Myths and Misconceptions of Airway Pressure Release Ventilation: Getting Past the Noise and on to the Signal

Penny Andrews, Joseph Shiber, Maria Madden, Gary F Nieman, Luigi Camporota, Nader M Habashi, Penny Andrews, Joseph Shiber, Maria Madden, Gary F Nieman, Luigi Camporota, Nader M Habashi

Abstract

In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.

Keywords: APRV; TCAV; airway pressure release ventilation (APRV); myth; time controlled adaptive ventilation.

Conflict of interest statement

NH has patents in the field of mechanical ventilation including APRV. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Andrews, Shiber, Madden, Nieman, Camporota and Habashi.

Figures

FIGURE 1
FIGURE 1
Data from the original ARMA Trial shows correlation between tidal volume (VT) and respiratory system compliance (CRS) of individual patients on mortality. Using the volume assist control mode a lower VT reduced mortality with low CRS where a higher VT increased mortality in patients with high CRS. (Deans et al., 2005).
FIGURE 2
FIGURE 2
Airway Pressure Release Ventilation (APRV) Pressure/Time waveforms from 4 studies: (A)Stock et al., 1987 set time at PLow (TLow) of 1.27s (Stock et al., 1987); (B) Davis et al., 1993 used an increased inspiratory to expiratory ratio (Davis et al., 1993); (C) Gama de Abreau 2010 simulated conventional ventilation (Gama de Abreau 2010); (D)Roy et al., 2013a used the Time Controlled Adaptive Ventilation method (Roy SK. et al., 2013). This illustrates the wide variability in methods used to set APRV, which may dramatically impact outcome (Jain et al., 2016).
FIGURE 3
FIGURE 3
Airway Pressure Release Ventilation (APRV) is a pressure-limited, time-cycled mode. The Time Controlled Adaptive Ventilation (TCAVTM) method of setting the APRV mode includes the following settings: 1) upper airway pressure (PHigh); 2) lower airway pressure (PLow); 3) time spent at PHigh (THigh); and 4) time spent at PLow (TLow). Combined, PHigh and THigh form the continuous positive airway pressure (CPAP) Phase and impact end-inspiratory lung volume. The CPAP Phase releases to the combined PLow and TLow, which form the Release Phase and impact end-expiratory lung volume. During the TCAVTM method of APRV, the ventilator cycles between the CPAP and Release Phases. During the release phase, the TLow set to terminate at 75% of the peak expiratory flow rate halts alveolar instability. Subsequently, the CPAP Phase maintains alveolar stability and recruits lung volume over time (hours to days).
FIGURE 4
FIGURE 4
(A) Microstrain vs alveolar air space occupancy (Aa) at inspiration. The dashed line shows the difference in Aa between airway pressure release ventilation (APRV) and controlled mandatory ventilation. (B) Normalized pressure-time profile over a minute vs Aa at inspiration. PEEP indicates positive end-expiratory pressure and % for APRV indicate ratio of termination of peak expiratory flow rate to peak expiratory flow rate.
FIGURE 5
FIGURE 5
The Airway Pressure Release Ventilation (APRV) 75% group produced the greatest alveolar air space occupancy (Aa) at both inspiration and expiration (I/E), with values similar to control (p > 0.05) and resulted in the least conducting airway micro-strain. The conducting airway air space occupancy (Ca) to alveolar air space occupancy Aa, Ca/Aa at I/E, closely matched uninjured normal lung terminal airway gas distribution. The APRV 10% (TLow extended) group had the least Aa at both I/E and the greatest conducting airway micro-strain suggesting precise control of time is critical. In the conventional mechanical ventilation group increasing PEEP from 5 to 16 cmH2O resulted in a greater degree of Ca rather than increasing Aa at I/E, suggesting increasing levels of PEEP primarily distend conducting airways rather than recruit alveolar gas and unable to restore the normal lung Ca/Aa.
FIGURE 6
FIGURE 6
Histogram overlying normal and injury alveolar area and frequency of distribution reflecting alveolar heterogeneity post lung injury. (A,B) show inspiration histogram with normal pre-injury (blue line) where remainder lines are post-injury demonstrating APRV normalizes post-injury heterogeneity. The LVT group showing VT with various positive end-expiratory pressure (PEEP) levels (5 to 24 cmH2O) was not able to restore pre-injury homogeneity. (C,D) show expiration histogram with normal pre-injury (blue line) where remainder are post-injury demonstrating APRV normalizes post-injury heterogeneity. The LVT group with various PEEP levels was not able to restore pre-injury.
FIGURE 7
FIGURE 7
(A) In vivo photomicrographs at inspiration and expiration (I/E) left to right: 1) positive end-expiratory pressure (PEEP) 5 cmH2O; 2) airway pressure release ventilation (APRV) ratio of termination of peak expiratory flow rate (EFT) to peak expiratory flow rate (EFP) of 10%; 3) PEEP 16 cm H2O; and 4) APRV EFT/EFP 75% (original magnification ×10). Alveoli (yellow) and nonalveolar tissue (red). (B), Alveolar air space occupancy is conveyed as a percentage of the photomicrograph containing inflated alveoli (yellow in A) at I/E. Data are shown as the mean; error bars indicate standard error of the mean. A) P<.0—PEEP 5 cmH2O vs EFT/EFP 10%; B) P<.05—PEEP 16 cmH2O vs EFT/EFP 75. Alveolar occupancy I/E shows that APRV 75% has the greatest number of open airspaces with inspiration, which is nearly double that of PEEP 16 cmH2O and least loss of open airspace during exhalation resulting a less than 5% alveolar volume change between I/E. This results in the lowest micro-strain with APRV 75%.
FIGURE 8
FIGURE 8
(A,C)—As TLow is adjusted towards 75% termination of peak expiratory flow rate (EFT) to peak expiratory flow rate (EFP), alveolar tidal volume (VT) decreases despite tracheal volume 11 mL/kg. (B,D) with low VT strategy, the opposite is true despite 6 ml/kg tracheal VT with higher alveolar VT. At peep of 10 cmH2O, the alveolar VT and a tracheal VT of 6 ml/kg is more that 3 times higher than alveolar VT with APRV 75 % despite a tracheal VT of 11 ml/kg.
FIGURE 9
FIGURE 9
Ventilator set in the Bi-Vent (APRV) Mode. (A) TLow set to 0.5 s and release time is 0.5 s with VTe 539 ml. (B) TLow (release time) is kicking out to 1.0 s despite being set at 0.5 s with dramatically increased to VTe 1024 ml. This occurs in ventilators that allow pressure support (inherent trigger and trigger windows) to be added on top of the PHigh.
FIGURE 10
FIGURE 10
Pulmonary vascular resistance (PVR) is at its lowest at functional residual capacity (FRC). At extremes of lung volume from residual volume (RV) to total lung capacity (TLC), PVR is increased, thereby increasing RV afterload.
FIGURE 11
FIGURE 11
(A) Conventional volume assist control (VAC) mode with a set respiratory rate (RR) of 16 and inspiratory to expiratory (I:E) ratio of 1:3.2. (B) Same patient transitioned to BiLevel (APRV) with same rate and TLow set to 0.32 s to terminate at 75% of peak expiratory flow rate (EFT/EFP) yields an I:E ratio of 11:1. Note also that at EFT/EFP 75%, the tidal volumes decreased from 408 to 308 ml to match current CRS.
FIGURE 12
FIGURE 12
Passive exhalation to determine lung mechanics in APRV - The Time Controlled Adaptive Ventilation (TCAVTM) method of Airway Pressure Release Ventilation (APRV) uses the slope of the expiratory flow curve of passive exhalation to determine respiratory mechanics. Example (A) (left) is a patient with high elastance of the respiratory system (ERS) denoted by the expiratory flow rate >50 liters/minute and the acute slope deceleration angle. The slope deceleration is affected by inspiratory lung volume and downstream resistance (native and artificial airways and PLow >0 cmH2O). Changes in ERS (i.e., recoil force per unit of volume) or increase in airway resistance (airflow limitations) alters peak expiratory flow (EFP) and slope angle. The TLow with high ERS is adjusted to terminate the expiratory flow (EFT) at 75% of the peak expiratory flow (EFP). End-expiratory lung volume (EELV) is controlled through precise and personalized adjustment of flow-time as an integral of volume. Because personalization of the TLow is adjusted based on elastic recoil of the lung and ERS, it should not be adjusted to achieve tidal volume (VT) or control PaCO2. The 75 EFT/EFP has be calibrated experimentally, validated clinically, and shown to optimize EELV, prevent airway closure and lower lung strain in lungs with normal to increased ERS. Example (B) (right) is a patient with low ERS, low recoil forces and high resistance denoted by the expiratory flow rate <20 liters/minute and the less acute slope deceleration angle where the TLow is adjusted to achieve 25% of EFT/EFP, which has been calibrated to decrease alveolar heterogeneity, lung inflammation, edema, and gene expression of biological markers related to ventilator induced lung injury and improve right ventricular performance by personalizing a COPD model.
FIGURE 13
FIGURE 13
TLow setting in patient with acute bronchospasm (status asthmaticus). Bedside monitoring of airflow limitations with real-time TLow adjustments with airway pressure release ventilation (APRV) BI-VENT in a patient with active bronchospasm (A) Volume Control mode where intrinsic dynamic (Dyn) positive end expiratory pressure (PEEP) is not seen in the expiratory flow waveform (B) Mode changed to BI-VENT/APRV with peak expiratory flow rate (EFP) measured -20 L/min, which is consistent with severe airflow limitation. Note, EFP is measured at onset of deceleration and not artifact from immediate loss circuit gas compression. TLow is adjusted to 0.95 s targeting termination of flow rate (EFT) >25% to <50% for patients with airflow limitations. (C) Resolving acute bronchospasm, EFP is nearly 70 l/min allowing TLow to be decreased to 0.8 seconds while continuing to target EFT/EFP >25% to <50%. (D) Continued improvement of bronchospasm where EFP is nearly 80 l/min allowing TLow to be decreased to 0.7 s while continuing to target EFT/EFP >25% to <50%. Progressive increase in tidal volume and minute ventilation allows gradual reduction of PHigh (not shown). Note, this ventilator does not allow a PLow of 0 cmH2O with 1 cmH2O the lowest setting possible.
