COVID-19 length of hospital stay: a systematic review and data synthesis

Eleanor M Rees, Emily S Nightingale, Yalda Jafari, Naomi R Waterlow, Samuel Clifford, Carl A B Pearson, Cmmid Working Group, Thibaut Jombart, Simon R Procter, Gwenan M Knight, Eleanor M Rees, Emily S Nightingale, Yalda Jafari, Naomi R Waterlow, Samuel Clifford, Carl A B Pearson, Cmmid Working Group, Thibaut Jombart, Simon R Procter, Gwenan M Knight

Abstract

Background: The COVID-19 pandemic has placed an unprecedented strain on health systems, with rapidly increasing demand for healthcare in hospitals and intensive care units (ICUs) worldwide. As the pandemic escalates, determining the resulting needs for healthcare resources (beds, staff, equipment) has become a key priority for many countries. Projecting future demand requires estimates of how long patients with COVID-19 need different levels of hospital care.

Methods: We performed a systematic review of early evidence on length of stay (LoS) of patients with COVID-19 in hospital and in ICU. We subsequently developed a method to generate LoS distributions which combines summary statistics reported in multiple studies, accounting for differences in sample sizes. Applying this approach, we provide distributions for total hospital and ICU LoS from studies in China and elsewhere, for use by the community.

Results: We identified 52 studies, the majority from China (46/52). Median hospital LoS ranged from 4 to 53 days within China, and 4 to 21 days outside of China, across 45 studies. ICU LoS was reported by eight studies-four each within and outside China-with median values ranging from 6 to 12 and 4 to 19 days, respectively. Our summary distributions have a median hospital LoS of 14 (IQR 10-19) days for China, compared with 5 (IQR 3-9) days outside of China. For ICU, the summary distributions are more similar (median (IQR) of 8 (5-13) days for China and 7 (4-11) days outside of China). There was a visible difference by discharge status, with patients who were discharged alive having longer LoS than those who died during their admission, but no trend associated with study date.

Conclusion: Patients with COVID-19 in China appeared to remain in hospital for longer than elsewhere. This may be explained by differences in criteria for admission and discharge between countries, and different timing within the pandemic. In the absence of local data, the combined summary LoS distributions provided here can be used to model bed demands for contingency planning and then updated, with the novel method presented here, as more studies with aggregated statistics emerge outside China.

Keywords: Bed demand; COVID-19; Hospitalisation; ICU capacity; Length of stay; SARS-CoV-2.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
PRISMA diagram showing the results of the screening process used to identify included studies (n=52)
Fig. 2
Fig. 2
Hospital length of stay, by discharge status. Medians (square) are presented with interquartile range (IQR). Where estimates were reported as mean and standard deviation, equivalent quantiles have been calculated assuming a Weibull distribution (triangle); if no measure of variation was reported, only the original mean is presented (circle). The grey dashed lines represent the mean value across all point estimates within that setting, weighted by sample size. The studies are ordered by the study start date, with most recent at the top. Two studies (Shi et al. (2020-02-02) and Shi et al. (2020-01-23)) have multiple estimates for the same outcome which represent multiple treatment and comorbidity subgroups, respectively. Details of these are included in Table 1
Fig. 3
Fig. 3
ICU length of stay, by discharge status. Medians (square) are presented with interquartile range (IQR). Where estimates were reported as mean and standard deviation, equivalent quantiles have been calculated assuming a Weibull distribution (triangle); if no measure of variation was reported, only the original mean is presented (circle). The grey dashed lines represent the mean value across all point estimates within that setting, weighted by sample size. Studies are ordered by the study start date
Fig. 4
Fig. 4
Combined LOS distributions. Samples from the LoS distributions, split by location (China or rest of world) and type (ICU vs total LoS). For each subset, 100,000 draws were taken. The x-axis was cut at days = 60

