Dynamics of Plasma and Urinary Extracellular DNA in Acute Kidney Injury

Alexander Jančuška, Alena Potočárová, Alexandra Gaál Kovalčíková, Ľudmila Podracká, Janka Bábíčková, Peter Celec, Ľubomíra Tóthová, Alexander Jančuška, Alena Potočárová, Alexandra Gaál Kovalčíková, Ľudmila Podracká, Janka Bábíčková, Peter Celec, Ľubomíra Tóthová

Abstract

Early and reliable markers of acute kidney injury (AKI) are essential. One such candidate marker of tissue damage is extracellular DNA (ecDNA). The aim of our present study is to describe the unknown dynamics of ecDNA in an animal model of AKI. Glycerol-induced nephropathy was used to model AKI in adult male Wistar rats (n = 93). Blood and urine samples were collected 1, 3, and 24 h after model induction. Total ecDNA and its sub-cellular origin was assessed. In the plasma, total ecDNA and nuclear ecDNA were significantly increased in the AKI group already after 1 h (160% and 270%, respectively, p = 0.02 and p = 0.04). Both nuclear and mitochondrial ecDNA were higher after 3 h (180% and 170%, respectively, p = 0.002 and p = 0.005). Urinary ecDNA concentrations in the AKI group were significantly increased only 24 h after model induction (130% for total ecDNA, p = 0.009; 210% for nuclear ecDNA, p = 0.02; and 200% for mitochondrial ecDNA, p = 0.0009). Our results indicate that plasma ecDNA has the potential to serve as an early and sensitive, albeit non-specific marker of AKI. Further studies should elucidate the source of ecDNA and the dynamics of ecDNA in other animal models of AKI and patients with AKI.

Keywords: cell-free DNA; glycerol-induced nephropathy; mitochondrial DNA; non-invasive marker; rhabdomyolysis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Concentrations of plasma creatinine (A) and urea (B) at different time points after AKI induction. *** denotes p < 0.001. CTRL—control group; AKI—glycerol-induced acute kidney injury.
Figure 2
Figure 2
Concentrations of plasma total ecDNA (A), ncDNA (B) and mtDNA (C) at different time points after AKI induction. CTRL—control group; AKI—glycerol-induced acute kidney injury. * denotes p < 0.05. ** denotes p < 0.01.
Figure 3
Figure 3
Concentrations of urinary total ecDNA (A), ncDNA (B) and mtDNA (C) per micromole of urinary creatinine at different time points after AKI induction. * denotes p < 0.05. ** denotes p < 0.01. *** denotes p < 0.001. CTRL—control group; AKI—glycerol-induced acute kidney injury.