FIGURE 14
FIGURE 14
Peak inspiratory flow (IPF), peak expiratory flow (EPF), and proximal mucus movement for experimental groups comparing Airway Pressure Release Ventilation (APRV) and Low Tidal Volume (LVT). Orange and blue colored bars demonstrate the IPF and EPF respectively (left vertical axis). Proximal mucus movement is denoted by the dotted line connecting data points (vertical axis). TCAV protocol groups 1, 2, and 3 used APRV with varying PLow (standard APRV-TCAVTM with 0 cmH2O) and 5 and 10 cmH2O, respectively. The ARDSNet LVT groups 4, 5, and 6 varied positive end expiratory pressure (PEEP) settings of 0, 10 and 20 cmH2O, respectively.

References

    1. Aboab J., Niklason L., Uttman L., Brochard L., Jonson B. (2012). Dead space and CO elimination related to pattern of inspiratory gas delivery in ARDS patients. Crit. Care 16 (2), R39. 10.1186/cc11232
    1. Abrams D., Agerstrand C., Beitler J. R., Karagiannidis C., Madahar P., Yip N. H., et al. (2022). Risks and benefits of ultra-lung-protective invasive mechanical ventilation strategies with a focus on extracorporeal support. Am. J. Respir. Crit. Care Med. 205 (8), 873–882. 10.1164/rccm.202110-2252CP
    1. Agostoni E., Hyatt R. E. (1986). “Static behavior of the respiratory system,” in Handbook of physiology, section 3: The respiratory system, volume III. Editor Fishman A. P. (Bethesda, MD: Am Physiological Society; ), 113–130.
    1. Agostoni E., Mead J. (1973). “Statics of the respiratory system,” in Handbook of physiology. Editors Fenn W. O., Rahn H. (Washington, DC: American Physiological Society; ), 387e409.
    1. Al-khalisy H. M., Trikha G., Amzuta I., Modi R., Masuta P., Kollisch M., et al. (2020). Rapid liberation from extracorporeal membrane oxygenation (ECMO) using time controlled adaptive ventilation (TCAV) method. Am. J. Respir. Crit. Care Med. 201, A5189.
    1. Albert R. K. (2022). Constant vt ventilation and surfactant dysfunction: An overlooked cause of ventilator-induced lung injury. Am. J. Respir. Crit. Care Med. 205 (2), 152–160. 10.1164/rccm.202107-1690CP
    1. Albert R. K. (2012). The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 185 (7), 702–708. 10.1164/rccm.201109-1667PP
    1. Albert S. P., DiRocco J., Allen G. R., Bates J. H. T., Lafollette R., Kubiak B. D., et al. (2009). The role of time and pressure on alveolar recruitment. J. Appl. Physiol. 106, 757–765. 10.1152/japplphysiol.90735.2008
    1. Algera A. G., Pisani L., de Freitas Chaves R. C., Chaves Amorim T., Cherpanath T., Determann R., et al. (2018). Effects of peep on lung injury, pulmonary function, systemic circulation and mortality in animals with uninjured lungs—a systematic review. Ann. Transl. Med. 6 (2), 25. 10.21037/atm.2017.12.05
    1. Allen G., Lundblad L. K., Parsons P., Bates J. H. (2002). Transient mechanical benefits of a deep inflation in the injured mouse lung. J. Appl. Physiol. 93, 1709–1715. 10.1152/japplphysiol.00473.2002
    1. Allen G., Bates J. H. T. (2004). Dynamic mechanical consequences of deep inflation in mice depend on type and degree of lung injury. J. Appl. Physiol. 96, 293–300. 10.1152/japplphysiol.00270.2003
    1. Allen G. B., Pavone L. A., DiRocco J. D., Bates J. H., Nieman G. F. (2005). Pulmonary impedance and alveolar instability during injurious ventilation in rats. J. Appl. Physiol. 99, 723–730. 10.1152/japplphysiol.01339.2004
    1. Amato M. B. P., Meade M. O., Slutsky A. S., Brochard L., Costa E. L. V., Schoenfeld D. A., et al. (2015). Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. Overseas. Ed. 372 (8), 747–755. 10.1056/nejmsa1410639
    1. Andrews P. L., Sadowitz B., Kollisch-Singule M., Satalin J., Roy S., Snyder K., et al. (2015). Alveolar instability (atelectrauma) is not identified by arterial oxygenation predisposing the development of an occult ventilator-induced lung injury. Intensive Care Med. Exp. 3, 54. 10.1186/s40635-015-0054-1
    1. Andrews P., Madden M. G., Satalin J., Nieman G. F., Habashi N. M. (2019). Comparing driving pressures in airway pressure release ventilation in trauma intensive care unit patients. Am. J. Resp. Crit. Care Med. 199, A1659.
    1. Andrews P., Scalea T., Habashi N. (2013a). What’s in a name? Mechanical ventilation is at the mercy of the operator. J. Trauma Acute Care Surg. 74 (5), 1377–1378. 10.1097/TA.0b013e31828b7da5
    1. Andrews P., Shiber J., Jaruga-Killeen E., Roy S., Sadowitz B., O’Toole R. V., et al. (2013b). Early application of airway pressure release ventilation may reduce mortality in high-risk trauma patients: A systematic review of observational trauma ARDS literature. J. Trauma Acute Care Surg. 75, 635–641. 10.1097/TA.0b013e31829d3504
    1. Anzueto A., Frutos-Vivar F., Esteban A., Alia I., Brochard L., Steward T., et al. (2004). Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med. 30, 612–619. 10.1007/s00134-004-2187-7
    1. ARDS Definition Task Force (2012). Acute respiratory distress syndrome: The Berlin definition. JAMA 307 (23), 2526–2533. 10.1001/jama.2012.5669
    1. ARDSnet (2000). Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome Network. N. Engl. J. Med. 342, 1301–1308.
    1. Ashutosh K., Keighley J. F. (1978). Passive expiration as a test of lung function. Thorax 33, 740–746. 10.1136/thx.33.6.740
    1. Barthélémy R., Beaucoté V., Bordier R., Collet M., Le Gall A., Hong A., et al. (2021). Haemodynamic impact of positive end-expiratory pressure in SARS-cov-2 acute respiratory distress syndrome: Oxygenation versus oxygen delivery. Br. J. Anaesth. 126, e70–e72. 10.1016/j.bja.2020.10.026
    1. Batchinsky A. I., Burkett S. E., Zanders T. B., Chung K. K., Regn D. D., Jordan B. S., et al. (2011). Comparison of airway pressure release ventilation to conventional mechanical ventilation in the early management of smoke inhalation injury in swine. Crit. Care Med. 39 (10), 2314–2321. 10.1097/CCM.0b013e318225b5b3
    1. Bates J. H. T., Gaver D. P., Habashi N. M., Nieman G. F. (2020). Atelectrauma versus volutrauma: A tale of two time-constants. Crit. Care Explor. 2, e0299. 10.1097/CCE.0000000000000299
    1. Bates J. H. T., Ludwig M. S., Sly P. D., Brown K., Martin J. G., Fredberg J. J., et al. (1988). Interrupter resistance elucidated by alveolar pressure measurement in open-chest normal dogs. J. Appl. Physiol. 65, 408–414. 10.1152/jappl.1988.65.1.408
    1. Bates J. H. T., Smith B. J. (2018). Ventilator-induced lung injury and lung mechanics. Ann. Transl. Med. 6 (19), 378. 10.21037/atm.2018.06.29
    1. Baumgardner J. E. (2019). Airway) closure, at last. Crit. Care Med. 47 (9), 1281–1282. 10.1097/CCM.0000000000003883
    1. Baydur A., Carlson M. (1994). Respiratory mechanics by the passive relaxation technique in conscious healthy adults and patients with restrictive respiratory disorders. Chest 105, 1171–1178. 10.1378/chest.105.4.1171
    1. Behrakis P. K., Higgs B. D., Baydur A., Zin W. A., Milic-Emili J. (1983). Respiratory mechanics during halothane anesthesia and anesthesia-paralysis in humans. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55, 1085–1092. 10.1152/jappl.1983.55.4.1085
    1. Bellani G., Guerra L., Musch G., Zanella A., Patroniti N., Mauri T., et al. (2011). Lung regional metabolic activity and gas volume changes induced by tidal ventilation in patients with acute lung injury. Am. J. Respir. Crit. Care Med. 183 (9), 1193–1199. 10.1164/rccm.201008-1318OC
    1. Bellani G., Laffey J. G., Pham T., Fan E., Brochard L., Esteban A., et al. (2016). Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315 (8), 788–800. 10.1001/jama.2016.0291
    1. Belletti A., Todaro G., Valsecchi G., Losiggio R., Palumbo D., Landoni G., et al. (2022). Barotrauma in coronavirus disease 2019 patients undergoing invasive mechanical ventilation: A systematic literature review. Crit. Care Med. 50 (3), 491–500. 10.1097/CCM.0000000000005283
    1. Bergman N. A. (1972). Intrapulmonary gas trapping during mechanical ventilation at rapid frequencies. Anesthesiology 37 (6), 626–633. 10.1097/00000542-197212000-00011
    1. Bergman N. A. (1966). Measurement of respiratory resistance in anesthetized subjects. J. Appl. Physiol. 21, 1913–1917. 10.1152/jappl.1966.21.6.1913
    1. Bikker I. G., Van Bommel J., Reis Miranda D., Bakker J., Gommers D. (2008). End-expiratory lung volume during mechanical ventilation: A comparison with reference values and the effect of positive end-expiratory pressure in intensive care unit patients with different lung conditions. Crit. Care 12 (6), R145. 10.1186/cc7125
    1. Boehme S., Bentley A. H., Hartmann E. K., Chang S., Erdoes G., Prinzing A., et al. (2015). Influence of inspiration to expiration ratio on cyclic recruitment and derecruitment of atelectasis in a saline lavage model of acute respiratory distress syndrome. Crit. Care Med. 43, e65–e74. 10.1097/CCM.0000000000000788
    1. Boissier F., Katsahian S., Razazi K., Thille A. W., Roche-Campo F., Leon R., et al. (2013). Prevalence and prognosis of cor pulmonale during protective ventilation for acute respiratory distress syndrome. Int. Care Med., 39, 1725–1733.