References

    1. World Health Organization. Coronavirus disease 2019 (COVID-19) situation report, 95. 2020. Available from: \_4.
    1. Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Intensive Care Med. 2020; 46:837–40. Available from: 10.1007/s00134-020-05979-7.
    1. Qiu H, Tong Z, Ma P, Hu M, Peng Z, Wu W, Du B. Intensive care during the coronavirus epidemic. Intensive Care Med. 2020; 46(4):576–8. Available from: 10.1007/s00134-020-05966-y.
    1. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next?Lancet. 2020; 395(10231):1225–8. Available from: .
    1. Paterlini M. On the front lines of coronavirus: the Italian response to covid-19. BMJ. 2020; 368:m1065. Available from: .
    1. Legido-Quigley H, Mateos-Garciá JT, Campos VR, Gea-Sánchez M, Muntaner C, McKee M. The resilience of the Spanish health system against the COVID-19 pandemic. Lancet Public Health. 2020; 5(5):251–2. Available from: .
    1. Rosenbaum L. Facing Covid-19 in Italy?ethics, logistics, and therapeutics on the epidemic’s front line. N Engl J Med. 2020; 382(20):1873–5. Available from: 10.1056/NEJMp2005492.
    1. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Peña R, Holguin-Rivera Y, Escalera-Antezana JP, Alvarado-Arnez LE, Bonilla-Aldana DK, Franco-Paredes C, Henao-Martinez AF, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020:101623. Available from: .
    1. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). In: StatPearls. Treasure Island (FL). StatPearls Publishing: 2020. Available from: .
    1. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med. 2020:1–5. Available from: 10.1007/s11606-020-05762-w.
    1. Chen S, Zhang Z, Yang J, Wang J, Zhai X, Bärnighausen T, Wang C. Fangcang shelter hospitals: a novel concept for responding to public health emergencies. Lancet. 2020; 395(10232):1305–14. Available from: .
    1. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(13):1239–42. Available from: .
    1. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, Ji R, Wang H, Wang Y, Zhou Y. Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: a systematic review and meta-analysis. Int J Infect Dis. 2020; 94:91–5. Available from: .
    1. Clark A, Jit M, Warren-Gash C, Guthrie B, Wang HH, Mercer SW, Sanderson C, McKee M, Troeger C, Ong KI, et al. How many are at increased risk of severe COVID-19 disease? Rapid global, regional and national estimates for 2020. medRxiv. 2020. Available from: .
    1. COVID IHME, Murray CJ. Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months. Infect Dis (except HIV/AIDS). 2020. Available from: .
    1. Deasy J, Rocheteau E, Kohler K, Stubbs DJ, Barbiero P, Liò P, Ercole A. Forecasting ultra-early intensive care strain from COVID-19 in England. medRxiv. 2020. Available from: .
    1. Ferstad JO, Gu AJ, Lee RY, Thapa I, Shin AY, Salomon JA, Glynn P, Shah NH, Milstein A, Schulman K, Scheinker D. A model to forecast regional demand for COVID-19 related hospital beds. medRxiv. 2020. Available from: .
    1. Weissman GE, Crane-Droesch A, Chivers C, Luong T, Hanish A, Levy MZ, Lubken J, Becker M, Draugelis ME, Anesi GL, et al. Locally informed simulation to predict hospital capacity needs during the COVID-19 pandemic. Ann Intern Med. 2020; 173(1):21–8. Available from: 10.7326/M20-1260.
    1. Massonnaud C, Roux J, Crépey P. COVID-19: forecasting short term hospital needs in France. medRxiv. 2020. Available from: .
    1. Moghadas SM, Shoukat A, Fitzpatrick MC, Wells CR, Sah P, Pandey A, Sachs JD, Wang Z, Meyers LA, Singer BH, et al. Projecting hospital utilization during the COVID-19 outbreaks in the United States. Proc Natl Acad Sci. 2020; 117(16):9122–6. Available from: .
    1. Shoukat A, Wells CR, Langley JM, Singer BH, Galvani AP, Moghadas SM. Projecting demand for critical care beds during COVID-19 outbreaks in Canada. CMAJ. 2020; 192(19):489–96. Available from: .
    1. Castro MC, Carvalho LR, Chin T, Kahn R, Franca GVA, Macario EM, de Oliveira WK. Demand for hospitalization services for COVID-19 patients in Brazil. medRxiv. 2020. Available from: .
    1. Marazzi A, Paccaud F, Ruffieux C, Beguin C. Fitting the distributions of length of stay by parametric models. Med Care. 1998;36(6):915–27. doi: 10.1097/00005650-199806000-00014.
