Histological and immunohistochemical comparison of two different allogeneic bone grafting materials for alveolar ridge reconstruction: A prospective randomized trial in humans

Önder Solakoglu, Werner Götz, Guido Heydecke, Heidi Schwarzenbach, Önder Solakoglu, Werner Götz, Guido Heydecke, Heidi Schwarzenbach

Abstract

Background: Preclinical studies have hypothesized a possible immunological reponse to allogeneic materials due to detection of remnants of potential immunogenic molecules. However, their impact on integration, bone remodeling and immunological reaction after the augmentation procedure is largely unknown and a direct correlation of analytical data and evaluation of human biopsies is missing.

Purpose: The present study aimed to compare two commercially available allogeneic materials regarding their content of cellular remnants as well as the bone remodeling, and integration and potential immunologic reactions on a histological and immunohistochemical level, integrating also in vitro analytical evaluation of the specific batches that were used clinically.

Materials and methods: Twenty patients were randomly assigned to treatment with Maxgraft or Puros for lateral ridge augmentation in a two-stage surgery. After a mean healing period of 5 months, implants were placed and biopsies were taken for histological, immunhistochemical, and histomorphometrical evaluation regarding bone remodeling and inflammation, protein concentrations in vitro and the presence of MHC molecules of the same batches used clinically.

Results: No differences in clinical outcome, histological, immunohistochemical, and in vitro protein analysis between the two bone grafting materials were observed. Active bone remodeling, amount of newly formed bone, and residual grafting material was independent of the materials used, but varied between subjects. MHC1 residues were not detected in any sample.

Conclusions: Within the limitations of this study, both tested materials yielded equivalent results in terms of clinical outcome, new bone formation, and lack of immunological potential on a histological and immunohistochemical level.

Keywords: guided bone regeneration; histomorphometry; human histology; lateral ridge augmentation; particulated bone allograft.

Conflict of interest statement

All authors have no conflicts of interest to report.

© 2019 The Authors. Clinical Implant Dentistry and Related Research Published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
Overview of the surgical procedure. A very thin alveolar crest appeared after reflection of a mucoperiosteal flap (A). The alveolar ridge was then prepared with cortical perforations (B). Thereafter, the bone allograft material soaked in the second phase of the PRGF solution was applied in order to build up the alveolar bone volume necessary for future implant placement (C). It was then covered with a resorbable collagen membrane (D). The surgical site was primarily closed by means of a periosteal incision (E), the use of horizontal mattress sutures and a continuous half‐hitch suture. The second surgical procedure took place after a healing period of 4 months. The significant gain in alveolar ridge volume can be appreciated (F). Four implants were placed according to the manufacturer's recommendations (Straumann Group, Basel Switzerland). Four months later, the implants were uncovered (G). Postoperative two‐dimensional radiographs demonstrate stable integration of the implants 36 months after final restauration (H)
Figure 2
Figure 2
Histology. Representative photomicrographs of biopsies; Maxgraft shown in (A), (C), and (E), Puros in (B), (D) and (F); osteogenesis around allogenic particles (stars, A, B, E, F); progressed osteogenesis without allogenic remnants (C) and embedded small allogenic remnant (D); small infiltrates (arrows, E, F); HE staining, original magnification ×20 except 2E (×10)
Figure 3
Figure 3
Histochemistry and immunohistochemistry I. Representative photomicrographs of biopsies; Maxgraft shown in (A), (C), (E), and (G), Puros in (B), (D), (F) and (H); osteoclasts on bone surfaces (arrows), TRAP staining, original magnification ×10 (A, B); alkaline phosphatase immunohistochemistry, arrows indicate immunoreactive osteoblasts; DAB, ×40; CD4 immunohistochemistry, arrows indicate very few immunoreactive cells, DAB, ×40 (E, F); CD3 immunohistochemistry, arrows indicate few immunoreactive cells, DAB ×20, ×40 (H)
Figure 4
Figure 4
Immunohistochemistry II. Representative photomicrographs of biopsies; Maxgraft shown in (A) and (C), Puros in (B) and (D); collagen type I immunohistochemistry; immunoreactive newly formed bone matrix and osteoblasts, focally reactive connective tissue and vessel walls (arrow, A, B, C, D), no immunostaining in allogenic remnants (stars, C, D), DAB, original magnification ×20; ED1 immunohistochemistry, immunoreactive osteoclasts on bone and allogenic surfaces (arrows, E, F), DAB, ×40
Figure 5
Figure 5
Immunohistochemistry III. Representative photomicrographs of biopsies; Maxgraft shown in (A), (C), (E), and (G), Puros in (B), (D), (F), and (H); osteocalcin immunohistochemistry, immunoreactive osteoid (arrows) and osteocytes, DAB, original magnification ×20 (A, B); osteopontin immunohistochemistry, immunoreactive connective tissue (stars, C, D), DAB, x20; runx2 immunohistochemistry, immunoreactive pre‐osteoblasts and osteoblasts on the surfaces of newly formed bone (arrows, E, F), DAB, ×40; vWF immunohistochemistry, immunoreactive vessels near bone and among allogenic granules (arrows, G, H), DAB, ×10