    1. Bratzke E., Downs J. B., Smith R. A. (1998). Intermittent CPAP: A new mode of ventilation during general anesthesia. Anesthesiology 89 (2), 334–340. 10.1097/00000542-199808000-00008
    1. Braun N. M., Arora N. S., Rochester D. F. (1982). Force-length relationship of the normal human diaphragm. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 53 (2), 405–412. 10.1152/jappl.1982.53.2.405
    1. Brochard L., Roudot-Thoraval F., Roupie E., Delclaux C., Chastre J., Fernandez-Mondejar E., et al. (1998). Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The multicenter trail group on tidal volume reduction in ARDS. Am. J. Respir. Crit. Care Med. 158, 1831–1838. 10.1164/ajrccm.158.6.9801044
    1. Brochard L., Slutsky A., Pesenti A. (2017). Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am. J. Respir. Crit. Care Med. 195 (4), 438–442. 10.1164/rccm.201605-1081CP
    1. Broche L., Pisa P., Porra L., Degrugilliers L., Bravin A., Pellegrini M., et al. (2019). Individual airway closure characterized in vivo by phase-contrast CT imaging in injured rabbit lung. Crit. Care Med. 47, e774–e781. 10.1097/CCM.0000000000003838
    1. Brody A. W., DuBois A. B. (1956). Determination of tissue, airway and total resistance to respiration in cats. J. Appl. Physiol. 9, 213–218. 10.1152/jappl.1956.9.2.213
    1. Brody W. (1954). Mechanical compliance and resistance of the lung-thorax calculated from the flow recorded during passive expiration. Am. J. Physiol. 178, 189–196. 10.1152/ajplegacy.1954.178.2.189
    1. Brower R. G., Lanken P. N., MacIntyre N., Matthay M. A., Morris A., Ancukiewicz M., et al. (2004). Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 351 (4), 327–336. 10.1056/NEJMoa032193
    1. Brower R. G., Shanholtz C. B., Fessler H. E., Shade D. M., White P., Wiener C. M., et al. (1999). Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit. Care Med. 27, 1492–1498. 10.1097/00003246-199908000-00015
    1. Brunner J., Laubscher T., Banner M., Lott G., Braschi A. (1995). Simple method to measure total expiratory time constant based on the passive expiratory flow-volume curve. Crit. Care Med. 23 (6), 1117–1122. 10.1097/00003246-199506000-00019
    1. Chao D. C., Scheinhorn D. J., Stearn-Hassenpflug M. (1997). Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest 112 (6), 1592–1599. 10.1378/chest.112.6.1592
    1. Cavalcanti A. B., Suzumura E. A., Laranjeira L. N., de Moraes Paisani D., Damiani L., Guimaraes H. P., et al. (2017). Effect of lung recruitment and titrated positive end-expiratory pressure (peep) vs low peep on mortality in patients with acute respiratory distress syndrome: A randomized clinical trial. JAMA 318 (14), 1335–1345. 10.1001/jama.2017.14171
    1. Ceruti S., Roncador M., Saporito A., Biggiogero M., Glotta A., Maida P. A., et al. (2021). Low PEEP mechanical ventilation and PaO2/FiO2 ratio evolution in COVID-19 patients. SN Compr. Clin. Med. 3, 2435–2442. 10.1007/s42399-021-01031-x
    1. Chatburn R. L., Kallet R. H., Sasidhar M. (2016). Airway pressure release ventilation may result in occult atelectrauma in severe ARDS. Respir. Care 61 (9), 1278–1280. 10.4187/respcare.05099
    1. Chen L. L., Mead E., Gale M. J. (2017). A patient on airway pressure release ventilation with sudden hemodynamic collapse. Chest 1521 (1), e7–e9. 10.1016/j.chest.2017.01.041
    1. Cheng J., Ma A., Dong M., Zhou Y., Wang B., Xue Y., et al. (2022). Does airway pressure release ventilation offer new hope for treating acute respiratory distress syndrome? J. Intensive Med. 16, 15. 10.1016/j.jointm.2022.02.003
    1. Chiumello D., Carlesso E., Cadringher P., Caironi P., Valenza F., Polli F., et al. (2008). Lung stress and strain during mechanical ventilation for acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 178 (4), 346–355. 10.1164/rccm.200710-1589OC
    1. Comroe J. H., Nisell O. I., Nims R. G. (1954). A simple method for concurrent measurement of compliance and resistance to breathing in anesthetized animals and man. J. Appl. Physiol. 7, 225–228. 10.1152/jappl.1954.7.2.225
    1. Costa E. L. V., Slutsky A. S., Brochard L. J., Brower R., Serpa-Neto A., Cavalcanti A. B., et al. (2021). Ventilatory variables and mechanical power in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 204 (3), 303–311. 10.1164/rccm.202009-3467OC
    1. Daoud E., Farag H., Chatburn R. (2012). Airway pressure release ventilation: What do we know? Respir. Care 57 (2), 282–292. 10.4187/respcare.01238
    1. Daxon B. (2018). Concerns over airway pressure release ventilation management in children with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 198 (11), 1458–1459. 10.1164/rccm.201806-1164LE
    1. de Durante G., del Turco M., Rustichini L., Cosimini P., Giunta F., Hudson L. D., et al. (2002). ARDSNet lower tidal volume ventilatory strategy may generate intrinsic positive end-expiratory pressure in patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. (165), 1271–1274. 10.1164/rccm.2105050
    1. de Magalhães R. F., Cruz D. G., Antunes M. A., de S., Fernandes M. V., Oliveira M. V., et al. (2021). Time-controlled adaptive ventilation versus volume-controlled ventilation in experimental pneumonia. Crit. Care Med. 49 (1), 140–150. 10.1097/CCM.0000000000004675
    1. de Prost N., Roux D., Dreyfuss D., Ricard J. D., Le Guludec D., Saumon G., et al. (2007). Alveolar edema dispersion and alveolar protein permeability during high volume ventilation: Effect of positive end-expiratory pressure. Intensive Care Med. 33, 711–717. 10.1007/s00134-007-0575-5
    1. Deans K. J., Minneci P. C., Zizhong C., Banks S. M., Natanson C., Eichacker P. Q., et al. (2005). Mechanical ventilation in ARDS: One size does not fit all. Crit. Care Med. 33 (5), 1141–1143. 10.1097/01.CCM.0000162384.71993.A3
    1. Dempsey J. (1994). Regulation of breathing. 2nd ed. Boca Raton, FL: CRC Press.
    1. Dennesen P., Veerman E., van Nieuw Amerongen A., Jacobs J., Kessels A., van der Keybus P., et al. (2003). High levels of sulfated mucins in bronchoalveolar lavage fluid of ICU patients with ventilator-associated pneumonia. Intensive Care Med. 29, 715–719. 10.1007/s00134-003-1701-7
    1. Dianti J., Tisminetzky M., Ferreyro B. L., Englesakis M., Del Sorbo L., Sud S., et al. (2022). Association of positive end-expiratory pressure and lung recruitment selection strategies with mortality in acute respiratory distress syndrome: A systematic review and Network meta-analysis. Am. J. Respir. Crit. Care Med. 205, 1300–1310. Online ahead of print. 10.1164/rccm.202108-1972OC
    1. Dixon W. E., Brodie G. (1903). The paralysis of nerve cells and nerve endings with special reference to the alkaloid apocodeine. J. Physiol. 29 (2), 97–131. 10.1113/jphysiol.1903.sp000984
    1. Dominelli P. B., Molgat-Seon Y., Bingham D., Swartz P. M., Road J. D., Foster G. E., et al. (1985). Dysanapsis and the resistive work of breathing during exercise in healthy men and women. J. Appl. Physiol. 119 (10), 1105–1113. 10.1152/japplphysiol.00409.2015
    1. Dres M., Similowski T., Goligher E. C., Pham T., Sergenyuk L., Telias I., et al. (2021). Dyspnoea and respiratory muscle ultrasound to predict extubation failure. Eur. Respir. J. 58, 2100002. 10.1183/13993003.00002-2021
    1. Dries D. J., Marini J. J. (2009). Airway pressure release ventilation. J. Burn Care Res. 30, 929–936. 10.1097/BCR.0b013e3181bfb84c
    1. Duggan M., McCaul C. L., McNamara P. J., Engelberts D., Ackerley C., Kavanagh B. P., et al. (2003). Atelectasis causes vascular leak and lethal right ventricular failure in uninjured rat lungs. Am. J. Respir. Crit. Care Med. 167, 1633–1640. 10.1164/rccm.200210-1215OC
    1. Emr B., Gatto L., Roy S., Satalin J., Ghosh A., Snyder K., et al. (2013). Airway pressure release ventilation prevents ventilator-induced lung injury in normal lungs. JAMA Surg. 148, 1005–1012. 10.1001/jamasurg.2013.3746
    1. Engel L., Menkes L., Wood L., Utz G., Jourbert J., Macklem P., et al. (1973). Gas mixing during breath holding studied by intrapulmonary gas sampling. J. Appl. Physiol. 35 (1), 9–17. 10.1152/jappl.1973.35.1.9
    1. Esan A., Hess D., Raoof S., George L., Sessler C. N. (2010). Severe hypoxemic respiratory failure; Part 1-ventilatory strategies. Chest 137 (5), 1203–1216. 10.1378/chest.09-2415
    1. Falkenhain S. K., Reilley T. E., Gregory J. S. (1992). Improvement in cardiac output during airway pressure release ventilation. Crit. Care Med. 20 (9), 1358–1360. 10.1097/00003246-199209000-00027
    1. Fan E., Del Sorbo L., Goligher E. C., Hodgson C. L., Munshi L., Walkey A. J., et al. (2017). An official American thoracic society/European society of intensive care medicine/society of critical care medicine clinical practice guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 195, 1253–1263. 10.1164/rccm.201703-0548ST
    1. Ferguson N. D., Cook D. J., Guyatt G. H., Mehta S., Hand L., Austin P., et al. (2013). High-frequency oscillation in early acute respiratory distress syndrome. N. Engl. J. Med. 368, 795–805. 10.1056/NEJMoa1215554
    1. Fessler H. E., Brower R. G., Permutt S. (1995). CPAP reduces inspiratory work more than dyspnea during hyperinflation with intrinsic PEEP. Chest 108, 432–440. 10.1378/chest.108.2.432
    1. Fessler H. E., Brower R. G., Shapiro E. P., Permutt S. (1993). Effects of positive end-expiratory pressure and body position on pressure in the thoracic great veins. Am. Rev. Respir. Dis. 148 (1), 1657–1664. 10.1164/ajrccm/148.6_Pt_1.1657
    1. Fessler H. E., Brower R. G., Wise R. A., Permutt S. (1989). Effects of positive end-expiratory pressure on the gradient for venous return. Am. Rev. Respir. Dis. 143 (1), 19–24. 10.1164/ajrccm/143.1.19
    1. Fick A. (1855). V. On liquid diffusion . Lond. Edinb. Dublin Philosophical Mag. J. Sci. 10, 30–39. 10.1080/14786445508641925
    1. Foster K. N., Buchanan D., Durr T., Richey K. J. (2021). 14 Use of airway pressure relief ventilation (APRV) in burn patients with and without inhalation injury. J. Burn Care Res. 41 (1), S15–S16. 10.1093/jbcr/irab032.019
    1. Fredberg J. (1980). Augmented diffusion in the airways can support pulmonary gas exchange. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 49 (2), 232–238. 10.1152/jappl.1980.49.2.232
    1. Fukuchi Y., Roussos C., Macklem P., Engel L. (1976). Convection, diffusion and cardiogenic mixing of inspired gas in the lung; an experimental approach. Respir. Physiol. 26 (1), 77–90. 10.1016/0034-5687(76)90053-0
    1. Fuleihan S., Wilson R., Pontoppidan H. (1976). Effect of mechanical ventilation with end inspiratory pause on blood gas exchange. Anesth. Analg. 55 (1), 122–130. 10.1213/00000539-197601000-00034
    1. Gaar K. A., Taylor A. E., Owens L. J., Guyton A. C. (1967). Pulmonary capillary pressure and filtration coefficient in the isolated perfused lung. Am. J. Physiol. 213, 910–914. 10.1152/ajplegacy.1967.213.4.910
    1. Ganesan S. L., Jayashree M., Singhi S. C., Bansal A. (2018). Airway pressure release ventilation in pediatric acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 198 (9), 1199–1207.
