Post-contrast acute kidney injury - Part 1: Definition, clinical features, incidence, role of contrast medium and risk factors : Recommendations for updated ESUR Contrast Medium Safety Committee guidelines

Aart J van der Molen, Peter Reimer, Ilona A Dekkers, Georg Bongartz, Marie-France Bellin, Michele Bertolotto, Olivier Clement, Gertraud Heinz-Peer, Fulvio Stacul, Judith A W Webb, Henrik S Thomsen, Aart J van der Molen, Peter Reimer, Ilona A Dekkers, Georg Bongartz, Marie-France Bellin, Michele Bertolotto, Olivier Clement, Gertraud Heinz-Peer, Fulvio Stacul, Judith A W Webb, Henrik S Thomsen

Abstract

Purpose: The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 2011 guidelines on the prevention of post-contrast acute kidney injury (PC-AKI). The results of the literature review and the recommendations based on it, which were used to prepare the new guidelines, are presented in two papers. AREAS COVERED IN PART 1: Topics reviewed include the terminology used, the best way to measure eGFR, the definition of PC-AKI, and the risk factors for PC-AKI, including whether the risk with intravenous and intra-arterial contrast medium differs.

Key points: • PC-AKI is the preferred term for renal function deterioration after contrast medium. • PC-AKI has many possible causes. • The risk of AKI caused by intravascular contrast medium has been overstated. • Important patient risk factors for PC-AKI are CKD and dehydration.

Keywords: Acute kidney injury; Contrast media; Glomerular filtration rate; Practice guidelines as topic; Risk factors.

Conflict of interest statement

Guarantor

The scientific guarantor of this publication is Prof. Henrik S. Thomsen.

Conflict of interest

Aart van der Molen has received incidental payments for lectures and chairmanships at scientific meetings for contrast agent safety related issues (contrast agent reactions, Gd-retention) from GE, Bayer, Bracco and Guerbet

Fulvio Stacul has received lecture fees from Bracco and Guerbet

Olivier Clément has received lecture fees from Bracco and Guerbet

The other authors of this manuscript declare no relationships with any companies whose products and services may be related to the subject matter of this article.

