Role of ascorbic acid infusion in critically ill patients with transfusion-related acute lung injury

Amira B Kassem, Islam Ahmed, Gamal Omran, Mohamed Megahed, Tamer Habib, Amira B Kassem, Islam Ahmed, Gamal Omran, Mohamed Megahed, Tamer Habib

Abstract

Introduction: In critically ill patients, transfusion-related acute lung injury (TRALI) remains the leading cause of transfusion-related fatalities in critical care settings and is associated with inflammation and oxidative stress state. Recent research raised the potential efficacy of high-dose intravenous ascorbic acid (VC) in critically ill patients.

Objective: The aim of this trial was to investigate the effect of high-dose intravenous VC as a targeted therapy for TRALI in terms of serum proinflammatory (interleukin [IL]-8, IL-1β, C-reactive protein), anti-inflammatory (IL-10), oxidative stress (superoxide dismutase, malondialdehyde) markers, and plasma VC levels. Secondary outcomes were oxygenation (PaO2 /FiO2 ratio), vasopressor use, duration of mechanical ventilation, ICU length of stay, 7-day mortality and 28-day mortality.

Methods: Eighty critically ill patients with TRALI (n = 80) were randomized to receive 2.5 g/6 h intravenous vitamin C for 96 hours (ASTRALI group) or placebo. Patients were followed up to measure the outcomes initially (T0) and at the end of treatment (T96).

Results: When compared to the control group, the ASTRALI group at T96 showed significantly higher median of IL-10 (31.6 ± 25.8 vs 17.7 ± 12.0 pg/mL, P < .0001) levels and superoxide dismutase (12 876 ± 4627 U/L vs 5895 ± 6632 U/L, P < .0001) activities, and lower median C-reactive protein (76 ± 50 vs 89 ± 56 mg/L, P = .033), IL-8 (11.8 ± 7.3 vs 35.5 ± 19.8 pg/mL, P < .0001) and malondialdehyde (0.197 ± 0.034 vs 0.234 ± 0.074 μM/L, P = .002) levels.

Conclusion: High-dose ascorbic acid was associated with significantly reduced oxidative stress, reduced pro-inflammatory markers except IL-1β, elevated anti-inflammatory marker and elevated plasma VC levels.

Trial registration: ClinicalTrials.gov NCT04153487.

Keywords: TRALI; ascorbic acid; critical care; inflammation; lung injury; oxidative stress.

© 2021 British Pharmacological Society.