    1. Gattinoni L., Chiumello D., Caironi P., Busana M., Romitti F., Brazzi L., et al. (2020b). COVID-19 pneumonia: Different respiratory treatments for different phenotypes? Intensive Care Med. 46, 1099–1102. 10.1007/s00134-020-06033-2
    1. Gattinoni L., Chiumello D., Rossi S. (2020a). COVID-19. Pneumonia: ARDS or not? Crit. Care 24, 154. 10.1186/s13054-020-02880-z
    1. Gattinoni L., Tonetti T., Cressoni M., Cadringher P., Hermmann P., Moerer O., et al. (2016). Ventilator-related causes of lung injury: The mechanical power. Intensive Care Med. 42 (10), 1567–1575. 10.1007/s00134-016-4505-2
    1. Gazivoda V. P., Ibrahim M., Kangas-Dick A., Sun A., Silver M., Wiesel O., et al. (2021). Outcomes of barotrauma in critically ill COVID-19 patients with severe pneumonia. J. Intensive Care Med. 36 (10), 1176–1183. 10.1177/08850666211023360
    1. Ge H., Lin L., Xu Y., Xu P., Duan K., Pan Q., et al. (2021). Airway pressure release ventilation mode improves circulatory and respiratory function in patients after cardiopulmonary bypass, a randomized trial. Front. Physiol. 12, 684927. 10.3389/fphys.2021.684927
    1. Gherini S., Peters R. M., Virgilio R. W. (1979). Mechanical work on the lungs and work of breathing with positive end-expiratory pressure and continuous positive airway pressure. Chest 76 (3), 251–256. 10.1378/chest.76.3.251
    1. Goligher E. C., Costa E. L. V., Yarnell C. J., Brochard L. J., Stewart T. E., Tomlinson G., et al. (2021). Effect of lowering VT on mortality in acute respiratory distress syndrome varies with respiratory system elastance. Am. J. Respir. Crit. Care Med. 203 (11), 1378–1385. 10.1164/rccm.202009-3536OC
    1. Goligher E. C., Dres M., Bhakti P. K., Sahetya S. K., Beitler J. R., Telias I., et al. (2020). Lung- and diaphragm -protective ventilation. Am. J. Respir. Crit. Care Med. 202 (7), 950–961. 10.1164/rccm.202003-0655CP
    1. Goligher E. C., Dres M., Fan E., Rubenfeld G. D., Scales D. C., Herridge M. S., et al. (2018). Mechanical ventilation–induced diaphragm atrophy strongly impacts clinical outcomes. Am. J. Respir. Crit. Care Med. 197, 204–213. 10.1164/rccm.201703-0536OC
    1. Goligher E. C., Fan E., Herridge M. S., Murray A., Vorona S., Brace D., et al. (2015). Evolution of diaphragm thickness during mechanical ventilation: Impact of inspiratory effort. Am. J. Respir. Crit. Care Med. 192, 1080–1088. 10.1164/rccm.201503-0620OC
    1. Goligher E. C., Ferguson N. D., Kenny L. P. (2012). Core competency in mechanical ventilation: Development of educational objectives using the delphi technique. Crit. Care Med. 40, 2828–2832. 10.1097/CCM.0b013e31825bc695
    1. Gommers D. (2014). Functional residual capacity and absolute lung volume. Curr. Opin. Crit. Care 20 (3), 347–351. 10.1097/MCC.0000000000000099
    1. González-López A., García-Prieto E., Batalla-Solís B., Amado-Rodríguez L., Avello N., Blanch L., et al. (2012). Lung strain and biological response in mechanically ventilated patients. Intensive Care Med. 38 (2), 240–247. 10.1007/s00134-011-2403-1
    1. Gottfried Stewart B., Rossi A., Higgs B. D., Calverley P. M., Zocchi L., Bozic C., et al. (1985). Noninvasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure. Am. Rev. Respir. Dis. 131 3, 414–420. 10.1164/arrd.1985.131.3.414
    1. Gottfried S. (1991). “The role of PEEP in the mechanically ventilated COPD patient,” in Ventilatory failure (Berlin: Springer-Verlag; ), 392–418. 10.1007/978-3-642-84554-3_23
    1. Govindarajulu U. S., Stillo M., Goldfarb D., Matheny M. E., Resnic F. S. (2017). Learning curve estimation in medical devices and procedures: Hierarchical modeling. Stat. Med. 36, 2764–2785. 10.1002/sim.7309
    1. Gregory G. A., Kitterman J. A., Phibbs R. H., Tooley W. H., Hamilton W. K. (1971). Treatment of the idiopathic respiratory distress syndrome with continuous positive airway pressure. N. Engl. J. Med. 284, 1333–1340. 10.1056/NEJM197106172842401
    1. Grimby G., Takishima T., Graham W., Macklem P., Mead J. (1968). Frequency dependence of flow resistance in patients with obstructive lung disease. J. Clin. Invest. 47 (6), 1455–1465. 10.1172/JCI105837
    1. Guenette J. A., Querido J. S., Eves N. D., Chua R., Sheel A. W. (2009). Sex differences in the resistive and elastic work of breathing during exercise in endurance-trained athletes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 297 (1), R166–R175. 10.1152/ajpregu.00078.2009
    1. Guenette J. A., Witt J. D., McKenzie D. C., Road J. D., Sheel A. W. (2007). Respiratory mechanics during exercise in endurance-trained men and women. J. Physiol. 581 (Pt3), 1309–1322. 10.1113/jphysiol.2006.126466
    1. Guttmann J., Eberhard L., Fabry B., Bertschmann W., Zeravik J., Adolph M., et al. (1995). Time constant/volume relationship of passive expiration in mechanically ventilated ARDS patients. Eur. Respir. J. 8, 114–120. 10.1183/09031936.95.08010114
    1. Habashi N. M., Andrews P., Kollisch-Singule M., Nieman G. (2022). A ventilator mode cannot set itself, nor can it be solely responsible for outcomes. Crit. Care Med. 50 (4), 695–699. 10.1097/CCM.0000000000005403
    1. Habashi N. M., Andrews P. L. (2013). “APRV/BiLevel ventilation,” in Current problems in surgery on current approaches to ventilatory support. Editors Frankel H., Kaplan L., 50, 424–499.
    1. Habashi N. M., Andrews P., Satalin J., Gatto L. A., Nieman G. F. (2019). It is time to treat the patient and not just the ventilator. Crit. Care Med. 47 (8), e723–e724. 10.1097/CCM.0000000000003782
    1. Habashi N. M., Camporota L., Gatto L. A., Nieman G. (2021). Functional pathophysiology of SARS-CoV-2 induced acute lung injury and clinical implications. J. Appl. Physiol. 130, 877–891. 10.1152/japplphysiol.00742.2020
    1. Habashi N. M. (2005). Other approaches to open-lung ventilation: Airway pressure release ventilation. Crit. Care Med. 33, S228–S240. 10.1097/01.ccm.0000155920.11893.37
    1. Habashi N. M., Roy S., Andrews P., Sadowitz B., Niemen G., Gatto L. (2011). Up in smoke: APRV must be applied correctly to protect the lung. Crit. Care Med. 39 (10), 2314–2321.
