Characteristics of in-hospital mortality of congenital heart disease (CHD) after surgical treatment in children from 2005 to 2017: a single-center experience

Guilang Zheng, Jiaxing Wu, Peiling Chen, Yan Hu, Huiqiong Zhang, Jing Wang, Hanshi Zeng, Xufeng Li, Yueyu Sun, Gang Xu, Shusheng Wen, Jianzheng Cen, Jimei Chen, Yuxiong Guo, Jian Zhuang, Guilang Zheng, Jiaxing Wu, Peiling Chen, Yan Hu, Huiqiong Zhang, Jing Wang, Hanshi Zeng, Xufeng Li, Yueyu Sun, Gang Xu, Shusheng Wen, Jianzheng Cen, Jimei Chen, Yuxiong Guo, Jian Zhuang

Abstract

Background: To evaluate trends in the in-hospital mortality rate for pediatric cardiac surgery procedures between 2005 and 2017 in our center, and to discuss the mortality characteristics of children's CHD after thoracotomy.

Methods: This retrospective data were collected from medical records of children underwent CHD surgery between 2005 and 2017.

Results: A total of 19,114 children with CHD underwent surgery and 444 children died, with the in-hospital mortality was 2.3%. Complex mixed defect CHD had the highest fatality rate (8.63%), left obstructive lesion CHD had the second highest fatality rate (4.49%), right to left shunt CHD had the third highest mortality rate (3.51%), left to right shunt CHD had the lowest mortality rate (χ2 = 520.3,P < 0.05). The neonatal period has the highest mortality rate (12.17%), followed by infant mortality (2.58%), toddler age mortality (1.16%), and preschool age mortality (0.94%), the school age and adolescent mortality rate was the lowest (χ2 = 529.3,P < 0.05). In addition, the fatality rate in boys was significantly higher than that in girls (2.77% versus 1.62%, χ2 = 26.4, P < 0.05).

Conclusions: The mortality rate of CHD surgery in children decreased year by year. The younger the age and the more complicated the cyanotic heart disease, the higher the mortality rate may be.

Keywords: Congenital heart disease; Epidemiology; In-hospital mortality; Pediatric cardiac surgery.

Conflict of interest statement

All authors stated no potential conflicts exist.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Patient flow chart. Group A: left to right shunt CHD; Group B: left obstructive lesion CHD; Group C: right to left shunt CHD; Group D: complex mixed defect CHD; Group E: other CHD. Reasons for exclusion (F) were portal vein-hepatic artery fistula (1 case), atrial benign tumor (8 cases), infectious endocarditis with neoplasms (32 cases), prolonged (chronic) myocarditis (1 case), persistent fetal circulation (1 case), constrictive pericarditis (1 case), atrial thrombus (1 case), congenital paralysis (1 case), ascending aortic aneurysm (1 case), endometrial fibrosis (1 case), third-degree atrioventricular block (1 case), explosive myocarditis (2 cases), and mediastinal benign tumors (1 case)
Fig. 2
Fig. 2
Annual operation volume for CHD and the cyanotic CHD proportion in children below 14 years old from 2005 to 2017. Chart a shows the annual cases of surgery for right-to-left shunt CHD, complex mixed defect CHD and total cyanotic CHD from 2005 to 2017. Chart b demonstrates the cyanotic CHD proportion (of total CHD in children below 14 years old) from 2005 to 2017
Fig. 3
Fig. 3
Distribution of CHD surgery mortality in children from 2005 to 2017. Chart a shows the mortality of different CHD disease types. Chart b shows the mortality of children at different ages. Chart c shows the mortality of CHD children by sex