References

    1. Stacul F, van der Molen AJ, Reimer P, Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR) et al. Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol. 2011;21:2527–2541. doi: 10.1007/s00330-011-2225-0.
    1. Morcos SK, Thomsen HS, Webb JA, Contrast Media Safety Committee of the European Society of Urogenital Radiology (ESUR) et al. Dialysis and contrast media. Eur Radiol. 2002;12:3026–3030.
    1. Contrast Media Safety Committee ESUR. Guidelines on Contrast Media v9. CMSC, 2014. Available via: Accessed: 14 December 2017
    1. Gruberg L, Mintz GS, Mehran R, et al. The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J Am Coll Cardiol. 2000;36:1542–1548. doi: 10.1016/S0735-1097(00)00917-7.
    1. Gupta R, Gurm HS, Bhatt DL, et al. Renal failure after percutaneous coronary intervention is associated with high mortality. Catheter Cardiovasc Interv. 2005;64:442–448. doi: 10.1002/ccd.20316.
    1. James MT, Samuel SM, Manning MA, et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography a systematic review and meta-analysis. Circ Cardiovasc Interv. 2013;6:37–43. doi: 10.1161/CIRCINTERVENTIONS.112.974493.
    1. Kooiman J, Seth M, Nallamothu BK, et al. Association between acute kidney injury and in-hospital mortality in patients undergoing percutaneous coronary interventions. Circ Cardiovasc Interv. 2015;8:e002212. doi: 10.1161/CIRCINTERVENTIONS.114.002212.
    1. Mitchell AM, Kline JA, Jones AE, et al. Major adverse events one year after acute kidney injury after contrast-enhanced computed tomography. Ann Emerg Med. 2015;66:267–274.e4. doi: 10.1016/j.annemergmed.2015.04.028.
    1. Rihal CS, Textor SC, Grill DE, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105:2259–2264. doi: 10.1161/01.CIR.0000016043.87291.33.
    1. Rudnick M, Feldman H. Contrast-induced nephropathy: what are the true clinical consequences? Clin J Am Soc Nephrol. 2008;3:263–272. doi: 10.2215/CJN.03690907.
    1. Kooiman J, Pasha SM, Zondag W, et al. Meta-analysis: serum creatinine changes following contrast enhanced CT imaging. Eur J Radiol. 2012;81:2554–2561. doi: 10.1016/j.ejrad.2011.11.020.
    1. Moos SI, van Vemde DN, Stoker J, et al. Contrast induced nephropathy in patients undergoing intravenous (IV) contrast enhanced computed tomography (CECT) and the relationship with risk factors: a meta-analysis. Eur J Radiol. 2013;82:e387–e399. doi: 10.1016/j.ejrad.2013.04.029.
    1. Solomon R. Contrast-induced acute kidney injury: is there a risk after intravenous contrast? Clin J Am Soc Nephrol. 2008;3:1242–1243. doi: 10.2215/CJN.03470708.
    1. Dong M, Jiao Z, Liu T et al (2012) Effect of administration route on the renal safety of contrast agents: a meta-analysis of randomized controled trials. J Nephrol 25:290–301.
    1. Keeley EC. Grines CL (1998) Scraping of aortic debris by coronary guiding catheters: a prospective evaluation of 1,000 cases. J Am Coll Cardiol. 1998;32:1861–1865. doi: 10.1016/S0735-1097(98)00497-5.
    1. Wichmann JL, Katzberg RW, Litwin SE, et al. Contrast-induced nephropathy. Circulation. 2015;132:1931–1936. doi: 10.1161/CIRCULATIONAHA.115.014672.
    1. Newhouse JH, Kho D, Rao QA, et al. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am J Roentgenol. 2008;191:376–382. doi: 10.2214/AJR.07.3280.
    1. Bruce RJ, Djamali A, Shinki K, et al. Background fluctuation of kidney function versus contrast-induced nephrotoxicity. AJR American Journal of Roentgenology. 2009;192:711–718. doi: 10.2214/AJR.08.1413.
    1. Brouwers M, Kho ME, Browman GP, on behalf of the AGREE Next Steps Consortium et al. AGREE II: Advancing guideline development, reporting and evaluation in healthcare. Can Med Assoc J. 2010;182:E839–E842. doi: 10.1503/cmaj.090449.
    1. Guyatt GH, Oxman AD, Kunz R, et al. GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol. 2011;64:395–400. doi: 10.1016/j.jclinepi.2010.09.012.
    1. OCEBM Levels of Evidence Working Group. The Oxford 2011 Levels of Evidence. Oxford Centre for Evidence-Based Medicine. Available via: Accessed 14 December 2017
    1. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P, Acute Dialysis Quality Initiative workgroup Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–R212. doi: 10.1186/cc2872.