    1. Hamouri S., Samrah S. M., Albawaih O., Saleh Z., Smadi M., Alhazymeh A., et al. (2021). Pulmonary barotrauma in COVID-19 patients: Invasive versus noninvasive positive pressure ventilation. Int. J. Gen. Med. 15, 2017–2032. 10.2147/IJGM.S314155
    1. Hanna K., Seder C., Weinberger J. B., Sills P. A., Hagan M., Janczyk R. J., et al. (2011). Airway pressure release ventilation and successful lung donation. Arch. Surg. 146 (3), 325–328. 10.1001/archsurg.2011.35
    1. Harms C. A., Wetter T. J., McClaran S. R., Pegelow D. F., Nickele G. A., Nelson W. B., et al. (1998). Effects of respiratory muscle work on cardiac output and its distribution during maximal exercise. J. Appl. Physiol. 85 (2), 609–618. 10.1152/jappl.1998.85.2.609
    1. Haycroft J., Edie R. (1891). The cardiopneumatic movements. J. Physiol. 12, 426–437. 10.1113/jphysiol.1891.sp000394
    1. Hernandez, Navalesi P. P., Maltais F., Gursahaney A., Gottfried S. B. (1994). Comparison of static and dynamic measurements of intrinsic PEEP in anesthetized cats. J. Appl. Physiol. 76 (6), 2437–2442. 10.1152/jappl.1994.76.6.2437
    1. Hirshberg E. L., Lanspa M. J., Peterson J., Wilson E. L., Brown S. M., Dean N. C., et al. (2018). Randomized feasibility trial of a low tidal volume-airway pressure release ventilation protocol compared with traditional airway pressure release ventilation and volume control ventilation protocols. Crit. Care Med. 46, 1943–1952. 10.1097/CCM.0000000000003437
    1. Hopkins E., Sharma S. (2022). “Physiology, functional residual capacity,” in StatPearls. Treasure island ((FL.
    1. Ibarra-Estrada M. A., Garcia-Salas Y., Mireles-Cabodevila E., Lopez-Pulgarin J. A., Chavez-Pena Q., Garcia-Salcido R., et al. (2022). Use of airway pressure release ventilation in patients with acute respiratory failure due to COVID-19: Results of a single-center randomized controlled trial. Crit. Care Med. 50 (4), 586–594. 10.1097/CCM.0000000000005312
    1. Jain S. V., Kollisch-Singule M., Sadowitz B., Dombert L., Satalin J., Andrews P., et al. (2016). The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Med. Exp. 4, 11. 10.1186/s40635-016-0085-2
    1. Jain S. V., Kollisch-Singule M., Satalin J., Searles Q., Dombert L., Abdel-Razek O., et al. (2017). The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model. Intensive Care Med. Exp. 5, 25. 10.1186/s40635-017-0138-1
    1. Joseph D. K., Baltazar G. A., Jacquez R., Islam S., Stright A., Divers J., et al. (2020). A pilot study of patients with COVID-19 related respiratory failure utilizing airway pressure release ventilation (APRV). Innov Surg Intervent Med 1 (1), 3–8. 10.36401/ISIM-20-03
    1. Kacmarek R. M., Kirmse M., Nishimura M., Mang H., Kimball W. R. (1995). The effects of applied vs auto-PEEP on local lung unit pressure and volume in a four-unit lung model. Chest 108 (4), 1073–1079. 10.1378/chest.108.4.1073
    1. Kalenka A., Gruner F., Weiss C., Viergutz T. (2016). End-expiratory lung volume in patients with acute respiratory distress syndrome: A time course analysis. Lung. Aug 194 (4), 527–534. 10.1007/s00408-016-9892-1
    1. Kallet R. H., Alonso J. A., Luce J. M., Matthay M. A. (1999). Exacerbation of acute pulmonary edema during assisted mechanical ventilation using a low-tidal volume, lung protective ventilator strategy. Chest 116, 1826–1832. 10.1378/chest.116.6.1826
    1. Kallet R. H. (2011). Patient-ventilator interaction during acute lung injury, and the role of spontaneous breathing: Part 2: Airway pressure release ventilation. Respir. Care 56 (2), 190–203. 10.4187/respcare.00968
    1. Kami W., Kinjo T., Miyagi K., Fujita J. (2019). Development of lung emphysema due to APRV. Intern. Med. 58, 3061. 10.2169/internalmedicine.2883-19
    1. Kaplan L. J., Bailey H., Formosa V. (2001). Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit. Care 5 (4), 221–226. 10.1186/cc1027
    1. Katz J. A., Ozanne G. M., Zinn S. E., Fairley B. (1981). Time course and mechanisms of lung-volume increase with PEEP in acute pulmonary failure. Anesthesiology 54, 9–16. 10.1097/00000542-198101000-00003
    1. Kawaguchi A., Guerra G. G., Duff J. P., Ueta I., Fukushima R. (2015). Hemodynamic changes in child acute respiratory distress syndrome with airway pressure release ventilation: A case series. Clin. Respir. J. 9 (4), 423–429. 10.1111/crj.12155
    1. Keller J. M., Claar D., Carvalho Ferreira J., Chu D. C., Hossain T., Graham Carlos W., et al. (2019). Mechanical ventilation training during graduate medical education: Perspectives and review of the literature. J. Grad. Med. Educ. 11 (4), 389–401. 10.4300/JGME-D-18-00828.1
    1. Kim C. S., Iglesias A. J., Sackner M. A. (1987). Mucus clearance by two-phase gas-liquid flow mechanism: Asymmetric periodic flow model. J. Appl. Physiol. 62, 959–971. 10.1152/jappl.1987.62.3.959
    1. Kimball W. R., Leith D. E., Robins A. G. (1982). Dynamic hyperinflation and ventilator dependence in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 126 (6), 991–995. 10.1164/arrd.1982.126.6.991
    1. Knelson J., Howatt W., DeMuth G. (1970). Effect of respiratory pattern on alveolar gas exchange. J. Appl. Physiol. 29 (3), 328–331. 10.1152/jappl.1970.29.3.328
    1. Knowlton F. P., Starling E. H. (1912). The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart. J. Physiol. 44 (3), 206–219. 10.1113/jphysiol.1912.sp001511
    1. Koch R. L., Papadakos P. J., Lachmann B. (2019). The use of airway pressure release ventilation and open lung management for improving the outcome of lung procurement for transplantation. Crit Care & Shock 12 (4), 130–134.
    1. Kochi T., Okubo S., Zin W. A., Milic-Emili J. (1988). Flow and volume dependence of pulmonary mechanics in anesthetized cats. J. Appl. Physiol. 64, 441–450. 10.1152/jappl.1988.64.1.441
    1. Kollisch-Singule M., Emr B., Jain S. V., Andrews P., Satalin J., Liu J., et al. (2015). The effects of airway pressure release ventilation on respiratory mechanics in extrapulmonary lung injury. Intensive Care Med. Exp. 3, 35. 10.1186/s40635-015-0071-0
    1. Kollisch-Singule M., Andrews P., Satalin J., Gatto L. A., Nieman G. F., Habashi N. M., et al. (2019). The time-controlled adaptive ventilation protocol: Mechanistic approach to reducing ventilator-induced lung injury. Eur. Respir. Rev. 28, 180126. 10.1183/16000617.0126-2018
    1. Kollisch-Singule M. C., Jain S. V., Andrews P. L., Satalin J., Gatto L. A., Villar J., et al. (2018). Looking beyond macroventilatory parameters and rethinking ventilator-induced lung injury. J. Appl. Physiol. 124, 1214–1218. 10.1152/japplphysiol.00412.2017
    1. Kollisch-Singule M., Emr B., Smith B., Roy S., Jain S., Satalin J., et al. (2014a). Mechanical breath profile of airway pressure release ventilation: The effect on alveolar recruitment and Microstrain in acute lung injury. JAMA Surg. 149, 1138–1145. 10.1001/jamasurg.2014.1829
    1. Kollisch-Singule M., Emr B., Smith B., Ruiz C., Roy S., Meng Q., et al. (2014b). Airway pressure release ventilation reduces conducting airway micro-strain in lung injury. J. Am. Coll. Surg. 219, 968–976. 10.1016/J.Jamcollsurg.2014.09.011
    1. Kollisch-Singule M., Jain S., Andrews P., Smith B. J., Hamlington-Smith K. L., Roy S., et al. (2016a). Effect of airway pressure release ventilation on dynamic alveolar heterogeneity. JAMA Surg. 151, 64–72. 10.1001/jamasurg.2015.2683
    1. Kollisch-Singule M., Jain S. V., Satalin J., Andrews P., Searles Q., Liu Z., et al. (2016b). Limiting ventilator-associated lung injury in A preterm porcine neonatal model. J. Pediatr. Surg. 52, 50–55. 10.1016/j.jpedsurg.2016.10.020
    1. Kollisch-Singule M., Satalin J., Blair S. J., Andrews P. L., Gatto L. A., Nieman G. F., et al. (2020). Mechanical ventilation lessons learned from alveolar micromechanics. Front. Physiol. 11, 233. 10.3389/fphys.2020.00233
    1. Kondili E., Alexopoulou C., Prinianakis G., Xirouchaki N., Georgopoulos D. (2004). Pattern of lung emptying and expiratory resistance in mechanically ventilated patients with chronic obstructive pulmonary disease. Intensive Care Med. 30, 1311–1318. 10.1007/s00134-004-2255-z
    1. Kondili E., Prinianakis G., Athanasakis H., Georgopoulos D. (2002). Lung emptying in patients with acute respiratory distress syndrome: Effects of positive end-expiratory pressure. Eur. Respir. J. 19, 811–819. 10.1183/09031936.02.00255102
    1. Koutsoukou A., Armaganidis A., Stavrakaki- Kallergi C., Vassilakopoulos T., Lymberis A., Roussos C., et al. (2000). Expiratory flow limitation and intrinsic positive end-expiratory pressure at zero positive end-expiratory pressure in patients with adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 161, 1590–1596. 10.1164/ajrccm.161.5.9904109
    1. Ku S. (2016). It’s time to reappraise the impact of auto-PEEP. Respir. Care 61 (2), 258–259. 10.4187/respcare.04658
    1. Leatherman J. W., McArthur C., Shapiro R. S. (2004). Effect of prolongation of expiratory time on dynamic hyperinflation in mechanically ventilated patients with severe asthma. Crit. Care Med. 32, 1542–1545. 10.1097/01.ccm.0000130993.43076.20
    1. Lim J., Litton E. (2019). Airway pressure release ventilation in adult patients with acute hypoxemic respiratory failure: A systematic review and meta-analysis. Crit. Care Med. 47, 1794–1799. 10.1097/CCM.0000000000003972
    1. Lim J., Litton E., Robinson H., Das Gupta M. (2016). Characteristics and outcomes of patients treated with airway pressure release ventilation for acute respiratory distress syndrome: A retrospective observational study. J. Crit. Care 34, 154–159. 10.1016/j.jcrc.2016.03.002
    1. Longo S., Siri J., Acosta C., Palencia A., Echegaray A., Chiotti I., et al. (2017). Lung recruitment improves right ventricular performance after cardiopulmonary bypass: A randomised controlled trial. Eur. J. Anaesthesiol. 34, 66–74. 10.1097/EJA.0000000000000559
    1. Lopes A. J., Nery F. P. O. S., Souse F., C., Guimaraes F. S., Dias C. M., Oliveira J. F. (2011). CPAP decreases lung hyperinflation in patients with stable COPD. Respir. Care 56 (8), 1164–1169. 10.4187/respcare.01092
    1. Luecke T., Pelosi P. (2005). Clinical Review: Positive end-expiratory pressure and cardiac output. Crit. Care 9 (6), 607–621. 10.1186/cc3877
    1. Lumb A. (2010). “Elastic Forces and Lung Volumes. Nunn's applied respiratory physiology,” in Televise health sciences. 7th Ed ed (Churchill Livingstone Elsevier; ).