    1. R Core Team. R stats package version 1.14.4.Available from: .
    1. Macdonald P, Du J. Mixdist: finite mixture distribution models version 0.5-5. 2018. Available from: .
    1. Locke S, FitzJohn R, Cori A, Jombart T. distcrete: Discrete Distribution Approximations version 1.0.3. 2017. Available from: .
    1. International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC). COVID-19 report. 2020. Available from: .
    1. Intensive Care National Audit and research Centre (ICNArC). Report on 2249 patients critically ill with COVID-19. 2020. Available from: .
    1. Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis. 2020; 20(6):689–96. Available from: .
    1. Shi Y, Wang X, Liu G, Zhu Q, Wang J, Yu H, Wang C, Wang L, Zhang M, Zhang L, et al. A quickly, effectively screening process of novel corona virus disease 2019 (COVID-19) in children in Shanghai, China. Ann Transl Med. 2020; 8(5):241. Available from: .
    1. Xia W, Shao J, Guo Y, Peng X, Li Z, Hu D. Clinical and CT features in pediatric patients with COVID-19 infection: different points from adults. Pediatr Pulmonol. 2020; 55(5):1169–74. Available from: .
    1. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020; 323(16):1574–81. Available from: 10.1001/jama.2020.5394.
    1. Spiteri G, Fielding J, Diercke M, Campese C, Enouf V, Gaymard A, Bella A, Sognamiglio P, Moros MJS, Riutort AN, et al. First cases of coronavirus disease 2019 (COVID-19) in the WHO European Region, 24 January to 21 February 2020. Eurosurveillance. 2020; 25(9):2000178. Available from: .
    1. Bhatraju PK, Ghassemieh BJ, Nichols M, Kim R, Jerome KR, Nalla AK, Greninger AL, Pipavath S, Wurfel MM, Evans L, et al. Covid-19 in critically ill patients in the Seattle region?case series. N Engl J Med. 2020; 382(21):2012–22. Available from: .
    1. Petrilli CM, Jones SA, Yang J, Rajagopalan H, O’Donnell LF, Chernyak Y, Tobin K, Cerfolio RJ, Francois F, Horwitz LI. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. medRxiv. 2020. Available from: .
    1. Guan Wj, Ni Zy, Hu Y, Liang Wh, Ou Cq, He Jx, et al.Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020. Massachusetts Medical Society. Available from: 10.1056/NEJMoa2002032.
    1. Liu F, Xu A, Zhang Y, Xuan W, Yan T, Pan K, et al.Patients of COVID-19 may benefit from sustained lopinavir-combined regimen and the increase of eosinophil may predict the outcome of COVID-19 progression. Int J Infect Dis. 2020:S1201971220301326. Available from: .
    1. Wang Z, Ji JS, Liu Y, Liu R, Zha Y, Chang X, et al.Survival analysis of hospital length of stay of novel coronavirus (COVID-19) pneumonia patients in Sichuan, China. medRxiv. 2020. Available from: .
    1. Wang L, He W, Yu X, Hu D, Bao M, Liu H, et al. Coronavirus disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020;80:639–45. doi: 10.1016/j.jinf.2020.03.019.
    1. Yin M, Zhang L, Deng G, Han C, Shen M, Sun H, et al.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during pregnancy in China: a retrospective cohort study. medRxiv. 2020. Available from: .
    1. Zhang D, Guo R, Lei L, Liu H, Wang Y, Wang Y, et al.COVID-19 infection induces readily detectable morphological and inflammation-related phenotypic changes in peripheral blood monocytes, the severity of which correlate with patient outcome. medRxiv. 2020. Available from: .
    1. Shi S, Qin M, Shen B, Cai Y, Liu T, Yang F, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;5:802–10. doi: 10.1001/jamacardio.2020.0950.
    1. Shi H, Han X, Jiang N, Cao Y, Alwalid O, Gu J, et al.Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. Lancet Infect Dis. 2020; 20(4):425–34. Available from: .
    1. Shi C, Wang C, Wang H, Yang C, Cai F, Zeng F, et al.The potential of low molecular weight heparin to mitigate cytokine storm in severe COVID-19 patients: a retrospective clinical study. medRxiv. 2020. Available from: .
    1. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al.Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA. 2020. Available from: 10.1001/jama.2020.4783.
    1. CDC. Coronavirus disease 2019 (COVID-19). 2020. Available from: .
    1. for Disease PreventionandControl EC. Discharge criteria for confirmed COVID-19 cases. 2020. Available from: .
