Awake Prone Positioning Strategy for Nonintubated Hypoxic Patients with COVID-19: A Pilot Trial with Embedded Implementation Evaluation

Stephanie Parks Taylor, Henry Bundy, William M Smith, Sara Skavroneck, Brice Taylor, Marc A Kowalkowski, Stephanie Parks Taylor, Henry Bundy, William M Smith, Sara Skavroneck, Brice Taylor, Marc A Kowalkowski

Abstract

Rationale: Prone positioning is an appealing therapeutic strategy for nonintubated hypoxic patients with coronavirus disease (COVID-19), but its effectiveness remains to be established in randomized controlled trials. Objectives: To identify contextual factors relevant to the conduct of a definitive clinical trial evaluating a prone positioning strategy for nonintubated hypoxic patients with COVID-19. Methods: We conducted a cluster randomized pilot trial at a quaternary care teaching hospital. Five inpatient medical service teams were randomly allocated to two treatment arms: 1) usual care (UC), consisting of current, standard management of hypoxia and COVID-19; or 2) the Awake Prone Positioning Strategy (APPS) plus UC. Included patients had positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing or suspected COVID-19 pneumonia and oxygen saturation less than 93% or new oxygen requirement of 3 L per minute or greater and no contraindications to prone positioning. Oxygenation measures were collected within 48 hours of eligibility and included nadir oxygen saturation to fraction of inspired oxygen (S/F) ratio and time spent with S/F ratio less than 315. Concurrently, we conducted an embedded implementation evaluation using semistructured interviews with clinician and patient participants to determine contextual factors relevant to the successful conduct of a future clinical trial. The primary outcomes were drawn from an implementation science framework including acceptability, adoption, appropriateness, effectiveness, equity, feasibility, fidelity, and penetration. Results: Forty patients were included in the cluster randomized trial. Patients in the UC group (n = 13) had a median nadir S/F ratio over the 48-hour study period of 216 (95% confidence interval [95% CI], 95-303) versus 253 (95% CI, 197-267) in the APPS group (n = 27). Patients in the UC group spent 42 hours (95% CI, 13-47) of the 48-hour study period with an S/F ratio below 315 versus 20 hours (95% CI, 6-39) for patients in the APPS group. Mixed-methods analyses uncovered several barriers relevant to the conduct of a successful definitive randomized controlled trial, including low adherence to prone positioning, large differences between physician-recommended and patient-tolerated prone durations, and diffusion of prone positioning into usual care. Conclusions: A definitive trial evaluating the effect of prone positioning in nonintubated patients with COVID-19 is warranted, but several barriers must be addressed to ensure that the results of such a trial are informative and readily translated into practice.

Keywords: COVID-19; hypoxia; implementation science; prone positioning.

Figures

Figure 1.
Figure 1.
Flow diagram of patients with COVID-19 acute respiratory failure enrolled into the APPS pilot trial. AMA = against medical advice; APPS = Awake Prone Positioning Strategy; COVID-19 = coronavirus disease.
Figure 2.
Figure 2.
Separation of lowest S/F ratio and trends in median S/F ratio within 48 hours from baseline for patients with coronavirus disease (COVID-19) acute respiratory failure enrolled into the APPS pilot trial. Box and whisker plots depict the lowest S/F ratio for (A) patients randomly assigned to UC and APPS and (B) patients who did not prone and did prone. Median and IQR and mean and SD estimates along with 95% CIs are shown below the plot for each group. Outlier data points are presented with a circle for any estimates located at least 1.5 times the IQR below the first quartile or above the third quartile. The group median S/F ratio is shown plotted longitudinally at 6-hour intervals for (C) patients randomly assigned to UC and APPS and (D) patients who did not prone and did prone. APPS = Awake Prone Positioning Strategy; CI = confidence interval; IQR = interquartile range; SD = standard deviation; S/F = oxygen saturation to fraction of inspired oxygen; UC = usual care.