References

    1. LI Shuo-lin GR-y, Huang G-y. Epidemiological features of congenital heart disease in Chinese children. Chin J Pract Pediatr. 2017;32(11):871–875.
    1. Sadowski SL. Congenital cardiac disease in the newborn infant: past, present, and future. Crit Care Nurs Clin North Am. 2009;21(1):37–48. doi: 10.1016/j.ccell.2008.10.001.
    1. Knowles R, Griebsch I, Dezateux C, Brown J, Bull C, Wren C. Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis. Health Technol Assess (Winchester, England) 2005;9(44):1–152.
    1. Diller GP, Kempny A, Alonso-Gonzalez R, Swan L, Uebing A, Li W, Babu-Narayan S, Wort SJ, Dimopoulos K, Gatzoulis MA. Survival prospects and circumstances of death in contemporary adult congenital heart disease patients under follow-up at a large tertiary centre. Circulation. 2015;132(22):2118–2125. doi: 10.1161/CIRCULATIONAHA.115.017202.
    1. Knowles RLBC, Wren C, Dezateux C. Mortality with congenital heart defects in England and Wales, 1959-2009: exploring technological change through period and birth cohort analysis. Arch Dis Child. 2012;97(10):861–865. doi: 10.1136/archdischild-2012-301662.
    1. Yuan HZJ. Current status and the future of congenital cardiac surgery: extrapolating data from Guangdong province. Chin J Clin Thorac Cardiovasc Surg. 2018;11(10):809–815.
    1. Agarwal HS, Wolfram KB, Saville BR, Donahue BS, Bichell DP. Postoperative complications and association with outcomes in pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2014;148(2):609–616.e601. doi: 10.1016/j.jtcvs.2013.10.031.
    1. Kansy A, Tobota Z, Maruszewski P, Maruszewski B. Analysis of 14,843 neonatal congenital heart surgical procedures in the European Association for Cardiothoracic Surgery Congenital Database. Ann Thorac Surg. 2010;89(4):1255–1259. doi: 10.1016/j.athoracsur.2010.01.003.
    1. Villa-Hincapie CA, Carreno-Jaimes M, Obando-Lopez CE, Camacho-Mackenzie J, Umaña-Mallarino JP, Sandoval-Reyes NF. Risk factors for mortality in reoperations for pediatric and congenital heart surgery in a developing country. World J Pediatr Congenit Heart Surg. 2017;8(4):435–439. doi: 10.1177/2150135117704657.
    1. Franklin RC, Jacobs JP, Krogmann ON, Beland MJ, Aiello VD, Colan SD, Elliott MJ, William Gaynor J, Kurosawa H, Maruszewski B, et al. Nomenclature for congenital and paediatric cardiac disease: historical perspectives and the international pediatric and congenital cardiac code. Cardiol Young. 2008;18(Suppl 2):70–80. doi: 10.1017/S1047951108002795.
    1. Jacobs JP, Franklin RC, Wilkinson JL, Cochrane AD, Karl TR, Aiello VD, Beland MJ, Colan SD, Elliott MJ, Gaynor JW, et al. The nomenclature, definition and classification of discordant atrioventricular connections. Cardiol Young. 2006;16(Suppl 3):72–84. doi: 10.1017/S1047951106000795.
    1. Jacobs JP, O'Brien SM, Pasquali SK, Jacobs ML, Lacour-Gayet FG, Tchervenkov CI, Austin EH, 3rd, Pizarro C, Pourmoghadam KK, Scholl FG, et al. Variation in outcomes for risk-stratified pediatric cardiac surgical operations: an analysis of the STS congenital heart surgery database. Ann Thorac Surg. 2012;94(2):564–571. doi: 10.1016/j.athoracsur.2012.01.105.
    1. Jacobs JP, O'Brien SM, Pasquali SK, Jacobs ML, Lacour-Gayet FG, Tchervenkov CI, Austin EH, 3rd, Pizarro C, Pourmoghadam KK, Scholl FG, et al. Variation in outcomes for benchmark operations: an analysis of the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg. 2011;92(6):2184–2191. doi: 10.1016/j.athoracsur.2011.06.008.
    1. Jacobs JP, O'Brien SM, Pasquali SK, Kim S, Gaynor JW, Tchervenkov CI, Karamlou T, Welke KF, Lacour-Gayet F, Mavroudis C, et al. The importance of patient-specific preoperative factors: an analysis of the society of thoracic surgeons congenital heart surgery database. Ann Thorac Surg. 2014;98(5):1653–1658. doi: 10.1016/j.athoracsur.2014.07.029.
    1. Vinocur JM, Menk JS, Connett J, Moller JH, Kochilas LK. Surgical volume and center effects on early mortality after pediatric cardiac surgery: 25-year North American experience from a multi-institutional registry. Pediatr Cardiol. 2013;34(5):1226–1236. doi: 10.1007/s00246-013-0633-4.