    1. Morais C. C. A., Koyama Y., Yoshida T., Plens G. M., Gomes S., Cristhiano L. A. S., et al. (2018). High positive end-expiratory pressure renders spontaneous effort noninjurious. Am. J. Respir. Crit. Care Med. 197 (10), 1285–1296. 10.1164/rccm.201706-1244OC
    1. MacIntyre N. (2011). Airway pressure release ventilation: Hope or hype? Crit. Care Med. 39 (10), 2376–2377. 10.1097/CCM.0b013e31822a5a67
    1. Madden M., Andrews P., Thurber M., Mellies B., Williams K., Satalin J., et al. (2016). P low of 0 cmH2O maximizes peak expiratory flow rate while optimizing carbon dioxide removal in airway pressure release ventilation. Resp. Care, 2525146.
    1. Maggiore S. M., Jonson B., Richard J. C., Jaber S., Lemaire F., Brochard L., et al. (2001). Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury comparison with the lower inflection point, oxygenation, and compliance. Am. J. Respir. Crit. Care Med. 164, 795–801. 10.1164/ajrccm.164.5.2006071
    1. Mahajan M., DiStefano D., Satalin J., Andrews P., al-Khalisy H., Baker S., et al. (2019). Time-controlled adaptive ventilation (TCAV) accelerates simulated mucus clearance via increased expiratory flow rate. Intensive Care Med. Exp. 7, 27. 10.1186/s40635-019-0250-5
    1. Mallory P., Cheifetz I. (2020). A comprehensive review of the use and understanding of airway pressure release ventilation. Expert Rev. Respir. Med. 14, 307–315. 10.1080/17476348.2020.1708719
    1. Marini J. J. (2011). Dynamic hyperinflation and auto–positive end-expiratory pressure lessons learned over 30 years. Am. J. Respir. Crit. Care Med. 184, 756–762. 10.1164/rccm.201102-0226PP
    1. Marini J. J., Culver B. H., Kirk W. (1985). Flow resistance of exhalation valves and positive end- expiratory pressure devices used in mechanical ventilation. Am. Rev. Respir. Dis. 131, 850–854. 10.1164/arrd.1985.131.6.850
    1. Marini J. J., Gattinoni L. (2020). Time course of evolving ventilator-induced lung injury: The “shrinking baby lung”. Crit. Care Med. 48 (8), 1203–1209. 10.1097/CCM.0000000000004416
    1. Matute-Bello G., Downey G., Moore B. B., Groshong S. D., Matthay M. A., Slutsky A. S., et al. (2011). An official American thoracic society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 44, 725–738. 10.1165/rcmb.2009-0210ST
    1. Maung A. A., Luckianow G., Kaplan L. J. (2011). Lessons learned from airway pressure release ventilation. J. Trauma Acute Care Surg. 72 (3), 624–628. 10.1097/TA.0b013e318247668f
    1. Maxwell R. A., Green J. M., Waldrop J., Dart B. W., Smith P. W., Brooks D., et al. (2010). A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J. Trauma 69, 501–510. 10.1097/TA.0b013e3181e75961
    1. McGuinness G., Zhan C., Rosenberg N., Azour L., Wickstrom M., Mason D. M., et al. (2020). Increased incidence of barotrauma in patients with COVID-19 on invasive mechanical ventilation. Radiology 297 (2), E252–E262. 10.1148/radiol.2020202352
    1. McIlroy M. B., Tierney D. F., Nadel J. A. (1963). A new method for measurement of compliance and resistance of lungs and thorax. J. Appl. Physiol. (1985). 18 (2), 424–427. 10.1152/jappl.1963.18.2.424
    1. Mead J., Whittenberger J. L. (1953). Physical properties of human lungs measured during spontaneous respiration. J. Appl. Physiol. (1985). 5, 779–796. 10.1152/jappl.1953.5.12.779
    1. Mercat A., Diehl J. L., Michard F., Anguel N., Teboul J. L., Labrousse J., et al. (2001). Extending inspiratory time in acute respiratory distress syndrome. Crit. Care Med. 29 (1), 40–44. 10.1097/00003246-200101000-00011
    1. Mireles-Cabodevila E., Kacmarek R. (2016). Should airway pressure release ventilation Be the primary mode in ARDS? Respir. Care 61 (6), 761–773. 10.4187/respcare.04653
    1. Modrykamien A., Chatburn R., Ashton R. (2011). Airway pressure release ventilation: An alternative mode of mechanical ventilation in acute respiratory distress syndrome. Cleve. Clin. J. Med. 78 (2), 101–110. 10.3949/ccjm.78a.10032
    1. Morales-Quinteros L., Neto A. S., Artigas A., Blanch L., Botta M., Kaufman D. A., et al. (2021). Dead space estimates may not be independently associated with 28 Day mortality in COVID 19 ARDS. Crit. Care 25, 171. 10.1186/s13054-021-03570-0
    1. Myers T. R., MacIntyre N. R. (2007). Does airway pressure release ventilation offer important new advantages in mechanical ventilator support? Respir. Care 52 (4), 452–458.
    1. Nanas S., Magder S. (1992). Adaptations of the peripheral circulation to PEEP. Am. Rev. Respir. Dis. 146, 688–693. 10.1164/ajrccm/146.3.688
    1. Nassar B. S., Collett N. D., Schmidt G. A. (2012). The flow-time waveform predicts respiratory system resistance and compliance. J. Crit. Care 27 (4), 418e7–41814. 10.1016/j.jcrc.2011.10.012
    1. Natalini G., Tuzzo D., Rosano A., Testa M., Grazioli M., Pennestrì V., et al. on behalf of the VENTILAB Group (2016). Assessment of factors related to auto-PEEP. Respir. Care 61 (2), 134–141. 10.4187/respcare.04063
    1. Neumann P., Golisch W., Strohmeyer A., Buscher H., Burchardi H., Sydow M., et al. (2002). Influence of different release times on spontaneous breathing pattern during airway pressure release ventilation. Intensive Care Med. 28, 1742–1749. 10.1007/s00134-002-1522-0
    1. Nieman G. F., Al-khalisy H., Kollisch-Singule M., Satalin J., Blair S., Trikha G., et al. (2020a). A physiologically informed strategy to effectively open, stabilize, and protect the acutely injured lung. Front. Physiol. 11, 227. 10.3389/fphys.2020.00227
    1. Nieman G. F., Gatto L. A., Andrews P., Satalin J., Camporota L., Daxon B., et al. (2020b). Prevention and treatment of acute lung injury with time-controlled adaptive ventilation: Physiologically informed modification of airway pressure release ventilation. Ann. Intensive Care 10, 3. 10.1186/s13613-019-0619-3
    1. Nieman G. F., Satalin J., Andrews P., Aiash H., Habashi N. M., Gatto L. A., et al. (2017a). Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI). Intensive Care Med. Exp. 5, 8. 10.1186/s40635-017-0121-x
    1. Nieman G. F., Satalin J., Andrews P., Wilcox K., Aiash H., Baker S., et al. (2018b). Preemptive mechanical ventilation based on dynamic physiology in the alveolar microenvironment: Novel considerations of time-dependent properties of the respiratory system. J. Trauma Acute Care Surg. 85 (6), 1081–1091. 10.1097/TA.0000000000002050
    1. Nieman G. F., Satalin J., Kollisch-Singule M., Andrews P., Aiash H., Habashi N. M., et al. (2017b). Physiology in medicine: Understanding dynamic alveolar physiology to minimize ventilator-induced lung injury. J. Appl. Physiol. 122, 1516–1522. 10.1152/japplphysiol.00123.2017
    1. Nunn J. (1995). Nunn JFed. Nunn’s applied respiratory physiology. Elastic Forces and Lung Volumes. Oxford: Butterworth-Heinemann, 36–60.