References

    1. Tan WL, Wong TLT, Wong MCM, Lang NP. A systematic review of post‐extractional alveolar hard and soft tissue dimensional changes in humans. Clin Oral Implants Res. 2012;23(Suppl 5):1‐21. 10.1111/j.1600-0501.2011.02375.x.
    1. Sanz M, Vignoletti F. Key aspects on the use of bone substitutes for bone regeneration of edentulous ridges. Dent Mater. 2015;31:640‐647. 10.1016/j.dental.2015.03.005.
    1. Baj A, Trapella G, Lauritano D, Candotto V, Mancini GE, Giannì AB. An overview on bone reconstruction of atrophic maxilla: success parameters and critical issues. J Biol Regul Homeost Agents. 2016;30:209‐215.
    1. Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology‐is it still a “gold standard”? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent. 2017;3:23 10.1186/s40729-017-0084-4.
    1. Nkenke E, Neukam FW. Autogenous bone harvesting and grafting in advanced jaw resorption: morbidity, resorption and implant survival. Eur J Oral Implantol. 2014;7(Suppl 2):S203‐S217.
    1. Kolk A, Handschel J, Drescher W, et al. Current trends and future perspectives of bone substitute materials ‐ from space holders to innovative biomaterials. J Craniomaxillofac Surg. 2012;40:706‐718. 10.1016/j.jcms.2012.01.002.
    1. Smeets R, Hanken H, Jung O, et al. KnochenersatzmaterialienBone substitute materials. Der MKG‐Chirurg. 2014;7:53‐67.
    1. Krasny K, Kaminski A, Krasny M, et al. Preparation of allogeneic bone for alveolar ridge augmentation. Cell Tissue Bank. 2017;18:313‐321. 10.1007/s10561-017-9631-8.
    1. Hinsenkamp M, Muylle L, Eastlund T, Fehily D, Noël L, Strong DM. Adverse reactions and events related to musculoskeletal allografts: reviewed by the World Health Organisation project NOTIFY. Int Orthop. 2012;36:633‐641. 10.1007/s00264-011-1391-7.
    1. Simpson D, Kakarala G, Hampson K, Steele N, Ashton B. Viable cells survive in fresh frozen human bone allografts. Acta Orthop. 2007;78:26‐30. 10.1080/17453670610013385.
    1. Fretwurst T, Spanou A, Nelson K, Wein M, Steinberg T, Stricker A. Comparison of four different allogeneic bone grafts for alveolar ridge reconstruction: a preliminary histologic and biochemical analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;118:424‐431. 10.1016/j.oooo.2014.05.020.
    1. O'Sullivan ED, Battle RK, Zahra S, Keating JF, Marson LP, Turner DM. Allosensitization following bone graft. Am J Transplant. 2017;17:2207‐2211.
    1. Fretwurst T, Gad LM, Steinberg T, et al. Detection of major histocompatibility complex molecules in processed allogeneic bone blocks for use in alveolar ridge reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol. 2018;126:16‐21.
    1. von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg. 2014;12:1495‐1499. 10.1016/j.ijsu.2014.07.013.
    1. Seibert JS. Reconstruction of deformed, partially edentulous ridges, using full thickness onlay grafts. Part I. technique and wound healing. Compend Contin Educ Dent. 1983;4:549‐562.
    1. Ramachandra SS, Rana R, Reetika S, Jithendra KD. Options to avoid the second surgical site: a review of literature. Cell Tissue Bank. 2014;15:297‐305. 10.1007/s10561-013-9395-8.
