Plasma Concentrations of Extracellular DNA in Acute Kidney Injury

Jordanka Homolová, Ľubica Janovičová, Barbora Konečná, Barbora Vlková, Peter Celec, Ľubomíra Tóthová, Janka Bábíčková, Jordanka Homolová, Ľubica Janovičová, Barbora Konečná, Barbora Vlková, Peter Celec, Ľubomíra Tóthová, Janka Bábíčková

Abstract

Current diagnostic methods of acute kidney injury (AKI) have limited sensitivity and specificity. Tissue injury has been linked to an increase in the concentrations of extracellular DNA (ecDNA) in plasma. A rapid turnover of ecDNA in the circulation makes it a potential marker with high sensitivity. This study aimed to analyze the concentration of ecDNA in plasma in animal models of AKI. Three different fractions of ecDNA were measured-total ecDNA was assessed fluorometrically, while nuclear ecDNA (ncDNA) and mitochondrial DNA (mtDNA) were analyzed using quantitative real-time PCR. AKI was induced using four different murine models of AKI-bilateral ureteral obstruction (BUO), glycerol-induced AKI (GLY), ischemia-reperfusion injury (IRI) and bilateral nephrectomy (BNx). Total ecDNA was significantly higher in BUO (p < 0.05) and GLY (p < 0.05) compared to the respective control groups. ncDNA was significantly higher in BUO (p < 0.05) compared to SHAM. No significant differences in the concentrations of mtDNA were found between the groups. The plasma concentrations of different fractions of ecDNA are dependent on the mechanism of induction of AKI and warrant further investigation as potential surrogate markers of AKI.

Keywords: cell free DNA; ischemia; nephrectomy; uremia; ureteral obstruction.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Renal function and histopathological assessment of mice with acute kidney injury (AKI). Bilateral ureteral obstruction: (a) creatinine; (b) BUN; (c) left panel—normal renal architecture, right panel—tubular dilation and atrophy. Glycerol-induced AKI: (d) creatinine; (e) BUN; (f) left panel—normal renal architecture, right panel—tubular atrophy and proteinuric casts. Ischemia–reperfusion injury: (g) creatinine; (h) BUN; (i) left panel—normal renal architecture, right panel—tubular atrophy and dilation, epithelial cell necrosis and cell shedding, and proteinuric casts. Bilateral nephrectomy: (j) creatinine. Overview of the preparation of the individual models (k). BUO—bilateral ureteral ligation, BUN—blood urea nitrogen, GLY—glycerol-induced AKI, UNx—unilateral nephrectomy, IRI—ischemia–reperfusion injury, BNx—bilateral nephrectomy. ** denotes p < 0.01, *** denotes p < 0.001. Data are presented as mean + SD. Histological images show periodic acid Schiff stain (PAS), magnification 400x.
Figure 2
Figure 2
Total ecDNA measured in plasma of mice with acute kidney injury (AKI). (a) Bilateral ureteral obstruction. (b) Glycerol-induced AKI. (c) Ischemia–reperfusion injury. (d) Bilateral nephrectomy. * denotes p < 0.05. Data are presented as mean + SD. BUO—bilateral ureteral ligation, GLY—glycerol-induced AKI, UNx—unilateral nephrectomy, IRI—ischemia–reperfusion injury, BNx—bilateral nephrectomy.
Figure 3
Figure 3
Nuclear ecDNA (ncDNA) measured in plasma of mice with acute kidney injury (AKI). (a) Bilateral ureteral obstruction. (b) Glycerol-induced AKI. (c) Ischemia–reperfusion injury. (d) Bilateral nephrectomy. * denotes p < 0.05. Data are presented as mean + SD. BUO—bilateral ureteral ligation, GLY—glycerol-induced AKI, UNx—unilateral nephrectomy, IRI—ischemia–reperfusion injury, BNx—bilateral nephrectomy.
Figure 4
Figure 4
Mitochondrial ecDNA (mtDNA) measured in plasma of mice with acute kidney injury (AKI). (a) Bilateral ureteral obstruction. (b) Glycerol-induced AKI. (c) Ischemia–reperfusion injury. (d) Bilateral nephrectomy. Data are presented as mean + SD. BUO—bilateral ureteral ligation, GLY—glycerol-induced AKI, UNx—unilateral nephrectomy, IRI—ischemia–reperfusion injury, BNx—bilateral nephrectomy.