    1. O’Donnell D. E., Laveneziana P. (2006). The clinical importance of dynamic lung hyperinflation in COPD. J. Chronic Obstr. Pulm. Dis. 3 (4), 219–232. 10.1080/15412550600977478
    1. O’Donoghue F. J., Catcheside P. G., Jordan A. S., Bersten A. D., McEvoy R. D. (2002). Effect of CPAP on intrinsic PEEP, inspiratory effort, and lung volume in severe stable COPD. Thorax 57, 533–539. 10.1136/thorax.57.6.533
    1. One Legacy (2022). One legacy announces record-setting year in organ donation and transplantation: Not-for-Profit organization joins local hospitals, families and donors to enable the transplant of 1,688 lifesaving organs despite hurdles caused by COVID-19. Los Angeles: Business Wire/News/January28.
    1. O’Quinn R. J., Marini J. J., Culver B. H., Butler J. (1985). Transmission of airway pressure to pleural space during lung edema and chest wall restriction. J. Appl. Physiol. 59 (4), 1171–1177. 10.1152/jappl.1985.59.4.1171
    1. Palumbo D., Campochiaro C., Belletti A., Marinosci A., Dagna L., Zangrillo A., et al. (2021). Pneumothorax/pneumomediastinum in non-intubated COVID-19 patients: Differences between first and second Italian pandemic wave. Eur. J. Intern. Med. 88, 144–146. 10.1016/j.ejim.2021.03.018
    1. Patroniti N., Pesenti A. (2003). Low tidal volume, high respiratory rate and auto-PEEP: The importance of the basics. Crit. Care 7, 105–106. 10.1186/cc1883
    1. Pelosi P., Ball L., Barbas C. S. V., Bellomo R., Burns K. E. A., Einav S., et al. (2021). Personalized mechanical ventilation in acute respiratory distress syndrome. Crit. Care 25, 250. 10.1186/s13054-021-03686-3
    1. Pepe P. E., Marini J. J. (1982). Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: The auto-PEEP effect. Am. Rev. Respir. Dis. 126 (1), 166–170. 10.1164/arrd.1982.126.1.166
    1. Persson P., Lundin S., Stenqvist O. (2016). Transpulmonary and pleural pressure in a respiratory system model with an elastic recoiling lung and an expanding chest wall. Intensive Care Med. Exp. 4, 26. 10.1186/s40635-016-0103-4
    1. Persson P., Stenqvist O., Lundin S. (2017). Evaluation of lung and chest wall mechanics during anaesthesia using the PEEP-step method. Br. J. Anaesth. 120 (4), 860–867. 10.1016/j.bja.2017.11.076
    1. Petrof B., Legare N., Goldberg P., Milic-Emili J., Gottfried S. B. (1990). Continuous positive airway pressure reduces work of breathing and dyspnea during weaning from mechanical ventilation in severe chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 141, 281–289. 10.1164/ajrccm/141.2.281
    1. Powell J., Garnett J. P., Mather M. W., Cooles F. A. H., Nelson A., Verdon B., et al. (2018). Excess mucin impairs subglottic epithelial host defense in mechanically ventilated patients. Am. J. Respir. Crit. Care Med. 198, 340–349. 10.1164/rccm.201709-1819OC
    1. Puybasset L., Cluzel P., Chao N., Slutsky A. S., Coriat P., Rouby J. J., et al. (1998). A computed tomography scan assessment of regional lung volume in acute lung injury. The CT scan ARDS study group. Am. J. Respir. Crit. Care Med. 158 (5 Pt 1), 1644–1655. 10.1164/ajrccm.158.5.9802003
    1. Rahn H., Otis A. B., Chadwick L., Fenn W. (1946). The pressure-volume diagram of the thorax and lung. Am. J. Physiol. 146 (6), 161–178. 10.1152/ajplegacy.1946.146.2.161
    1. Rajdev K., Spanel A. J., McMillan S., Lahan S., Boer B., Birge J., et al. (2021). Pulmonary barotrauma in COVID-19 patients with ARDS on invasive and non-invasive positive pressure ventilation. J. Intensive Care Med. 36 (9), 1013–1017. 10.1177/08850666211019719
    1. Räsänen J., Cane R. D., Downs J. B., Hurst J. M., Jousela I. T., Kirby R. R., et al. (1991). Airway pressure release ventilation during acute lung injury: A prospective multicenter trial. Crit. Care Med. 19 (10), 1234–1241. 10.1097/00003246-199110000-00004
    1. Raschke R. A., Stoffer B., Assar S., Fountain S., Olsen K., HeiseI C. W., et al. (2021). The relationship of tidal volume and driving pressure with mortality in hypoxic patients receiving mechanical ventilation. Plos One 16 (8), e0255812. 10.1371/journal.pone.0255812
    1. Reis Miranda D., Gommers D., Struijs A., Meeder H., Schepp R., Hop W., et al. (2004). The open lung concept: Effects on right ventricular afterload after cardiac surgery. Br. J. Anaesth. 93, 327–332. 10.1093/bja/aeh209
    1. Reis Miranda D., Klompe L., Cademartiri F., Haitsma J. J., Palumbo A., Takkenberg J. J. M., et al. (2006). The effect of open lung ventilation on right ventricular and left ventricular function in lung-lavaged pigs. Crit. Care 10, R86. 10.1186/cc4944
    1. Richardson P., Jarriel S., Hansen T. N. (1989). Mechanics of the respiratory system during passive exhalation in preterm lambs. Pediatr. Res. 26 (5), 425–428. 10.1203/00006450-198911000-00012
    1. Road J. D., Leevers A. M. (1988). Effect of lung inflation on diaphragmatic shortening. J. Appl. Physiol. (1985). 65 (6), 2383–2389. 10.1152/jappl.1988.65.6.2383
    1. Road J. D., Leevers A. M. (1990). Inspiratory and expiratory muscle function during continuous positive airway pressure in dogs. J. Appl. Physiol. 68 (3), 1092–1100. 10.1152/jappl.1990.68.3.1092
    1. Rola P., Daxon B. (2022). Airway pressure release ventilation with time-controlled adaptive ventilation (TCAVTM) in COVID-19: A community hospital’s experience. Front. Physiol. 13, 787231. 10.3389/fphys.2022.787231
    1. Roy S., Sadowitz B., Andrews P., Gatto L. A., Marx W., Ge L., et al. (2012). Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome: A novel timing-based ventilatory intervention to avert lung injury. J. Trauma Acute Care Surg. 73, 391–400. 10.1097/TA.0b013e31825c7a82
    1. Roy S. B., Haworth C., Olson M., Kang P., Varsch K. E., Panchabhai T. S., et al. (2017). Lung Transplant Outcomes in Donors Managed with Airway Pressure Release Ventilation. J. Heart Lung Transp. 36 (4S), 981.
    1. Roy S., Habashi N., Sadowitz B., Andrews P., Lin G., Wang G., et al. (2013a). Early airway pressure release ventilation prevents ARDS – a novel preventive approach to lung injury. Shock 39 (1), 28–38. 10.1097/SHK.0b013e31827b47bb
    1. Roy S. K., Emr B., Sadowitz B., Gatto L. A., Ghosh A., Satalin J. M., et al. (2013b). Preemptive application of airway pressure release ventilation prevents development of acute respiratory distress syndrome in a rat traumatic hemorrhagic shock model. Shock 40, 210–216. 10.1097/SHK.0b013e31829efb06
    1. Rubenfeld G. D., Cooper C., Carter G., Thompson B. T., Hudson L. D. (2004). Barriers to providing lung-protective ventilation to patients with acute lung injury. Crit. Care Med. 32, 1289–1293. 10.1097/01.ccm.0000127266.39560.96
    1. Rylander C., Hogman M., Perchiazzi G., Magnusson A., Hedenstierna G. (2004). Functional residual capacity and respiratory mechanics as indicators of aeration and collapse in experimental lung injury. Anesth. Analg. 98 (3), 782–789. 10.1213/01.ane.0000096261.89531.90
    1. Sadowitz B., Roy S., Gatto L. A., Habashi N. M., Nieman G. F. (2011). Lung injury induced by sepsis: Lessons learned from large animal models and future directions for treatment. Expert Rev. anti. Infect. Ther. 9 (12), 1169–1178. 10.1586/eri.11.141
    1. Sahetya S. K., Goligher E. C., Brower R. G. (2017). Fifty years of research in ARDS. Setting positive end-expiratory pressure in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 195 (11), 1429–1438. 10.1016/j.tacc.2018.05.007
    1. Scaramuzzo G., Broche L., Pellegrini M., Porra L., Derosa S., Principia Tannoia A., et al. (2019). Regional behavior of airspaces during positive pressure reduction assessed by synchrotron radiation computed tomography. Front. Physiol. 10, 719. 10.3389/fphys.2019.00719
    1. Schmidt M., Banzett R. B., Raux M., Morelot-Panzini C., Dangers L., Similowski T., et al. (2014). Unrecognized suffering in the ICU: Addressing dyspnea in mechanically ventilated patients. Intensive Care Med. 40, 1–10. 10.1007/s00134-013-3117-3
    1. Schmidt M., Demoule A., Polito A., Porchet R., Aboab J., Siami S., et al. (2011). Dyspnea in mechanically ventilated critically ill patients. Crit. Care Med. 39, 2059–2065. 10.1097/CCM.0b013e31821e8779
    1. Schwartzstein R. M., Campbell M. L. (2022). Dyspnea and mechanical ventilation – the emperor has No clothes. Am. J. Respir. Crit. Care Med. 205 (8), 864–865. 10.1164/rccm.202201-0078ED
    1. Scott T. E., Das A., Haque M., Bates D. G., Hardman J. G. (2020). Management of primary blast lung injury: A comparison of airway pressure release versus low tidal volume ventilation. Intensive Care Med. Exp. 8, 26. 10.1186/s40635-020-00314-2