    1. Kempny A, Dimopoulos K, Uebing A, Diller GP, Rosendahl U, Belitsis G, Gatzoulis MA, Wort SJ. Outcome of cardiac surgery in patients with congenital heart disease in England between 1997 and 2015. PLoS One. 2017;12(6):e0178963. doi: 10.1371/journal.pone.0178963.
    1. Kansy A, Tobota Z, Maruszewski P, Maruszewski B. Analysis of 14,843 neonatal congenital heart surgical procedures in the European Association for Card iothoracic Surgery Congenital Database. Ann Thorac Surg. 2010;89(4):1255–1259. doi: 10.1016/j.athoracsur.2010.01.003.
    1. Curzon CL, Milford-Beland S, Li JS, O'Brien SM, Jacobs JP, Jacobs ML, Welke KF, Lodge AJ, Peterson ED, Jaggers J. Cardiac surgery in infants with low birth weight is associated with increased mortality: analysis of the Society of Thoracic Surgeons Congenital Heart Database. J Thorac Cardiovasc Surg. 2008;135(3):546–551. doi: 10.1016/j.jtcvs.2007.09.068.
    1. Miyata H, Murakami A, Tomotaki A, Takaoka T, Konuma T, Matsumura G, Sano S, Takamoto S. Predictors of 90-day mortality after congenital heart surgery: the first report of risk models from a Japanese database. J Thorac Cardiovasc Surg. 2014;148(5):2201–2206. doi: 10.1016/j.jtcvs.2013.01.053.
    1. Spector LG, Menk JS, Knight JH, McCracken C, Thomas AS, Vinocur JM, Oster ME, St Louis JD, Moller JH, Kochilas L. Trends in long-term mortality after congenital heart surgery. J Am Coll Cardiol. 2018;71(21):2434–2446. doi: 10.1016/j.jacc.2018.03.491.
    1. Chang RK, Chen AY, Klitzner TS. Female sex as a risk factor for in-hospital mortality among children undergoing cardiac surgery. Circulation. 2002;106(12):1514–1522. doi: 10.1161/01.CIR.0000029104.94858.6F.
    1. DiBardino DJ, Pasquali SK, Hirsch JC, Benjamin DK, Kleeman KC, Salazar JD, Jacobs ML, Mayer JE, Jacobs JP. Effect of sex and race on outcome in patients undergoing congenital heart surgery: an analysis of the society of thoracic surgeons congenital heart surgery database. Ann Thorac Surg. 2012;94(6):2054–2059. doi: 10.1016/j.athoracsur.2012.05.124.
    1. Seifert HA, Howard DL, Silber JH, Jobes DR. Female gender increases the risk of death during hospitalization for pediatric cardiac surgery. J Thorac Cardiovasc Surg. 2007;133(3):668–675. doi: 10.1016/j.jtcvs.2006.11.014.
    1. Klitzner TS, Lee M, Rodriguez S, Chang RK. Sex-related disparity in surgical mortality among pediatric patients. Congenit Heart Dis. 2006;1(3):77–88. doi: 10.1111/j.1747-0803.2006.00013.x.
    1. Marelli A, Gauvreau K, Landzberg M, Jenkins K. Sex differences in mortality in children undergoing congenital heart disease surgery: a United States population-based study. Circulation. 2010;122(11 Suppl):S234–S240.
    1. Lui RC, Zhuang J, Lei BF. A better option for patients with TGA/VSD and severe pulmonary hypertension undergoing palliative arterial switch operation. Ann Thorac Surg. 2012;93(2):692. doi: 10.1016/j.athoracsur.2011.06.039.
    1. Lei Q, Zeng QS, Zhang XS, Xie B, Huang HL, Wang S, Guo HM, Chen JM, Zhuang J. Bilateral subclavian vein sheaths for superior vena cava drainage during thoracoscopic repair of atrial septal defects: cosmetic outcomes, safety and effectiveness. Perfusion. 2016;31(3):240–246. doi: 10.1177/0267659115597994.
    1. Zhang C, Ou Y, Zhuang J, Chen J, Nie Z, Ding Y. Comparison of sutureless and conventional techniques to repair total anomalous pulmonary venous connection. Semin Thorac Cardiovasc Surg. 2016;28(2):473–484. doi: 10.1053/j.semtcvs.2016.05.009.
    1. Zhang Z, Chen N, Liu JB, Wu JB, Zhang J, Zhang Y, Jiang X. Protective effect of resveratrol against acute lung injury induced by lipopolysaccharide via inhibiting the myd88-dependent toll-like receptor 4 signaling pathway. Mol Med Rep. 2014;10(1):101–106. doi: 10.3892/mmr.2014.2226.
    1. Liu J, Guo HM, Xie B, Guo HJ, Chen JM, Zhuang J. Giant left ventricular myxoma with obstruction of the left ventricular outflow tract. Ann Thorac Surg. 2016;101(3):e63–e64. doi: 10.1016/j.athoracsur.2015.09.043.
    1. Lei BF, Chen JM, Cen JZ, Lui RC, Ding YQ, Xu G, Zhuang J. Palliative arterial switch for transposition of the great arteries, ventricular septal defect, and pulmonary vascular obstructive disease: midterm outcomes. J Thorac Cardiovasc Surg. 2010;140(4):845–849. doi: 10.1016/j.jtcvs.2010.04.010.

Source: PubMed

3
Předplatit