References

    1. Lameire N., Biesen W.V., Vanholder R. Acute kidney injury. Lancet. 2008;372:1863–1865. doi: 10.1016/S0140-6736(08)61794-8.
    1. Rewa O., Bagshaw S.M. Acute kidney injury-epidemiology, outcomes and economics. Nat. Rev. Nephrol. 2014;10:193–207. doi: 10.1038/nrneph.2013.282.
    1. Susantitaphong P., Cruz D.N., Cerda J., Abulfaraj M., Alqahtani F., Koulouridis I., Jaber B.L., Acute Kidney Injury Advisory Group of the American Society of Nephrology World incidence of AKI: A meta-analysis. Clin. J. Am. Soc. Nephrol. 2013;8:1482–1493. doi: 10.2215/CJN.00710113.
    1. Lameire N., Van Biesen W., Vanholder R. The changing epidemiology of acute renal failure. Nat. Clin. Pract. Nephrol. 2006;2:364–377. doi: 10.1038/ncpneph0218.
    1. Bouchard J., Mehta R.L. Acute Kidney Injury in Western Countries. Kidney Dis. (Basel) 2016;2:103–110. doi: 10.1159/000445091.
    1. Kellum J.A., Lameire N., Group K.A.G.W. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1) Crit Care. 2013;17:204. doi: 10.1186/cc11454.
    1. Vaidya V.S., Ferguson M.A., Bonventre J.V. Biomarkers of acute kidney injury. Annu Rev. Pharmacol. Toxicol. 2008;48:463–493. doi: 10.1146/annurev.pharmtox.48.113006.094615.
    1. Waikar S.S., Betensky R.A., Emerson S.C., Bonventre J.V. Imperfect gold standards for kidney injury biomarker evaluation. J. Am. Soc. Nephrol. 2012;23:13–21. doi: 10.1681/ASN.2010111124.
    1. Steinman C.R. Free DNA in serum and plasma from normal adults. J. Clin. Invest. 1975;56:512–515. doi: 10.1172/JCI108118.
    1. Khier S., Lohan L. Kinetics of circulating cell-free DNA for biomedical applications: Critical appraisal of the literature. Future Sci. OA. 2018;4:FSO295. doi: 10.4155/fsoa-2017-0140.
    1. Lui Y.Y., Woo K.S., Wang A.Y., Yeung C.K., Li P.K., Chau E., Ruygrok P., Lo Y.M. Origin of plasma cell-free DNA after solid organ transplantation. Clin. Chem. 2003;49:495–496. doi: 10.1373/49.3.495.
    1. Yu S.C., Lee S.W., Jiang P., Leung T.Y., Chan K.C., Chiu R.W., Lo Y.M. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing. Clin. Chem. 2013;59:1228–1237. doi: 10.1373/clinchem.2013.203679.
    1. Celec P., Vlkova B., Laukova L., Babickova J., Boor P. Cell-free DNA: The role in pathophysiology and as a biomarker in kidney diseases. Expert Rev. Mol. Med. 2018;20:e1. doi: 10.1017/erm.2017.12.
    1. Anker P., Mulcahy H., Chen X.Q., Stroun M. Detection of circulating tumour DNA in the blood (plasma/serum) of cancer patients. Cancer Metastasis Rev. 1999;18:65–73. doi: 10.1023/A:1006260319913.
    1. Papadopoulou E., Davilas E., Sotiriou V., Koliopanos A., Aggelakis F., Dardoufas K., Agnanti N.J., Karydas I., Nasioulas G. Cell-free DNA and RNA in plasma as a new molecular marker for prostate cancer. Oncol. Res. 2004;14:439–445. doi: 10.3727/0965040041791473.
    1. Boyko M., Ohayon S., Goldsmith T., Douvdevani A., Gruenbaum B.F., Melamed I., Knyazer B., Shapira Y., Teichberg V.I., Elir A., et al. Cell-free DNA--a marker to predict ischemic brain damage in a rat stroke experimental model. J. Neurosurg. Anesthesiol. 2011;23:222–228. doi: 10.1097/ANA.0b013e31821b536a.
    1. Antonatos D., Patsilinakos S., Spanodimos S., Korkonikitas P., Tsigas D. Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Ann. N. Y. Acad. Sci. 2006;1075:278–281. doi: 10.1196/annals.1368.037.