References

    1. K.A.K.I. Working Group Summary of recommendation statements. Kidney Int. Suppl. 2012;2:8–12. doi: 10.1038/kisup.2012.7.
    1. Lameire N.H., Bagga A., Cruz D., De Maeseneer J., Endre Z., Kellum J., Liu K.D., Mehta R.L., Pannu N., Van Biesen W., et al. Acute kidney injury: An increasing global concern. Lancet. 2013;382:170–179. doi: 10.1016/S0140-6736(13)60647-9.
    1. Hoste E.A.J., Kellum J.A., Selby N.M., Zarbock A., Palevsky P.M., Bagshaw S.M., Goldstein S.L., Cerdá J., Chawla L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018;14:607–625. doi: 10.1038/s41581-018-0052-0.
    1. Sarnak M.J., Amann K., Bangalore S., Cavalcante J.L., Charytan D., Craig J., Gill J.S., Hlatky M.A., Jardine A.G., Landmesser U., et al. Chronic kidney disease and coronary artery disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2019;74:1823–1838. doi: 10.1016/j.jacc.2019.08.1017.
    1. Ronco C., Bellomo R., Kellum J.A. Acute kidney injury. Lancet. 2019;394:1949–1964. doi: 10.1016/S0140-6736(19)32563-2.
    1. Parikh C.R., Mansour S.G. Perspective on clinical application of biomarkers in AKI. J. Am. Soc. Nephrol. 2017;28:1677–1685. doi: 10.1681/ASN.2016101127.
    1. Celec P., Vlková B., Lauková L., Babickova J., Boor P. Cell-free DNA: The role in pathophysiology and as a biomarker in kidney diseases. Expert Rev. Mol. Med. 2018;20:e1. doi: 10.1017/erm.2017.12.
    1. Salvi S., Casadio V. Urinary cell-free DNA: Potential and applications. Methods Mol. Biol. 2019;1909:201–209. doi: 10.1007/978-1-4939-8973-7_15.
    1. Grabuschnig S., Bronkhorst A.J., Holdenrieder S., Rodriguez I.R., Schliep K.P., Schwendenwein D., Ungerer V., Sensen C.W. Putative origins of cell-free DNA in humans: A review of active and passive nucleic acid release mechanisms. Int. J. Mol. Sci. 2020;21:8062. doi: 10.3390/ijms21218062.
    1. Raup-Konsavage W.M., Wang Y., Wang W.W., Feliers D., Ruan H., Reeves W.B. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2018;93:365–374. doi: 10.1016/j.kint.2017.08.014.
    1. Hu Q., Ren J., Ren H., Wu J., Wu X., Liu S., Wang G., Gu G., Guo K., Li J. Urinary mitochondrial DNA identifies renal dysfunction and mitochondrial damage in sepsis-induced acute kidney injury. Oxid. Med. Cell. Longev. 2018;2018:8074936. doi: 10.1155/2018/8074936.
    1. Clementi A., Virzì G.M., Brocca A., Pastori S., De Cal M., Marcante S., Granata A., Ronco C. The role of cell-free plasma DNA in critically ill patients with sepsis. Blood Purif. 2016;41:34–40. doi: 10.1159/000440975.
    1. Likhvantsev V.V., Landoni G., Grebenchikov O.A., Skripkin Y.V., Zabelina T.S., Zinovkina L.A., Prikhodko A.S., Lomivorotov V.V., Zinovkin R.A. Nuclear DNA as predictor of acute kidney injury in patients undergoing coronary artery bypass graft: A pilot study. J. Cardiothorac. Vasc. Anesth. 2017;31:2080–2085. doi: 10.1053/j.jvca.2017.04.051.
    1. Merkle J., Daka A., Deppe A.C., Wahlers T., Paunel-Görgülü A. High levels of cell-free DNA accurately predict late acute kidney injury in patients after cardiac surgery. PLoS ONE. 2019;14:e0218548. doi: 10.1371/journal.pone.0218548.
    1. Filippone E.J., Farber J.L. The monitoring of donor-derived cell-free DNA in kidney transplantation. Transplantation. 2021;105:509–516. doi: 10.1097/TP.0000000000003393.
    1. Bronkhorst A.J., Ungerer V., Diehl F., Anker P., Dor Y., Fleischhacker M., Gahan P.B., Hui L., Holdenrieder S., Thierry A.R. Towards systematic nomenclature for cell-free DNA. Hum. Genet. 2021;140:565–578. doi: 10.1007/s00439-020-02227-2.
    1. Homolová J., Janovičová Ľ., Konečná B., Vlková B., Celec P., Tóthová Ľ., Bábíčková J. plasma concentrations of extracellular DNA in acute kidney injury. Diagnostics. 2020;10:152. doi: 10.3390/diagnostics10030152.
    1. Okubo K., Kurosawa M., Kamiya M., Urano Y., Suzuki A., Yamamoto K., Hase K., Homma K., Sasaki J., Miyauchi H., et al. Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat. Med. 2018;24:232–238. doi: 10.1038/nm.4462.
    1. Nakazawa D., Kumar S.V., Marschner J., Desai J., Holderied A., Rath L., Kraft F., Lei Y., Fukasawa Y., Moeckel G., et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. J. Am. Soc. Nephrol. 2017;28:1753–1768. doi: 10.1681/ASN.2016080925.
    1. Jansen M.P., Emal D., Teske G.J., Dessing M.C., Florquin S., Roelofs J.J. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney Int. 2017;91:352–364. doi: 10.1016/j.kint.2016.08.006.
    1. Dvm V.C.D., Goggs R., Hansen C., Dvm C.W.F., Letendre J.-A., Wakshlag J.J. Serum myoglobin, creatine kinase, and cell-free DNA in endurance sled dogs and sled dogs with clinical rhabdomyolysis. J. Vet. Emerg. Crit. Care. 2018;28:310–316. doi: 10.1111/vec.12731.
    1. Ramos M.V., Mejias M.P., Sabbione F., Fernandez-Brando R.J., Santiago A.P., Amaral M.M., Exeni R., Trevani A., Palermo M.S. Induction of neutrophil extracellular traps in shiga toxin-associated hemolytic uremic syndrome. J. Innate Immun. 2016;8:400–411. doi: 10.1159/000445770.
    1. Kim K., Moon H., Lee Y.H., Seo J.-W., Kim Y.G., Moon J.-Y., Kim J.S., Jeong K.-H., Lee T.W., Ihm C.-G., et al. Clinical relevance of cell-free mitochondrial DNA during the early postoperative period in kidney transplant recipients. Sci. Rep. 2019;9:18607. doi: 10.1038/s41598-019-54694-x.
    1. Jansen M.P.B., Pulskens W.P.C., Uil M., Claessen N., Nieuwenhuizen G., Standaar D., Hau C.M., Nieuwland R., Florquin S., Bemelman F.J., et al. Urinary mitochondrial DNA associates with delayed graft function following renal transplantation. Nephrol. Dial. Transplant. 2020;35:1320–1327. doi: 10.1093/ndt/gfy372.
    1. Arruda N.M., Braz L.G., Nogueira F.R., Souza K.M., Aun A.G., Figueiredo D.B., Lara J.R., Silva M.A.P., Golim M.A., de Carvalho L.R., et al. Inflammation and DNA damage induction in surgical patients maintained with desflurane anesthesia. Mutat. Res. Toxicol. Environ. Mutagen. 2019;846:403073. doi: 10.1016/j.mrgentox.2019.07.003.
    1. Delogu G., Moretti S., Famularo G., Antonucci A., Signore L., Marcellini S., Bosco L.L., De Simone C. Circulating neutrophils exhibit enhanced apoptosis associated with mitochondrial dysfunctions after surgery under general anaesthesia. Acta Anaesthesiol. Scand. 2001;45:87–94. doi: 10.1034/j.1399-6576.2001.450114.x.
    1. Brand J.-M., Frohn C., Luhm J., Kirchner H., Schmucker P. Early alterations in the number of circulating lymphocyte subpopulations and enhanced proinflammatory immune response during opioid-based general anesthesia. Shock. 2003;20:213–217. doi: 10.1097/00024382-200309000-00003.
    1. Lo Y.M.D., Corbetta N., Chamberlain P.F., Rai V., Sargent I.L., Redman C.W., Wainscoat J.S. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–487. doi: 10.1016/S0140-6736(97)02174-0.

Source: PubMed

3
Předplatit