    1. Eda T, Takahashi K, Kanao S, et al. Comparison study between plasma rich in growth factors and platelet‐rich plasma for osteoconduction in rat calvaria. J Oral Maxillofac Surgery, Med Pathol. 2017;29:563‐569.
    1. Anitua EA. Enhancement of osseointegration by generating a dynamic implant surface. J Oral Implantol. 2006;32:72‐76. 10.1563/736.1.
    1. Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue ‐ a review. Diagn Pathol. 2014;9:221.
    1. Koerdt S, Siebers J, Bloch W, Ristow O, Kuebler AC, Reuther T. Immunohistochemial study on the expression of von Willebrand factor (vWF) after onlay autogenous iliac grafts for lateral alveolar ridge augmentation. Head Face Med. 2013;9 10.1186/1746-160X-9-40.
    1. Wälivaara D‐å, Abrahamsson P. Evaluation of 4 different bone graft substitutes and autogenous bone grafting in root‐end resection osteotomies after retrograde root‐filling with intermediate restorative material (IRM): an experimental study in dogs. Open J Stomatol. 2013;3:203‐208.
    1. Konermann A, Gotz W, Le M, et al. Histopathological verification of osteoimmunological mediators in peri‐implantitis and correlation to bone loss and implant functional period. J Oral Implantol. 2016;42:61‐68. 10.1563/aaid-joi-D-13-00355.
    1. Xia Z, Triffitt JT. A review on macrophage responses to biomaterials. Biomed Mater. 2006;1:R1‐R9. 10.1088/1748-6041/1/1/R01.
    1. Schmidt‐Bleek K, Schell H, Schulz N, et al. Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell Tissue Res. 2012;347:567‐573. 10.1007/s00441-011-1205-7.
    1. Bozec A, Zaiss MM. T regulatory cells in bone remodelling. Curr Osteoporos Rep. 2017;15:121‐125. 10.1007/s11914-017-0356-1.
    1. Kalyan S. It may seem inflammatory, but some T cells are innately healing to the bone. J Bone Miner Res. 2016;31:1997‐2000. 10.1002/jbmr.2875.
    1. Lorenz J, Kubesch A, Al‐Maawi S, et al. Allogeneic bone block for challenging augmentation‐a clinical, histological, and histomorphometrical investigation of tissue reaction and new bone formation. Clin Oral Investig. 2018;22:3159‐3169. 10.1007/s00784-018-2407-0.
    1. Pruss A, Baumann B, Seibold M, et al. Validation of the sterilization procedure of allogeneic avital bone transplants using peracetic acid‐ethanol. Biologicals. 2001;29:59‐66. 10.1006/biol.2001.0286.
    1. Pruss A, Göbel UB, Pauli G, et al. Peracetic acid‐ethanol treatment of allogeneic avital bone tissue transplants–a reliable sterilization method. Ann Transplant. 2003;8:34‐42.
    1. Pruss A, Perka C, Degenhardt P, et al. Clinical efficacy and compatibility of allogeneic avital tissue transplants sterilized with a peracetic acid/ethanol mixture. Cell Tissue Bank. 2002;3:235‐243. 10.1023/A:1024697515420.
    1. Mosconi G, Baraldi O, Fantinati C, et al. Donor‐specific anti‐HLA antibodies after bone‐graft transplantation. Impact on a subsequent renal transplantation: a case report. Transplant Proc. 2009;41:1138‐1141. 10.1016/j.transproceed.2009.02.059.