    1. Destouni A., Vrettou C., Antonatos D., Chouliaras G., Traeger-Synodinos J., Patsilinakos S., Kitsiou-Tzeli S., Tsigas D., Kanavakis E. Cell-free DNA levels in acute myocardial infarction patients during hospitalization. Acta. Cardiol. 2009;64:51–57. doi: 10.2143/AC.64.1.2034362.
    1. Chiu T.W., Young R., Chan L.Y., Burd A., Lo D.Y. Plasma cell-free DNA as an indicator of severity of injury in burn patients. Clin. Chem. Lab. Med. 2006;44:13–17. doi: 10.1515/CCLM.2006.003.
    1. Korabecna M., Opatrna S., Wirth J., Rulcova K., Eiselt J., Sefrna F., Horinek A. Cell-free plasma DNA during peritoneal dialysis and hemodialysis and in patients with chronic kidney disease. Ann. N. Y. Acad. Sci. 2008;1137:296–301. doi: 10.1196/annals.1448.014.
    1. McGuire A.L., Urosevic N., Chan D.T., Dogra G., Inglis T.J., Chakera A. The impact of chronic kidney disease and short-term treatment with rosiglitazone on plasma cell-free DNA levels. PPAR Res. 2014;2014:643189. doi: 10.1155/2014/643189.
    1. Clementi A., Virzi G.M., Brocca A., Pastori S., de Cal M., Marcante S., Granata A., Ronco C. The Role of Cell-Free Plasma DNA in Critically Ill Patients with Sepsis. Blood Purif. 2016;41:34–40. doi: 10.1159/000440975.
    1. Raup-Konsavage W.M., Wang Y., Wang W.W., Feliers D., Ruan H., Reeves W.B. Neutrophil peptidyl arginine deiminase-4 has a pivotal role in ischemia/reperfusion-induced acute kidney injury. Kidney Int. 2018;93:365–374. doi: 10.1016/j.kint.2017.08.014.
    1. Jansen M.P., Emal D., Teske G.J., Dessing M.C., Florquin S., Roelofs J.J. Release of extracellular DNA influences renal ischemia reperfusion injury by platelet activation and formation of neutrophil extracellular traps. Kidney Int. 2017;91:352–364. doi: 10.1016/j.kint.2016.08.006.
    1. Okubo K., Kurosawa M., Kamiya M., Urano Y., Suzuki A., Yamamoto K., Hase K., Homma K., Sasaki J., Miyauchi H., et al. Macrophage extracellular trap formation promoted by platelet activation is a key mediator of rhabdomyolysis-induced acute kidney injury. Nat. Med. 2018;24:232–238. doi: 10.1038/nm.4462.
    1. Stodkilde L., Norregaard R., Fenton R.A., Wang G., Knepper M.A., Frokiaer J. Bilateral ureteral obstruction induces early downregulation and redistribution of AQP2 and phosphorylated AQP2. Am. J. Physiol. Renal. Physiol. 2011;301:F226–F235. doi: 10.1152/ajprenal.00664.2010.
    1. Wei Q., Dong Z. Mouse model of ischemic acute kidney injury: Technical notes and tricks. Am. J. Physiol. Renal. Physiol. 2012;303:F1487–F1494. doi: 10.1152/ajprenal.00352.2012.
    1. Hoke T.S., Douglas I.S., Klein C.L., He Z., Fang W., Thurman J.M., Tao Y., Dursun B., Voelkel N.F., Edelstein C.L., et al. Acute renal failure after bilateral nephrectomy is associated with cytokine-mediated pulmonary injury. J. Am. Soc. Nephrol. 2007;18:155–164. doi: 10.1681/ASN.2006050494.
    1. Singh A.P., Junemann A., Muthuraman A., Jaggi A.S., Singh N., Grover K., Dhawan R. Animal models of acute renal failure. Pharmacol. Rep. 2012;64:31–44. doi: 10.1016/S1734-1140(12)70728-4.
    1. Rooney J.P., Ryde I.T., Sanders L.H., Howlett E.H., Colton M.D., Germ K.E., Mayer G.D., Greenamyre J.T., Meyer J.N. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol. Biol. 2015;1241:23–38. doi: 10.1007/978-1-4939-1875-1_3.