References

REFERENCES

    1. Peters AL, Van Stein D, Vlaar AP. Antibody-mediated transfusion-related acute lung injury; from discovery to prevention. Br J Haematol. 2015;170(5):597-614. doi:10.1111/bjh.13459
    1. Vlaar AP, Juffermans NP. Transfusion-related acute lung injury: a clinical review. Lancet (London, England). 2013;382(9896):984-994. doi:10.1016/S0140-6736(12)62197-7
    1. Roubinian N. TACO and TRALI: biology, risk factors, and prevention strategies. Hematology Am Soc Hematol Educ Program. 2018;2018(1):585-594. doi:10.1182/asheducation-2018.1.585
    1. Peters AL, van Hezel ME, Juffermans NP, Vlaar AP. Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside. Blood Rev. 2015;29(1):51-61. doi:10.1016/j.blre.2014.09.007
    1. Andreu G, Boudjedir K, Muller JY, et al. Analysis of transfusion-related acute lung injury and possible transfusion-related acute lung injury reported to the French Hemovigilance Network from 2007 to 2013. Transfus Med Rev. 2018;32(1):16-27. doi:10.1016/j.tmrv.2017.07.001
    1. Vlaar AP, Binnekade JM, Prins D, et al. Risk factors and outcome of transfusion-related acute lung injury in the critically ill: a nested case-control study. Crit Care Med. 2010;38(3):771-778. doi:10.1097/CCM.0b013e3181cc4d4b
    1. Vlaar APJ, Toy P, Fung M, et al. An update of the transfusion-related acute lung injury (TRALI) definition. Transfus Clin Biol. 2019;26(4):354-356. doi:10.1016/j.tracli.2019.05.007
    1. Toy P, Gajic O, Bacchetti P, et al. Transfusion-related acute lung injury: incidence and risk factors. Blood. 2012;119(7):1757-1767. doi:10.1182/blood-2011-08-370932
    1. Semple JW, Rebetz J, Kapur R. Transfusion-associated circulatory overload and transfusion-related acute lung injury. Blood. 2019;133(17):1840-1853. doi:10.1182/blood-2018-10-860809
    1. Roubinian NH, Looney MR, Kor DJ, et al. Cytokines and clinical predictors in distinguishing pulmonary transfusion reactions. Transfusion. 2015;55(8):1838-1846. doi:10.1111/trf.13021
    1. Semple JW, McVey MJ, Kim M, Rebetz J, Kuebler WM, Kapur R. Targeting transfusion-related acute lung injury: The journey from basic science to novel therapies. Crit Care Med. 2018;46(5):e452-e458. doi:10.1097/CCM.0000000000002989
    1. Ducharme-Crevier L, Lacroix J. Interleukin-1 receptor antagonist and interleukin-1beta: Risk marker or risk factor for pediatric acute respiratory distress syndrome? Pediatr Crit Care Med. 2018;19(10):993-995. doi:10.1097/PCC.0000000000001713
    1. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003;111(12):1805-1812. doi:10.1172/JCI200318921
    1. Kapur R, Kim M, Shanmugabhavananthan S, Liu J, Li Y, Semple JW. C-reactive protein enhances murine antibody-mediated transfusion-related acute lung injury. Blood. 2015;126(25):2747-2751. doi:10.1182/blood-2015-09-672592
    1. Kapur R, Kim M, Rondina MT, Porcelijn L, Semple JW. Elevation of C-reactive protein levels in patients with transfusion-related acute lung injury. Oncotarget. 2016;7(47):78048-78054. doi:10.18632/oncotarget.12872
    1. Pechous RD. With friends like these: the complex role of neutrophils in the progression of severe pneumonia. Front Cell Infect Microbiol. 2017;7:160. doi:10.3389/fcimb.2017.00160
    1. McNamara R, Deane AM, Anstey J, Bellomo R. Understanding the rationale for parenteral ascorbate (vitamin C) during an acute inflammatory reaction: a biochemical perspective. Crit Care Resusc. 2018;20(3):174-179.
    1. Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care. 2017;21(1):300. doi:10.1186/s13054-017-1891-y
    1. Margaritelis NV, Paschalis V, Theodorou AA, Vassiliou V, Kyparos A, Nikolaidis MG. Rapid decreases of key antioxidant molecules in critically ill patients: A personalized approach. Clinical Nutrition. 2020;39(4):1146-1154. doi:10.1016/j.clnu.2019.04.029
    1. Carr AC, Maggini SJN. Vitamin C and Immune Function. Nutrients. 2017;9(11):1211. doi:10.3390/nu9111211
    1. Hartmann SE, Waltz X, Kissel CK, et al. Cerebrovascular and ventilatory responses to acute isocapnic hypoxia in healthy aging and lung disease: effect of vitamin C. J Appl Physiol (Bethesda, md: 1985). 2015;119(4):363-373. doi:10.1152/japplphysiol.00389.2015
    1. Gaweł S, Wardas M, Niedworok E, Wardas P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci Lekarskie (Warsaw, Poland: 1960). 2004;57(9-10):453-455
    1. Reynolds PS, Fisher BJ, McCarter J, et al. Interventional vitamin C: A strategy for attenuation of coagulopathy and inflammation in a swine multiple injuries model. J Trauma Acute Care Surg. 2018;85(1S Suppl 2):S57-s67. doi:10.1097/TA.0000000000001844
    1. Washko P, Rotrosen D, MJJoBC L. Ascorbic acid transport and accumulation in human neutrophils. J Biol Chem. 1989;264(32):18996-19002. doi:10.1016/S0021-9258(19)47256-6
    1. Evans RM, Currie L, Campbell A. The distribution of ascorbic acid between various cellular components of blood, in normal individuals, and its relation to the plasma concentration. Br J Nutr. 1982;47(3):473-482. doi:10.1079/BJN19820059