    1. Levey AS, Eckardt KU, Tsukamoto Y, et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO) Kidney Int. 2005;67:2089–2100. doi: 10.1111/j.1523-1755.2005.00365.x.
    1. Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11:R31. doi: 10.1186/cc5713.
    1. ACR Committee on Drugs and Contrast Media. ACR Manual on Contrast Media, v10.3. American College of Radiology, 2017 Available via: Accessed: 14 December 2017
    1. Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1) Crit Care. 2013;17:204. doi: 10.1186/cc11454.
    1. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012;2:1–138. doi: 10.1038/kisup.2012.1.
    1. Morcos SK, Thomsen HS, Webb JA. Contrast-media-induced nephrotoxicity: a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR) Eur Radiol. 1999;9:1602–1613. doi: 10.1007/s003300050894.
    1. Pyxaras SA, Zhang Y, Wolf A, Schmitz T, Naber CK. Effect of varying definitions of contrast-induced acute kidney injury and left ventricular ejection fraction on one-year mortality in patients having transcatheter aortic valve implantation. Am J Cardiol. 2015;116:426–430. doi: 10.1016/j.amjcard.2015.04.056.
    1. Slocum NK, Grossman PM, Moscucci M, et al. The changing definition of contrast-induced nephropathy and its clinical implications: insights from the Blue Cross Blue Shield of Michigan Cardiovascular Consortium (BMC2) Am Heart J. 2012;163:829–834. doi: 10.1016/j.ahj.2012.02.011.
    1. Weisbord SD, Mor MK, Resnick AL, Hartwig KC, Palevsky PM, Fine MJ. Incidence and outcomes of contrast-induced AKI following computed tomography. Clin J Am Soc Nephrol. 2008;3:1274–1281. doi: 10.2215/CJN.01260308.
    1. Budano C, Levis M, D'Amico M, et al. Impact of contrast-induced acute kidney injury definition on clinical outcomes. Am Heart J. 2011;161:963–971. doi: 10.1016/j.ahj.2011.02.004.
    1. Azzouz M, Rømsing J, Thomsen HS. Fluctuations in eGFR in relation to unenhanced and enhanced MRI and CT outpatients. Eur J Radiol. 2014;83:886–892. doi: 10.1016/j.ejrad.2014.02.014.
    1. Thomsen HS, Morcos SK. Risk of iodinated contrast material-induced nephropathy with intravenous administration. Eur Radiol. 2009;19:891–897. doi: 10.1007/s00330-008-1206-4.
    1. Lakhal K, Ehrmann S, Chaari A, et al. Acute Kidney Injury Network definition of contrast-induced nephropathy in the critically ill: incidence and outcome. J Crit Care. 2011;26:593–599. doi: 10.1016/j.jcrc.2011.05.010.
    1. Garfinkle MA, Stewart S, Basi R. Incidence of CT contrast agent-induced nephropathy: toward a more accurate estimation. AJR Am J Roentgenol. 2015;204:1146–1151. doi: 10.2214/AJR.14.13761.
    1. Thomas ME, Blaine C, Dawnay A, et al. The definition of acute kidney injury and its use in practice. Kidney Int. 2015;87:62–73. doi: 10.1038/ki.2014.328.
    1. Fliser D, Laville M, Covic A, et al. A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant. 2012;27:4263–4272. doi: 10.1093/ndt/gfs375.
    1. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–470. doi: 10.7326/0003-4819-130-6-199903160-00002.
    1. Levey AS, Coresh J, Greene T, et al. Expressing the MDRD study equation for estimating GFR with standardized serum creatinine values. Clin Chem. 2007;53:766–772. doi: 10.1373/clinchem.2006.077180.
    1. Levey AS, Coresh J, Greene T, Chronic Kidney Disease Epidemiology Collaboration et al (2006) Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254.
    1. Levey AS, Stevens LA, Schmid CH, CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Stevens LA, Li S, Kurella Tamura M, et al. Comparison of the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) study equations: risk factors for and complications of CKD and mortality in the Kidney Early Evaluation Program (KEEP) Am J Kidney Dis. 2011;57:S9–S16. doi: 10.1053/j.ajkd.2010.11.007.
    1. Björk J, Jones I, Nyman U, Sjostrom P. Validation of the Lund-Malmo, Chronic Kidney Disease Epidemiology (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) equations to estimate glomerular filtration rate in a large Swedish clinical population. Scand J Urol Nephrol. 2012;46:212–222. doi: 10.3109/00365599.2011.644859.
    1. Schäffner ES, Ebert N, Delanaye P, et al. Two novel equations to estimate kidney function in persons aged 70 years or older. Ann Intern Med. 2012;157:471–481. doi: 10.7326/0003-4819-157-7-201210020-00003.