    1. Trajkovski B, Jaunich M, Muller W‐D, et al. Hydrophilicity, viscoelastic, and physicochemical properties variations in dental bone grafting substitutes. Mater (Basel, Switzerland). 2018;11 10.3390/ma11020215.
    1. Diepenhorst NA, Nowell CJ, Rueda P, et al. High throughput, quantitative analysis of human osteoclast differentiation and activity. Anal Biochem. 2017;519:51‐56.
    1. Danesh‐Sani SA, Engebretson SP, Janal MN. Histomorphometric results of different grafting materials and effect of healing time on bone maturation after sinus floor augmentation: a systematic review and meta‐analysis. J Periodontal Res. 2017;52:301‐312. 10.1111/jre.12402.
    1. Froum SJ, Tarnow DP, Wallace SS, et al. The use of a mineralized allograft for sinus augmentation: an interim histological case report from a prospective clinical study. Compend Contin Educ Dent. 2005;26:259‐260. 261‐266, 262–264.
    1. Gapski R, Neiva R, Oh T‐J, Wang H‐L. Histologic analyses of human mineralized bone grafting material in sinus elevation procedures: a case series. Int J Periodontics Restorative Dent. 2006;26:59‐69.
    1. Froum SJ, Wallace SS, Elian N, Cho SC, Tarnow DP. Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (bio‐Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting. Int J Periodontics Restorative Dent. 2006;26:543‐551.
    1. Soardi CM, Spinato S, Zaffe D, Wang H‐L. Atrophic maxillary floor augmentation by mineralized human bone allograft in sinuses of different size: an histologic and histomorphometric analysis. Clin Oral Implants Res. 2011;22:560‐566. 10.1111/j.1600-0501.2010.02034.x.
    1. Block MS. Horizontal ridge augmentation using particulate bone. Atlas Oral Maxillofac Surg Clin North Am. 2006;14:27‐38. 10.1016/j.cxom.2005.11.004.
    1. Friedmann A, Gissel K, Konermann A, Gotz W. Tissue reactions after simultaneous alveolar ridge augmentation with biphasic calcium phosphate and implant insertion–histological and immunohistochemical evaluation in humans. Clin Oral Investig. 2015;19:1595‐1603. 10.1007/s00784-014-1385-0.
    1. Gotz W, Gerber T, Michel B, et al. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone[r]) osteogenesis: a study on biopsies from human jaws. Clin Oral Implants Res. 2008;19:1016‐1026. 10.1111/j.1600-0501.2008.01569.x.
    1. Noumbissi SS, Lozada JL, Boyne PJ, et al. Clinical, histologic, and histomorphometric evaluation of mineralized solvent‐dehydrated bone allograf (Puros) in human maxillary sinus grafts. J Oral Implantol. 2005;31:171‐179.
    1. Stacchi C, Orsini G, Di Iorio D, et al. Clinical, histologic, and histomorphometric analyses of regenerated bone in maxillary sinus augmentation using fresh frozen human bone allografts. J Periodontol. 2008;79:1789‐1796. 10.1902/jop.2008.070649.
    1. Beck TM, Mealey BL. Histologic analysis of healing after tooth extraction with ridge preservation using mineralized human bone allograft. J Periodontol. 2010;81:1765‐1772. 10.1902/jop.2010.100286.