References

    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382:727–733.
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.
    1. Abroug F, Ouanes-Besbes L, Elatrous S, Brochard L. The effect of prone positioning in acute respiratory distress syndrome or acute lung injury: a meta-analysis: areas of uncertainty and recommendations for research. Intensive Care Med. 2008;34:1002–1011.
    1. Sud S, Friedrich JO, Taccone P, Polli F, Adhikari NK, Latini R, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med. 2010;36:585–599.
    1. Gattinoni L, Carlesso E, Taccone P, Polli F, Guérin C, Mancebo J. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis. Minerva Anestesiol. 2010;76:448–454.
    1. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159–2168.
    1. Lamm WJE, Graham MM, Albert RK. Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med. 1994;150:184–193.
    1. Henderson AC, Sá RC, Theilmann RJ, Buxton RB, Prisk GK, Hopkins SR. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung. J Appl Physiol (1985) 2013;115:313–324.
    1. Gattinoni L, Pelosi P, Vitale G, Pesenti A, D’Andrea L, Mascheroni D. Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology. 1991;74:15–23.
    1. Scaravilli V, Grasselli G, Castagna L, Zanella A, Isgrò S, Lucchini A, et al. Prone positioning improves oxygenation in spontaneously breathing nonintubated patients with hypoxemic acute respiratory failure: a retrospective study. J Crit Care. 2015;30:1390–1394.
    1. Ding L, Wang L, Ma W, He H. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit Care. 2020;24:28.
    1. Sun Q, Qiu H, Huang M, Yang Y. Lower mortality of COVID-19 by early recognition and intervention: experience from Jiangsu Province. Ann Intensive Care. 2020;10:33.
    1. Taboada M, Rodríguez N, Riveiro V, Abelleira R, Ricoy J, Lama A, et al. Short-term outcomes of 50 patients with acute respiratory distress by COVID-19 where prone positioning was used outside the ICU. J Clin Anesth. 2020;67:110028.
    1. Identifier: NCT04344587. 2020 [accessed 2020 Sep 10]. Available from: .
    1. Identifier: NCT04383613. 2020 [accessed 2020 Sep 10]. Available from: .
    1. Identifier: NCT04359797. 2020 [accessed 2020 Sep 10]. Available from: .
    1. Taylor SP, Kowalkowski MA. Using implementation science-guided pilot studies to assess and improve the informativeness of clinical trials. J Gen Intern Med. [online ahead of print] 11 Sep 2020; DOI: 10.1007/s11606-020-06220-3.
    1. Loudon K, Treweek S, Sullivan F, Donnan P, Thorpe KE, Zwarenstein M. The PRECIS-2 tool: designing trials that are fit for purpose. BMJ. 2015;350:h2147.
    1. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. REDCap Consortium. The REDCap consortium: building an international community of software platform partners. J Biomed Inform. 2019;95:103208.
    1. Proctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bunger A, et al. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011;38:65–76.
    1. Adams JY, Rogers AJ, Schuler A, Marelich GP, Fresco JM, Taylor SL, et al. Association between peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio time at risk and hospital mortality in mechanically ventilated patients. Perm J. 2020;24:19.114.
    1. Rice TW, Wheeler AP, Bernard GR, Hayden DL, Schoenfeld DA, Ware LB. National Institutes of Health, National Heart, Lung, and Blood Institute ARDS Network. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007;132:410–417.
    1. Bloomfield R, Noble DW, Sudlow A. Prone position for acute respiratory failure in adults. Cochrane Database Syst Rev. 2015;2015:CD008095.
    1. Moscoe E, Bor J, Bärnighausen T. Regression discontinuity designs are underutilized in medicine, epidemiology, and public health: a review of current and best practice. J Clin Epidemiol. 2015;68:122–133.
    1. Walkey AJ, Drainoni ML, Cordella N, Bor J. Advancing quality improvement with regression discontinuity designs. Ann Am Thorac Soc. 2018;15:523–529.
    1. Bickler PE, Feiner JR, Severinghaus JW. Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology. 2005;102:715–719.

Source: PubMed

3
Předplatit