    1. Seam N., Kriner E., Woods C. J., Shah N. G., Acho M., McCurdy M. T., et al. (2021). Impact of novel multiinstitutional curriculum on critical care fellow ventilator knowledge. ATS Sch. 2 (1), 84–96. 10.34197/ats-scholar.2020-0034OC
    1. Shrestha D. B., Sedhai Y. R., Budhathoki P., Adhikari A., Pokharel N., et al. (2022). Pulmonary barotrauma in COVID-19: A systematic review and meta-analysis. Rev Ann Med Surg 73, 103221. 10.1016/j.amsu.2021.103221
    1. Silva P. L., Ferreira F., dos Santos Smary C., Moraes L., Ferreira de Magalhães R., Vinicius de S., et al. (2018). Biological response to time-controlled adaptive ventilation depends on acute respiratory distress syndrome etiology. Crit. Care Med. 46, e609–e617. 10.1097/CCM.0000000000003078
    1. Simmons D. H., Linde L. M., Miller J. H., O’Reilly R. J. (1961). Relation between lung volume and pulmonary vascular resistance. Circulation Res. IX, 465–471. 10.1161/01.res.9.2.465
    1. Sipmann F. S., Santos A., Tusman G. (2018). Heart-lung interactions in acute respiratory distress syndrome: Pathophysiology, detection and management strategies. Ann. Transl. Med. 6 (2), 27. 10.21037/atm.2017.12.07
    1. Smith B. J., Lennart K. A., Lundblad A., Kollisch-Singule M., Satalin J., Nieman G., et al. (2015). Predicting the response of the injured lung to the mechanical breath profile. J. Appl. Physiol. 118, 932–940. 10.1152/japplphysiol.00902.2014
    1. Smith R., Smith D. (1995). Does airway pressure release ventilation alter lung function after acute lung injury? Chest 107 (3), 805–808. 10.1378/chest.107.3.805
    1. Stenqvist O., Gattinoni L., Hedenstierna G. (2015). What’s new in respiratory physiology? Intensive Care Med. 41 (6), 1110–1113. 10.1007/s00134-015-3685-5
    1. Stenqvist O., Grivans C., Andersson B., Lundin S. (2012). Lung elastance and transpulmonary pressure can be determined without using oesophageal pressure measurements. Acta Anaesthesiol. Scand. 56, 738–747. 10.1111/j.1399-6576.2012.02696.x
    1. Stevens J. P., Dechen T., Schwartzstein R. M., O’Donnell C. R., Baker K., Banzett R. B., et al. (2021). Association of dyspnoea, mortality and resource use in hospitalised patients. Eur. Respir. J. 58, 1902107. 10.1183/13993003.02107-2019
    1. Stewart T. E., Meade M. O., Cook D. J., Granton J. T., Hodder R. V., Lapinsky S. E., et al. (1998). Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure and Volume-Limited Ventilation Strategy Group. N. Engl. J. Med. 338, 355–361. 10.1056/NEJM199802053380603
    1. Stock M. C., Downs J. B., Frolicher D. A. (1987). Airway pressure release ventilation. Crit. Care Med. 15, 462–466. 10.1097/00003246-198705000-00002
    1. Suresh K., Shimoda L. A. (2016). Lung circulation. Compr. Physiol. 6 (2), 897–943. 10.1002/cphy.c140049
    1. Syring R. S., Otto C. M., Spivack R. E., Markstaller K., Baumgardner J. E. (2007). Maintenance of end-expiratory recruitment with increased respiratory rate after saline-lavage lung injury. J. Appl. Physiol. 102, 331–339. 10.1152/japplphysiol.00002.2006
    1. Torres A., Kacmarek R. M., Kimball W. R., Qvist J., Stanek K., Whyte R., et al. (1993). Regional diaphragmatic length and EMG activity during inspiratory pressure support and CPAP in awake sheep. J. Appl. Physiol. 74 (2), 695–703. 10.1152/jappl.1993.74.2.695
    1. Tsolaki V., Zakynthinos G. E., Makris D. (2020). The ARDSnet protocol may be detrimental in COVID-19. Crit. Care 14 (1), 351.
    1. Tsuda A., Laine‐Pearson F., Hydon P. (2011). Why chaotic mixing of particles is inevitable in the deep lung. J. Theor. Biol. 286 (1), 57–66. 10.1016/j.jtbi.2011.06.038
    1. Udi J., Lang C. N., Zotzmann V., Krueger K., Fluegler N., Bamberg F., et al. (2021). Incidence of barotrauma in patients with COVID-19 pneumonia during prolonged invasive mechanical ventilation - a case-control study. J. Intensive Care Med. 36 (4), 477–483. 10.1177/0885066620954364
    1. Valentine D., Hammond M., Downs J., Sear N., Sims W. (1991). Distribution of ventilation and perfusion with different modes of mechanical ventilation. Am. Rev. Respir. Dis. 143 (6), 1262–1266. 10.1164/ajrccm/143.6.1262
    1. Van Den Berg P. C. M., Jansen J. R. C., Pinksy M. R. (2001). Effect of positive pressure on venous return in volume-loaded cardiac surgical patients. J. Appl. Physiol. 92, 1223–1231. 10.1152/japplphysiol.00487.2001
    1. Varpula T., Jousela I., Niemi R., Takkunen O., Pettila V. (2003). Combined effects of prone positioning and airway pressure release ventilation on gas exchange in patients with acute lung injury. Acta Anaesthesiol. Scand. 47, 516–524. 10.1034/j.1399-6576.2003.00109.x
    1. Varpula T., Valta P., Niemi R., Takkunen O., Hynynen M., Pettila V., et al. (2004). Airway Pressure Release Ventilation as a primary ventilatory mode in acute respiratory distress syndrome. Acta Anaesthesiol. Scand. 48, 722–731. 10.1111/j.0001-5172.2004.00411.x
    1. Vasconcellos de Oliveira M., Ferreira de Magalhães R., de Novaes Rocha N., Vinicius Fernandes M., Alves Antunes A., Marcos Morales M., et al. (2022). Effects of time-controlled adaptive ventilation on cardiorespiratory parameters and inflammatory response in experimental emphysema. J. Appl. Physiol. 132, 564–574. 10.1152/japplphysiol.00689.2021
    1. Villar J., Sulemanji D., Kacmarek R. M. (2014). The acute respiratory distress syndrome: Incidence and mortality, has it changed? Curr. Opin. Crit. Care 20 (1), 3–9. 10.1097/MCC.0000000000000057
    1. Voets P. J. G. M., van Helvoort H. A. C. (2013). The role of equal pressure points in understanding pulmonary diseases. Adv. Physiol. Educ. 37, 266–267. 10.1152/advan.00014.2013
    1. Vovk A., Binks A. P. (2007). Raising end-expiratory volume relieves air hunger in mechanically ventilated healthy adults. J. Appl. Physiol. 103, 779–786. 10.1152/japplphysiol.01185.2006
    1. Wagner P. D. (1977). Diffusion and chemical reaction in pulmonary gas exchange. Physiol. Rev. 57 (2), 257–312. 10.1152/physrev.1977.57.2.257
    1. Walsh M. A., Merca M., LaRotta G., Joshi P., Joshi V., Tran T., et al. (2011). Airway pressure release ventilation improves pulmonary blood flow in infants after cardiac surgery. Crit. Care Med. 39 (12), 2599–2604. 10.1097/CCM.0b013e318228297a
    1. West J. B. (1989). “Mechanics of breathing,” in Best and Taylor’s physiological basis of medical practice. Editor West J. B. (Baltimore: Williams & Wilkins; ), 560–578.
    1. Wilcox S. R., Strout T. D., Schneider J. I., Mitchel P. M., Smith J., Lufty-Clayton L., et al. (2016). Academic emergency medicine physicians’ knowledge of mechanical ventilation. West. J. Emerg. Med. 17 (3), 271–279. 10.5811/westjem.2016.2.29517
    1. Wilson A. G., Massarella G. R., Pride N. B. American review of respiratory disease (1993). 110 (61):716–729.
    1. Worsham C. M., Banzett R. B., Dyspnea Schwartzstein R. M. (2021). Dyspnea, acute respiratory failure, psychological trauma, and post-ICU mental health: A caution and a call for research. Chest 159 (2), 749–756. 10.1016/j.chest.2020.09.251
    1. Wright J., Gong H. (1990). Auto-PEEP: Incidence, magnitude, and contributing factors. Heart Lung. 19 (4), 352–357.
    1. Xie J., Fang J., Pan C., Liu S., Liu L., Xu J., et al. (2017). The effects of low tidal ventilation on lung strain correlate with respiratory system compliance. Crit. Care 3 (21), 23. 10.1186/s13054-017-1600-x
    1. Yoshida T., Nakahashi S., Aparecida M., Nakamura M., Koyama Y., Roldan R., et al. (2017). Volume-controlled ventilation does not prevent injurious inflation during spontaneous effort. Am. J. Respir. Crit. Care Med. 196 (5), 590–601. 10.1164/rccm.201610-1972OC
    1. Yoshida T., Roldan R., Beraldo M., Torsan V., Gomes S., De Santis R. R., et al. (2016). Spontaneous effort during mechanical ventilation: Maximal injury with less positive end-expiratory pressure. Crit. Care Med. 44 (8), e678–688. 10.1097/CCM.0000000000001649
    1. Young D., Lamb S. E., Shah S., MacKenzie I., Tunnicliffe W., Lall R., et al. (2013). High-frequency oscillation for acute respiratory distress syndrome. N. Engl. J. Med. 368, 806–813. 10.1056/NEJMoa1215716
    1. Zhong X., Wu Q., Yang H., Dong W., Wang B., Zhang Z., et al. (2020). Airway pressure release ventilation versus low tidal volume ventilation for patients with acute respiratory distress syndrome/acute lung injury: A meta-analysis of randomized clinical trials. Ann. Transl. Med. 8 (24), 1641. 10.21037/atm-20-6917
    1. Zhou S., Chatburn R. L. (2012). Effect of positive expiratory pressure on peak expiratory flow during airway pressure release ventilation. Resp. Care 57 (10), 1415663.
    1. Zhou Y., Jin X., Lv Y., Wang P., Yang Y., Liang G., et al. (2017). Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med. 43, 1648–1659. 10.1007/s00134-017-4912-z

Source: PubMed

3
Předplatit