    1. Wai T., Ao A., Zhang X., Cyr D., Dufort D., Shoubridge E.A. The role of mitochondrial DNA copy number in mammalian fertility. Biol. Reprod. 2010;83:52–62. doi: 10.1095/biolreprod.109.080887.
    1. Jeong D.W., Moon J.Y., Choi Y.W., Moon H., Kim K., Lee Y.H., Kim S.Y., Kim Y.G., Jeong K.H., Lee S.H. Effect of blood pressure and glycemic control on the plasma cell-free DNA in hemodialysis patients. Kidney Res. Clin. Pract. 2015;34:201–206. doi: 10.1016/j.krcp.2015.09.002.
    1. Fleischhacker M., Schmidt B. Circulating nucleic acids (CNAs) and cancer--a survey. Biochim. Biophys. Acta. 2007;1775:181–232. doi: 10.1016/j.bbcan.2006.10.001.
    1. Snyder T.M., Khush K.K., Valantine H.A., Quake S.R. Universal noninvasive detection of solid organ transplant rejection. Proc. Natl. Acad. Sci. USA. 2011;108:6229–6234. doi: 10.1073/pnas.1013924108.
    1. Kundert F., Platen L., Iwakura T., Zhao Z., Marschner J.A., Anders H.J. Immune mechanisms in the different phases of acute tubular necrosis. Kidney Res. Clin. Pract. 2018;37:185–196. doi: 10.23876/j.krcp.2018.37.3.185.
    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385.
    1. Chow O.A., von Kockritz-Blickwede M., Bright A.T., Hensler M.E., Zinkernagel A.S., Cogen A.L., Gallo R.L., Monestier M., Wang Y., Glass C.K., et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe. 2010;8:445–454. doi: 10.1016/j.chom.2010.10.005.
    1. Yousefi S., Gold J.A., Andina N., Lee J.J., Kelly A.M., Kozlowski E., Schmid I., Straumann A., Reichenbach J., Gleich G.J., et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat. Med. 2008;14:949–953. doi: 10.1038/nm.1855.
    1. Schorn C., Janko C., Latzko M., Chaurio R., Schett G., Herrmann M. Monosodium urate crystals induce extracellular DNA traps in neutrophils, eosinophils, and basophils but not in mononuclear cells. Front. Immunol. 2012;3:277. doi: 10.3389/fimmu.2012.00277.
    1. Lin A.M., Rubin C.J., Khandpur R., Wang J.Y., Riblett M., Yalavarthi S., Villanueva E.C., Shah P., Kaplan M.J., Bruce A.T. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 2011;187:490–500. doi: 10.4049/jimmunol.1100123.
    1. Goldmann O., Medina E. The expanding world of extracellular traps: Not only neutrophils but much more. Front. Immunol. 2012;3:420. doi: 10.3389/fimmu.2012.00420.
    1. Yousefi S., Mihalache C., Kozlowski E., Schmid I., Simon H.U. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16:1438–1444. doi: 10.1038/cdd.2009.96.
    1. McIlroy D.J., Jarnicki A.G., Au G.G., Lott N., Smith D.W., Hansbro P.M., Balogh Z.J. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J. Crit. Care. 2014;29:1133.e1–1133.e5. doi: 10.1016/j.jcrc.2014.07.013.
    1. Schreiner G.F., Harris K.P., Purkerson M.L., Klahr S. Immunological aspects of acute ureteral obstruction: Immune cell infiltrate in the kidney. Kidney Int. 1988;34:487–493. doi: 10.1038/ki.1988.207.
    1. Munshi R., Hsu C., Himmelfarb J. Advances in understanding ischemic acute kidney injury. BMC Med. 2011;9:11. doi: 10.1186/1741-7015-9-11.
    1. Tsuji N., Tsuji T., Ohashi N., Kato A., Fujigaki Y., Yasuda H. Role of Mitochondrial DNA in Septic AKI via Toll-Like Receptor 9. J. Am. Soc. Nephrol. 2016;27:2009–2020. doi: 10.1681/ASN.2015040376.
    1. Whitaker R.M., Stallons L.J., Kneff J.E., Alge J.L., Harmon J.L., Rahn J.J., Arthur J.M., Beeson C.C., Chan S.L., Schnellmann R.G. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury. Kidney Int. 2015;88:1336–1344. doi: 10.1038/ki.2015.240.