    1. Corpe CP, Lee J-H, Kwon O, et al. 6-Bromo-6-deoxy-L-ascorbic acid: an ascorbate analog specific for Na+-dependent vitamin C transporter but not glucose transporter pathways. J Biol Chem. 2005;280(7):5211-5220. doi:10.1074/jbc.M412925200
    1. Vissers M, Hampton MJBST. The role of oxidants and vitamin C on neutrophil apoptosis and clearance. Biochem Soc Trans. 2004;32(3):499-501. doi:10.1042/bst0320499
    1. Wang Y, Lin H, Lin BW, Lin JD. Effects of different ascorbic acid doses on the mortality of critically ill patients: a meta-analysis. Ann Intensive Care. 2019;9(1):58. doi:10.1186/s13613-019-0532-9
    1. Rozemeijer S, Spoelstra-de Man AME, Coenen S, Smit B, Elbers PWG, de Grooth HJ, Girbes ARJ, Oudemans-van Straaten HM. Estimating vitamin C status in critically ill patients with a novel point-of-care oxidation-reduction potential measurement. Nutrients. 2019;11(5):1031. doi:10.3390/nu11051031
    1. Fowler AA 3rd, Truwit JD, Hite RD, et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI randomized clinical trial. JAMA. 2019;322(13):1261-1270. doi:10.1001/jama.2019.11825
    1. Toy P, Popovsky MA, Abraham E, et al. Transfusion-related acute lung injury: definition and review. Crit Care Med. 2005;33(4):721-726. doi:10.1097/01.CCM.0000159849.94750.51
    1. Kleinman S, Caulfield T, Chan P, et al. Toward an understanding of transfusion-related acute lung injury: statement of a consensus panel. Transfusion. 2004;44(12):1774-1789. doi:10.1111/j.0041-1132.2004.04347.x
    1. de Grooth HJ, Manubulu-Choo WP, Zandvliet AS, et al. Vitamin C pharmacokinetics in critically ill patients: A randomized trial of four IV regimens. Chest. 2018;153(6):1368-1377. doi:10.1016/j.chest.2018.02.025
    1. Fowler AA III, Fisher BJ, Kashiouris MG. Vitamin C for sepsis and acute respiratory failure-Reply. JAMA. 2020;323(8):792-793. doi:10.1001/jama.2019.21981
    1. Klimant E, Wright H, Rubin D, Seely D, Markman M. Intravenous vitamin C in the supportive care of cancer patients: a review and rational approach. Curr Oncol (Toronto, Ont). 2018;25(2):139-148. doi:10.3747/co.25.3790
    1. Fowler AA 3rd, Syed AA, Knowlson S, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014;12(1):32. doi:10.1186/1479-5876-12-32
    1. Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas JJC. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest. 2017;151(6):1229-1238. doi:10.1016/j.chest.2016.11.036
    1. Al Sulaiman K, Aljuhani O, Saleh KB, et al. Ascorbic acid as an adjunctive therapy in critically ill patients with COVID-19: a propensity score matched study. Sci Rep. 2021;11(1):17648. doi:10.1038/s41598-021-96703-y
    1. Li W, Maeda N, Beck MA. Vitamin C deficiency increases the lung pathology of influenza virus-infected gulo−/− mice. J Nutr. 2006;136(10):2611-2616. doi:10.1093/jn/136.10.2611.
    1. Fisher BJ, Kraskauskas D, Martin EJ, et al. Mechanisms of attenuation of abdominal sepsis induced acute lung injury by ascorbic acid. Am J Physiol Lung Cell Mol Physiol. 2012;303(1):L20-L32. doi:10.1152/ajplung.00300.2011
    1. Kashiouris MG, L’Heureux M, Cable CA, Fisher BJ, Leichtle SW, Fowler AA. The emerging role of vitamin C as a treatment for sepsis. Nutrients. 2020;12(2):292. doi:10.3390/nu12020292
    1. Marik PE, Payen D. CITRIS-ALI: How statistics were used to obfuscate the true findings. Anaesth Crit Care Pain Med. 2019;38(6):575-577. doi:10.1016/j.accpm.2019.10.004
    1. Hemilä H, Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients: a meta-regression analysis. J Intensive Care. 2020;8(1):1-9. doi:10.1186/s40560-020-0432-y
    1. Zhang J, Rao X, Li Y, Zhu Y, Liu F, Guo G, Luo G, Meng Z, De Backer D, Xiang H, Peng Z. Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann Intensive Care. 2021;11(1):5. doi:10.1186/s13613-020-00792-3
    1. JamaliMoghadamSiahkali S, Zarezade B, Koolaji S, et al. Safety and effectiveness of high-dose vitamin C in patients with COVID-19: a randomized open-label clinical trial. Eur J Med Res. 2021;26(1):1-9. doi:10.1186/s40001-021-00490-1
    1. Wang Y, Lin H, Lin B-W, Lin J-DA. Effects of different ascorbic acid doses on the mortality of critically ill patients: a meta-analysis. Ann Intensive Care. 2019;9(1):1-13. doi:10.1186/s13613-019-0532-9
    1. Carr AC, Shaw GM, Natarajan RJCC. Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock? Crit Care. 2015;19(1):1-8. doi:10.1186/s13054-015-1131-2
    1. Khalili H, Zabet M, Mohammadi M, Ramezani M. Effect of high-dose Ascorbic acid on vasopressor′s requirement in septic shock. J Res Pharm Pract. 2016;5(2):94. doi:10.4103/2279-042x.179569
    1. Li M, Ching TH, Hipple C, Lopez R, Sahibzada A, Rahman H. Use of intravenous vitamin C in critically ill patients with COVID-19 infection. J Pharm Pract. 2021;0(0):08971900211015052. doi:10.1177/08971900211015052
    1. Syed AA, Knowlson S, Sculthorpe R, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014;12(1):1-10. doi:10.1186/1479-5876-12-32
    1. Ferrón-Celma I, Mansilla A, Hassan L, et al. Effect of vitamin C administration on neutrophil apoptosis in septic patients after abdominal surgery. J Surg Res. 2009;153(2):224-230. doi:10.1016/j.jss.2008.04.024

Source: PubMed

3
Předplatit