    1. Commission CNH. COVID-19 diagnostic guidelines (version 3). 2020. Available from: .
    1. Sakr Y, Moreira CL, Rhodes A, Ferguson ND, Kleinpell R, Pickkers P, et al.The impact of hospital and ICU organizational factors on outcome in critically ill patients: results from the extended prevalence of infection in intensive care study*. Crit Care Med. 2015; 43(3):519–26. Available from: .
    1. Lewnard JA, Liu VX, Jackson ML, Schmidt MA, Jewell BL, Flores JP, et al.Incidence, clinical outcomes, and transmission dynamics of hospitalized 2019 coronavirus disease among 9,596,321 individuals residing in California and Washington, United States: a prospective cohort study. Epidemiology. 2020. Available from: .
    1. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al.Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323(20):2052–2059. Available from: .
    1. Inciardi RM, Adamo M, Lupi L, Cani DS, Di Pasquale M, Tomasoni D, et al.Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020; 41(19):1821–9. Available from: .
    1. Zaninotto M, Mion MM, Cosma C, Rinaldi D, Plebani M. Presepsin in risk stratification of SARS-CoV-2 patients. Clin Chim Acta. 2020; 507:161–163. Available from: .
    1. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al.Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020. Elsevier. Available from: .
    1. Wu C, Hu X, Song J, Du C, Xu J, Yang D, et al.Heart injury signs are associated with higher and earlier mortality in coronavirus disease 2019 (COVID-19). medRxiv. 2020. Available from: .
    1. Lapidus N, Zhou X, Carrat F, Riou B, Zhao Y, Hejblum G. Biased and unbiased estimation of the average lengths of stay in intensive care units in the COVID-19 pandemic. medRxiv. 2020. Available from: .
    1. Murray CJ. Forecasting COVID-19 impact on hospital bed-days, ICU-days, ventilator-days and deaths by US state in the next 4 months. medRxiv. 2020. Available from: .
    1. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–62. doi: 10.1016/S0140-6736(20)30566-3.
    1. Davies NG, Kucharski AJ, Eggo RM, Gimma A, Group CCW, Edmunds WJ. The effect of non-pharmaceutical interventions on COVID-19 cases, deaths and demand for hospital services in the UK: a modelling study. medRxiv. 2020. Available from: .
    1. Cai Q, Huang D, Ou P, Yu H, Zhu Z, Xia Z, et al.COVID-19 in a designated infectious diseases hospital outside Hubei Province, China. Allergy. 2020. Available from: .
    1. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N Engl J Med. 2020;382:1787–799. doi: 10.1056/NEJMoa2001282.
    1. Cao J, Tu WJ, Cheng W, Yu L, Liu YK, Hu X, et al.Clinical features and short-term outcomes of 102 patients with corona virus disease 2019 in Wuhan, China. Clin Infect Dis. 2020. Available from: .
    1. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al.Clinical characteristics of 113 deceased patients with coronavirus disease 2019 : retrospective study. BMJ. 2020:368. BMJ Publishing Group Ltd. Available from: .
    1. Chen J, Qi T, Liu L, Ling Y, Qian Z, Li T, et al.Clinical progression of patients with COVID-19 in Shanghai, China. J Infect. 2020; 80(5):e1–e6. Available from: .
    1. Chen X, Zheng F, Qing Y, Ding S, Yang D, Lei C, et al.Epidemiological and clinical features of 291 cases with coronavirus disease 2019 in areas adjacent to Hubei, China: a double-center observational study. medRxiv. 2020. Available from: .
    1. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al.Kidney impairment is associated with in-hospital death of COVID-19 patients. medRxiv. 2020. Available from: .
    1. Deng Y, Liu W, Liu K, Fang YY, Shang J, Zhou L, et al.Clinical characteristics of fatal and recovered cases of coronavirus disease 2019 (COVID-19) in Wuhan, China: a retrospective study. Chin Med J (Engl). 2020. Publish Ahead of Print. Available from: .
    1. Ding Q, Lu P, Fan Y, Xia Y, Liu M. The clinical characteristics of pneumonia patients coinfected with 2019 novel coronavirus and influenza virus in Wuhan, China. J Med Virol. 2020. Available from: .
    1. Du Y, Tu L, Zhu P, Mu M, Wang R, Yang P, et al.Clinical features of 85 fatal cases of COVID-19 from Wuhan: a retrospective observational study. Am J Respir Crit Care Med. 2020. American Thoracic Society - AJRCCM. Available from: .