    1. Pottel H, Hoste L, Dubourg L, et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant. 2016;31:798–806. doi: 10.1093/ndt/gfv454.
    1. Florkowski CM, Chew-Harris JSC. Methods of Estimating GFR – Different Equations Including CKD-EPI. Clin Biochem Rev. 2011;32:75–79.
    1. Delanaye P, Ebert N. Assessment of kidney function: estimating GFR in children. Nat Rev Nephrol. 2012;8:503–504. doi: 10.1038/nrneph.2012.163.
    1. Schwartz GJ, Haycock GB, Edelmann CM, Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58:259–263.
    1. Schwartz GJ, Munoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20:629–637. doi: 10.1681/ASN.2008030287.
    1. Schwartz GJ, Schneider MF, Maier PS, et al. Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int. 2012;82:445–453. doi: 10.1038/ki.2012.169.
    1. Martinez Lomakin F, Tobar C. Accuracy of point-of-care serum creatinine devices for detecting patients at risk of contrast-induced nephropathy: a critical overview. Crit Rev Clin Lab Sci. 2014;51:332–343. doi: 10.3109/10408363.2014.937794.
    1. Rao QA, Newhouse JH. Risk of nephropathy after intravenous administration of contrast material: a critical literature analysis. Radiology. 2006;239:392–397. doi: 10.1148/radiol.2392050413.
    1. Katzberg RW, Newhouse JH. Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe? Radiology. 2010;256:21–28. doi: 10.1148/radiol.10092000.
    1. Stratta P, Bozzola C, Quaglia M. Pitfall in nephrology: contrast nephropathy has to be differentiated from renal damage due to atheroembolic disease. J Nephrol. 2012;25:282–289. doi: 10.5301/jn.5000093.
    1. McDonald RJ, McDonald JS, Newhouse JH, Davenport MS. Controversies in contrast material-induced acute kidney injury: closing in on the truth? Radiology. 2015;277:627–632. doi: 10.1148/radiol.2015151486.
    1. Nyman U, Aspelin P, Jakobsen J, Bjork J. Controversies in contrast material-induced acute kidney injury: Propensity Score matching of patients with different dose/absolute glomerular filtration rate ratios. Radiology. 2015;277:633–637. doi: 10.1148/radiol.2015151341.
    1. Ricos C, Iglesias N, Garcia-Lario JV, et al. Within-subject biological variation in disease: collated data and clinical consequences. Ann Clin Biochem. 2007;44:343–352. doi: 10.1258/000456307780945633.
    1. Wilhelm-Leen E, Montez-Rath ME, Chertow G. Estimating the risk of radiocontrast-associated nephropathy. J Am Soc Nephrol. 2017;28:653–659. doi: 10.1681/ASN.2016010021.
    1. McDonald JS, McDonald RJ, Comin J, et al. Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology. 2013;267:119–128. doi: 10.1148/radiol.12121460.
    1. Schünemann HJ, Tugwell P, Reeves BC, et al. Non-randomized studies as a source of complementary, sequential or replacement evidence for randomized controlled trials in systematic reviews on the effects of interventions. Res Synth Methods. 2013;4:49–62. doi: 10.1002/jrsm.1078.
    1. Davenport MS, Khalatbari S, Dillman JR, Cohan RH, Caoili EM, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material. Radiology. 2013;267:94–105. doi: 10.1148/radiol.12121394.
    1. Davenport MS, Khalatbari S, Cohan RH, Dillman JR, Myles JD, Ellis JH. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology. 2013;268:719–728. doi: 10.1148/radiol.13122276.
    1. McDonald RJ, McDonald JS, Bida JP, et al. Intravenous contrast material-induced nephropathy: causal or coincident phenomenon? Radiology. 2013;267:106–118. doi: 10.1148/radiol.12121823.
    1. McDonald JS, McDonald RJ, Carter RE, Katzberg RW, Kallmes DF, Williamson EE. Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology. 2014;271:65–73. doi: 10.1148/radiol.13130775.
    1. McDonald JS, McDonald RJ, Lieske JC, et al. Risk of acute kidney injury, dialysis, and mortality in patients with chronic kidney disease after intravenous contrast material exposure. Mayo Clin Proc. 2015;90:1046–1053. doi: 10.1016/j.mayocp.2015.05.016.
    1. Karlsberg RP, Dohad SY, Sheng R. Iodixanol peripheral computed tomographic angiography study investigator panel. Contrast medium acute kidney injury: comparison of intravenous and intra-arterial administration of iodinated contrast medium. J Vasc Intervent Radiol. 2011;22:1159–1165. doi: 10.1016/j.jvir.2011.03.020.