    1. Schmitt CM, Doering H, Schmidt T, Lutz R, Neukam FW, Schlegel KA. Histological results after maxillary sinus augmentation with Straumann(R) BoneCeramic, bio‐Oss(R), Puros(R), and autologous bone. A randomized controlled clinical trial. Clin Oral Implants Res. 2013;24:576‐585. 10.1111/j.1600-0501.2012.02431.x.
    1. Spin‐Neto R, Stavropoulos A, Coletti FL, Faeda RS, Pereira LAVD, Marcantonio E Jr. Graft incorporation and implant osseointegration following the use of autologous and fresh‐frozen allogeneic block bone grafts for lateral ridge augmentation. Clin Oral Implants Res. 2014;25:226‐233. 10.1111/clr.12107.
    1. Galindo‐Moreno P, de Buitrago JG, Padial‐Molina M, Fernández‐Barbero JE, Ata‐Ali J, O′Valle F. Histopathological comparison of healing after maxillary sinus augmentation using xenograft mixed with autogenous bone versus allograft mixed with autogenous bone. Clin Oral Implants Res. 2018;29:192‐201. 10.1111/clr.13098.
    1. Hawthorne AC, Xavier SP, Okamoto R, Salvador SL, Antunes AA, Salata LA. Immunohistochemical, tomographic, and histological study on onlay bone graft remodeling. Part III: allografts. Clin Oral Implants Res. 2013;24:1164‐1172. 10.1111/j.1600-0501.2012.02528.x.
    1. Spin‐Neto R, Stavropoulos A, Coletti FL, Pereira LAVD, Marcantonio E Jr, Wenzel A. Remodeling of cortical and corticocancellous fresh‐frozen allogeneic block bone grafts–a radiographic and histomorphometric comparison to autologous bone grafts. Clin Oral Implants Res. 2015;26:747‐752. 10.1111/clr.12343.
    1. Xavier SP, Dias RR, Sehn FP, Kahn A, Chaushu L, Chaushu G. Maxillary sinus grafting with autograft vs. fresh frozen allograft: a split‐mouth histomorphometric study. Clin Oral Implants Res. 2015;26:1080‐1085. 10.1111/clr.12404.
    1. Monje A, O'Valle F, Monje‐Gil F, et al. Cellular, vascular, and Histomorphometric outcomes of solvent‐dehydrated vs freeze‐dried allogeneic graft for maxillary sinus augmentation: a randomized case series. Int J Oral Maxillofac Implants. 2017;32:121‐127. 10.11607/jomi.4801.
    1. Dragonas P, Schiavo JH, Avila‐Ortiz G, Palaiologou A, Katsaros T. Plasma rich in growth factors (PRGF) in intraoral bone grafting procedures: a systematic review. J Craniomaxillofac Surg. 2019;47:443‐453. 10.1016/j.jcms.2019.01.012.
    1. Moraschini V, Barboza ESP. Effect of autologous platelet concentrates for alveolar socket preservation: a systematic review. Int J Oral Maxillofac Surg. 2015;44:632‐641. 10.1016/j.ijom.2014.12.010.
    1. Kangwannarongkul T, Subbalekha K, Vivatbutsiri P, Suwanwela J. Gene expression and microcomputed tomography analysis of grafted bone using Deproteinized bovine bone and freeze‐dried human bone. Int J Oral Maxillofac Implants. 2018;33:541‐548. 10.11607/jomi.6234.
    1. Yukna RA, Vastardis S. Comparative evaluation of decalcified and non‐decalcified freeze‐dried bone allografts in rhesus monkeys. I. Histologic findings. J Periodontol. 2005;76:57‐65. 10.1902/jop.2005.76.1.57.
    1. De Ponte FS, Cutroneo G, Falzea R, et al. Histochemical and morphological aspects of fresh frozen bone: a preliminary study. Eur J Histochem. 2016;60:2642 10.4081/ejh.2016.2642.

Source: PubMed

3
Předplatit