    1. Fan Z, Chen L, Li J, Cheng X, Yang J, Tian C, et al.Clinical features of COVID-19-related liver damage. Clin Gastroenterol Hepatol. 2020:S1542356520304821. Available from: .
    1. Liu J, Ouyang L, Guo P, Wu HS, Fu P, Chen YL, et al.Epidemiological, clinical characteristics and outcome of medical staff infected with COVID-19 in Wuhan, China: a retrospective case series analysis. medRxiv. 2020. Available from: .
    1. Liu L, Gao JY. Clinical characteristics of 51 patients discharged from hospital with COVID-19 in Chongqing???China. medRxiv. 2020. Available from: .
    1. Mo P, Xing Y, Xiao Y, Deng L, Zhao Q, Wang H, et al.Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. Clin Infect Dis. 2020; ciaa270. Available from: 10.1093/cid/ciaa270.
    1. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al.Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology. 2020:200370. Radiological Society of North America. Available from: .
    1. Qi D, Yan X, Tang X, Peng J, Yu Q, Feng L, et al.Epidemiological and clinical features of 2019-nCoV acute respiratory disease cases in Chongqing municipality, China: a retrospective, descriptive, multiple-center study. medRxiv. 2020. Available from: .
    1. Tang X, Du R, Wang R, Cao T, Guan L, Yang C, et al.Comparison of hospitalized patients with ARDS caused by COVID-19 and H1N1. Chest. 2020. Available from: .
    1. Tian S, Chang Z, Wang Y, Wu M, Zhang W, Zhou G, et al.Clinical characteristics and reasons of different duration from onset to release from quarantine for patients with COVID-19 outside Hubei province, China. medRxiv. 2020. Available from: .
    1. Tian S, Zhu X, Sun X, Wang J, Zhou Q, Wang C, et al.Longitudinal analysis of laboratory findings during the process of recovery for patients with COVID-19. medRxiv. 2020. Available from: .
    1. Wu J, Liu J, Zhao X, Liu C, Wang W, Wang D, et al.Clinical characteristics of imported cases of coronavirus disease 2019 (COVID-19) in Jiangsu Province: a multicenter descriptive study. Clin Infect Dis. 2020. Available from: .
    1. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al.Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020. Available from: .
    1. Wu F, Wang A, Liu M, Wang Q, Chen J, Xia S, et al.Neutralizing antibody responses to SARS-CoV-2 in a COVID-19 recovered patient cohort and their implications. medRxiv. 2020. Available from: .
    1. Xiao G, Hu H, Wu F, Sha T, Huang Q, Li H, et al.Acute kidney injury in patients hospitalized with COVID-19 in Wuhan, China: a single-center retrospective observational study. medRxiv. 2020. Available from: .
    1. Xie H, Zhao J, Lian N, Lin S, Xie Q, Zhuo H. Clinical characteristics of non-ICU hospitalized patients with coronavirus disease 2019 and liver injury: a retrospective study. Liver Int. 2020. Available from: .
    1. Xu S, Fu L, Fei J, Xiang HX, Xiang Y, Tan ZX, et al.Acute kidney injury at early stage as a negative prognostic indicator of patients with COVID-19: a hospital-based retrospective analysis. medRxiv. 2020. Available from: .
    1. Yan D, Liu XY, Zhu YN, Huang L, Dan BT, Zhang GJ, et al.Factors associated with prolonged viral shedding and impact of Lopinavir/Ritonavir treatment in patients with SARS-CoV-2 infection. medRxiv. 2020. Available from: .
    1. Yuan J, Zou R, Zeng L, Kou S, Lan J, Li X, et al.The correlation between viral clearance and biochemical outcomes of 94 COVID-19 infected discharged patients. Inflamm Res. 2020. Available from: 10.1007/s00011-020-01342-0.
    1. Zeng Z, Sha T, Zhang Y, Wu F, Hu H, Li H, et al.Hypertension in patients hospitalized with COVID-19 in Wuhan, China: a single-center retrospective observational study. medRxiv. 2020. Available from: .
    1. Zhang G, Hu C, Luo L, Fang F, Chen Y, Li J, et al.Clinical features and outcomes of 221 patients with COVID-19 in Wuhan, China. medRxiv. 2020. Available from: .
    1. Zhao W, Yu S, Zha X, Wang N, Pang Q, Li T, et al.Clinical characteristics and durations of hospitalized patients with COVID-19 in Beijing: a retrospective cohort study. medRxiv. 2020. Available from: .

Source: PubMed

3
Předplatit