    1. Kooiman J, Le Haen PA, Gezgin G, et al. Contrast-induced acute kidney injury and clinical outcomes after intra-arterial and intravenous contrast administration: risk comparison adjusted for patient characteristics by design. Am Heart J. 2013;165:793–799. doi: 10.1016/j.ahj.2013.02.013.
    1. McDonald JS, Leake CB, McDonald RJ, et al. Acute kidney injury after intravenous versus intra-arterial contrast material administration in a paired cohort. Invest Radiol. 2016;51:804–809. doi: 10.1097/RLI.0000000000000298.
    1. Tong GE, Kumar S, Chong KC, et al. Risk of contrast-induced nephropathy for patients receiving intravenous vs. intra-arterial iodixanol administration. Abdom Radiol. 2016;41:91–99. doi: 10.1007/s00261-015-0611-9.
    1. From AM, Bartholmai BJ, Williams AW, Cha SS, McDonald FS. Mortality associated with nephropathy after radiographic contrast exposure. Mayo Clin Proc. 2008;83:1095–1100. doi: 10.4065/83.10.1095.
    1. Nyman U, Almén T, Jacobsson B, Aspelin P. Are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections? Eur Radiol. 2012;22:1366–1371. doi: 10.1007/s00330-011-2371-4.
    1. Prasad A, Ortiz-Lopez C, Khan A, Levin D, Kaye DM. Acute kidney injury following peripheral angiography and endovascular therapy: a systematic review of the literature. Catheter Cardiovasc Interv. 2016;88:264–273. doi: 10.1002/ccd.26466.
    1. Aubry P, Brillet G, Catella L, Schmidt A, Bénard S. Outcomes, risk factors and health burden of contrast-induced acute kidney injury: an observational study of one million hospitalizations with image-guided cardiovascular procedures. BMC Nephrol. 2016;17:167. doi: 10.1186/s12882-016-0385-5.
    1. Haider M, Yessayan L, Venkat KK, Goggins M, Patel A, Karthikeyan V. Incidence of contrast-induced nephropathy in kidney transplant recipients. Transplant Proc. 2015;47:379–383. doi: 10.1016/j.transproceed.2015.01.008.
    1. Fananapazir G, Troppmann C, Corwin MT, Bent CK, Vu CT, Lamba R. Incidence of contrast-induced nephropathy after renal graft catheter arteriography using iodine-based contrast medium. AJR Am J Roentgenol. 2016;206:783–786. doi: 10.2214/AJR.15.15501.
    1. Fananapazir G, Troppmann C, Corwin MT, Nikpour AM, Naderi S, Lamba R. Incidences of acute kidney injury, dialysis, and graft loss following intravenous administration of low-osmolality iodinated contrast in patients with kidney transplants. Abdom Radiol. 2016;41:2182–2186. doi: 10.1007/s00261-016-0827-3.
    1. Haveman JW, Gansevoort RT, Bongaerts AH, Nijsten MW. Low incidence of nephropathy in surgical ICU patients receiving intravenous contrast: a retrospective analysis. Intensive Care Med. 2006;32:1199–1205. doi: 10.1007/s00134-006-0198-2.
    1. Hoste EA, Doom S, De Waele J, et al. Epidemiology of contrast-associated acute kidney injury in ICU patients: a retrospective cohort analysis. Intensive Care Med. 2011;37:1921–1931. doi: 10.1007/s00134-011-2389-8.
    1. Cely CM, Schein RM, Quartin AA. Risk of contrast induced nephropathy in the critically ill: a prospective, case matched study. Crit Care. 2012;16:R67. doi: 10.1186/cc11317.
    1. Ehrmann S, Badin J, Savath L, et al. Acute kidney injury in the critically ill: is iodinated contrast medium really harmful? Crit Care Med. 2013;41:1017–1026. doi: 10.1097/CCM.0b013e318275871a.
    1. McDonald JS, McDonald RJ, Williamson EE, Kallmes DF, Kashani K. Post-contrast acute kidney injury in intensive care unit patients: a propensity score-adjusted study. Intensive Care Med. 2017;43:774–784. doi: 10.1007/s00134-017-4699-y.
    1. Senthilnathan S, Gauvreau K, Marshall AC, Lock JE, Bergersen L. Contrast administration in pediatric cardiac catheterization: dose and adverse events. Catheter Cardiovasc Interv. 2009;73:814–820. doi: 10.1002/ccd.21902.
    1. Huggins N, Nugent A, Modem V, et al. Incidence of acute kidney injury following cardiac catheterization prior to cardiopulmonary bypass in children. Catheter Cardiovasc Interv. 2014;84:615–619. doi: 10.1002/ccd.25405.
    1. Cantais A, Hammouda Z, Mory O, et al. Incidence of contrast-induced acute kidney injury in a pediatric setting: a cohort study. Pediatr Nephrol. 2016;31:1355–1362. doi: 10.1007/s00467-016-3313-9.
