zhou J, Seeley WW. Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA 2010; 107: 18191–6.

Source: PubMed

3
Předplatit