    1. Eirin A., Saad A., Tang H., Herrmann S.M., Woollard J.R., Lerman A., Textor S.C., Lerman L.O. Urinary Mitochondrial DNA Copy Number Identifies Chronic Renal Injury in Hypertensive Patients. Hypertension. 2016;68:401–410. doi: 10.1161/HYPERTENSIONAHA.116.07849.
    1. Jiang P., Chan C.W., Chan K.C., Cheng S.H., Wong J., Wong V.W., Wong G.L., Chan S.L., Mok T.S., Chan H.L., et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients. Proc. Natl. Acad. Sci. USA. 2015;112:E1317–E1325. doi: 10.1073/pnas.1500076112.
    1. Wu J., Pan X., Fu H., Zheng Y., Dai Y., Yin Y., Chen Q., Hao Q., Bao D., Hou D. Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci. Rep. 2017;7:10114. doi: 10.1038/s41598-017-10693-4.
    1. Panizo N., Rubio-Navarro A., Amaro-Villalobos J.M., Egido J., Moreno J.A. Molecular Mechanisms and Novel Therapeutic Approaches to Rhabdomyolysis-Induced Acute Kidney Injury. Kidney Blood Press. Res. 2015;40:520–532. doi: 10.1159/000368528.
    1. Belliere J., Casemayou A., Ducasse L., Zakaroff-Girard A., Martins F., Iacovoni J.S., Guilbeau-Frugier C., Buffin-Meyer B., Pipy B., Chauveau D., et al. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J. Am. Soc. Nephrol. 2015;26:1363–1377. doi: 10.1681/ASN.2014040320.
    1. Grossman R.C. Experimental models of renal disease and the cardiovascular system. Open Cardiovasc. Med. J. 2010;4:257–264. doi: 10.2174/1874192401004010257.
    1. Feltes C.M., Van Eyk J., Rabb H. Distant-organ changes after acute kidney injury. Nephron. Physiol. 2008;109:80–84. doi: 10.1159/000142940.
    1. Kramer A.A., Postler G., Salhab K.F., Mendez C., Carey L.C., Rabb H. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int. 1999;55:2362–2367. doi: 10.1046/j.1523-1755.1999.00460.x.
    1. Liu M., Liang Y., Chigurupati S., Lathia J.D., Pletnikov M., Sun Z., Crow M., Ross C.A., Mattson M.P., Rabb H. Acute kidney injury leads to inflammation and functional changes in the brain. J. Am. Soc. Nephrol. 2008;19:1360–1370. doi: 10.1681/ASN.2007080901.
    1. Lee S.A., Cozzi M., Bush E.L., Rabb H. Distant Organ Dysfunction in Acute Kidney Injury: A Review. Am. J. Kidney Dis. 2018;72:846–856. doi: 10.1053/j.ajkd.2018.03.028.
    1. Emlen W., Mannik M. Effect of DNA size and strandedness on the in vivo clearance and organ localization of DNA. Clin. Exp. Immunol. 1984;56:185–192.
    1. Gauthier V.J., Tyler L.N., Mannik M. Blood clearance kinetics and liver uptake of mononucleosomes in mice. J. Immunol. 1996;156:1151–1156.
    1. Chused T.M., Steinberg A.D., Talal N. The clearance and localization of nucleic acids by New Zealand and normal mice. Clin. Exp. Immunol. 1972;12:465–476.
    1. Basnakian A.G., Apostolov E.O., Yin X., Napirei M., Mannherz H.G., Shah S.V. Cisplatin nephrotoxicity is mediated by deoxyribonuclease I. J. Am. Soc. Nephrol. 2005;16:697–702. doi: 10.1681/ASN.2004060494.
    1. Seredkina N., Rekvig O.P. Acquired loss of renal nuclease activity is restricted to DNaseI and is an organ-selective feature in murine lupus nephritis. Am. J. Pathol. 2011;179:1120–1128. doi: 10.1016/j.ajpath.2011.05.011.
    1. Basnakian A.G., Singh A.B., Shah S.V. Identification and expression of deoxyribonuclease (DNase) I alternative transcripts in the rat. Gene. 2002;289:87–96. doi: 10.1016/S0378-1119(02)00479-1.

Source: PubMed

3
Předplatit