    1. Balemans CE, Reichert LJ, van Schelven BI, van den Brand JA, Wetzels JF. Epidemiology of contrast material-induced nephropathy in the era of hydration. Radiology. 2012;263:706–713. doi: 10.1148/radiol.12111667.
    1. Kanbay M, Solak Y, Afsar B, et al. Serum uric acid and risk for acute kidney injury following contrast: an evaluation of epidemiology, clinical trials, and potential mechanisms. Angiology. 2017;68:132–144. doi: 10.1177/0003319716644395.
    1. Kiski D, Stepper W, Breithardt G, Reinecke H. Impact of female gender on frequency of contrast medium-induced nephropathy: post hoc analysis of dialysis versus diuresis trial. J Womens Health. 2010;19:1363–1368. doi: 10.1089/jwh.2009.1821.
    1. Kwasa EA, Vinayak S, Armstrong R. The role of inflammation in contrast-induced nephropathy. Br J Radiol. 2014;87:20130738. doi: 10.1259/bjr.20130738.
    1. Medalion B, Cohen H, Assali A, et al. The effect of cardiac angiography timing, contrast media dose, and preoperative renal function on acute renal failure after coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2010;139:1539–1544. doi: 10.1016/j.jtcvs.2009.08.042.
    1. Ohno Y, Maekawa Y, Miyata H, et al. Impact of periprocedural bleeding on incidence of contrast-induced acute kidney injury in patients treated with percutaneous coronary intervention. J Am Coll Cardiol. 2013;62:1260–1266. doi: 10.1016/j.jacc.2013.03.086.
    1. Pannu N, Wiebe N, Tonelli M. Prophylaxis strategies for contrast-induced nephropathy. JAMA. 2006;295:2765–2779. doi: 10.1001/jama.295.23.2765.
    1. Song W, Zhang T, Pu J, Shen L, He B. Incidence and risk of developing contrast-induced acute kidney injury following intravascular contrast administration in elderly patients. Clin Interv Aging. 2014;9:85–93.
    1. Toprak O, Cirit M. Risk factors for contrast-induced nephropathy. Kidney Blood Press Res. 2006;29:84–93. doi: 10.1159/000093381.
    1. Yang JQ, Ran P, Chen JY, et al. Development of contrast-induced acute kidney injury after elective contrast media exposure in patients with type 2 diabetes mellitus: effect of albuminuria. PLoS One. 2014;9:e106454. doi: 10.1371/journal.pone.0106454.
    1. Zuo T, Jiang L, Mao S, Liu X, Yin X, Guo L. Hyperuricemia and contrast-induced acute kidney injury: A systematic review and meta-analysis. Int J Cardiol. 2016;224:286–294. doi: 10.1016/j.ijcard.2016.09.033.
    1. McDonald JS, McDonald RJ, Williamson EE, Kallmes DF (2017) Is intravenous administration of iodixanol associated with increased risk of acute kidney injury, dialysis, or mortality? a Propensity Score-adjusted study. Radiology. 285: 414-424
    1. Heinrich MC, Häberle L, Müller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250:68–86. doi: 10.1148/radiol.2501080833.
    1. From AM, Al Badarin FJ, McDonald FS, Bartholmai BJ, Cha SS, Rihal CS. Iodixanol versus low-osmolar contrast media for prevention of contrast induced nephropathy: meta-analysis of randomized, controlled trials. Circ Cardiovasc Interv. 2010;3:351–358. doi: 10.1161/CIRCINTERVENTIONS.109.917070.
    1. Eng J, Wilson RF, Subramaniam RM, et al. Comparative effect of contrast media type on the incidence of contrast-induced nephropathy: a systematic review and meta-analysis. Ann Intern Med. 2016;164:417–424. doi: 10.7326/M15-1402.
    1. Barrett BJ, Carlisle EJ. Meta-analysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188:171–178. doi: 10.1148/radiology.188.1.8511292.
    1. Gurm HS, Dixon SR, Smith DE, BMC2 (Blue Cross Blue Shield of Michigan Cardiovascular Consortium) Registry et al. Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2011;58:907–914. doi: 10.1016/j.jacc.2011.05.023.
    1. Kooiman J, Seth M, Share D, Dixon S, Gurm HS. The association between contrast dose and renal complications post-PCI across the continuum of procedural estimated risk. PLoS One. 2014;9:e90233. doi: 10.1371/journal.pone.0090233.
    1. Nyman U, Björk J, Aspelin P, Marenzi G. Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol. 2008;49:658–667. doi: 10.1080/02841850802050762.
    1. Nyman U. Contrast dose, estimated GFR and techniques to reduce contrast dose in PCI – time to consider some basic principles! J Invas Cardiol. 2016;28:E126–E127.

Source: PubMed

3
Předplatit