Materials for the Spine: Anatomy, Problems, and Solutions

Brody A Frost, Sandra Camarero-Espinosa, E Johan Foster, Brody A Frost, Sandra Camarero-Espinosa, E Johan Foster

Abstract

Disc degeneration affects 12% to 35% of a given population, based on genetics, age, gender, and other environmental factors, and usually occurs in the lumbar spine due to heavier loads and more strenuous motions. Degeneration of the extracellular matrix (ECM) within reduces mechanical integrity, shock absorption, and swelling capabilities of the intervertebral disc. When severe enough, the disc can bulge and eventually herniate, leading to pressure build up on the spinal cord. This can cause immense lower back pain in individuals, leading to total medical costs exceeding $100 billion. Current treatment options include both invasive and noninvasive methods, with spinal fusion surgery and total disc replacement (TDR) being the most common invasive procedures. Although these treatments cause pain relief for the majority of patients, multiple challenges arise for each. Therefore, newer tissue engineering methods are being researched to solve the ever-growing problem. This review spans the anatomy of the spine, with an emphasis on the functions and biological aspects of the intervertebral discs, as well as the problems, associated solutions, and future research in the field.

Keywords: degenerative disc disease; herniated disc; intervertebral disc; spinal anatomy; spinal fusion; tissue engineering; total disc replacement.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Overview of the vertebral column with each specific section labeled for clarification (a). The green highlighted section refers to the part of the spine that contain individual vertebrae, as well as intervertebral discs (IVD). The structure of the vertebrae and IVD (green highlighted) have been added for better visualization (b) [4].
Figure 2
Figure 2
Pictured (a) is a cut out portion of a normal disc depicting the nucleus pulposus, vertebral endplates, and annulus fibrosus. The chosen intervertebral disc is 4 cm wide and 7–10 mm thick [37]. Depicted in the lower image (b) is a diagram showing the detailed structure of the annulus fibrosus, with its 15–25 lamellae comprised of 20–60 collagen fiber bundles. Also shown, is the angle α, which correlates to the directionality of the fibers’ bundles in relation to the vertebrae [38].
Figure 3
Figure 3
Construction of fibrillary collagen as described above [45].
Figure 4
Figure 4
Fluorescence microscopic images of stained components in the outer annulus fibrosus (a), inner annulus fibrosus (b), and nucleus pulposus (c). The microfibrils in relation to cell distribution (blue) and collagen fiber organization (red) indicates the organization of the microfibrils within the ECM of the outer annulus fibrosus. Opposite however, the microfibrils (red) and elastin fibers (green) in the inner annulus fibrosus do not demonstrate any organization or co-localization to any great degree within the ECM. These two distinct characteristics of organization give rise to the varying mechanical properties of each, Section 2.2.1, (3). The microfibrils (red) show a tendency to hover/organize around the nucleus pulposus cells (blue), while the elastin fibers (green) have a tendency to stay dispersed through the entire ECM [51].
Figure 5
Figure 5
The connection of the hyaline cartilage vertebral endplate to the perforated cortical bone of the vertebral body and collagen fibers of the annulus and nucleus. The arrows in the figure refer to the direction of nutrients and blood flow through the different components of the disc, mainly coming from the bone through the vertebral endplates [37].
Figure 6
Figure 6
(a) Schematic representation of the multiple longer and thicker vascular channels throughout the intervertebral disc on a 10-month old female; while (b) represents the vascular channels throughout the disc of a 50-year old adult, showing the retraction and thinning of the channels [37].
Figure 7
Figure 7
The innervation of a healthy intervertebral disc, showing the sinuvertebral nerves and rami communicantes extending into the vertebral foramen and the outer annulus of the disc [37].
Figure 8
Figure 8
A healthy, normal intervertebral disc on the left, shows a distinct difference between the swollen, softer looking nucleus and the ringed annulus. However, during growth and skeletal maturation, the boundary between these components becomes less obvious, and with the nucleus generally becoming more fibrotic and less gel-like, like the highly degenerate disc on the right [79].
Figure 9
Figure 9
MRI scans showing the different grades of disc degeneration based on the Pfirrmann grading system, (IV) referring to Grades (IV): I is representative of Grade (I) degeneration, (II) is representative of Grade (II) degeneration, (III) is representative of Grade (III) degeneration, (IV) is representative of Grade (IV) degeneration, and (V) is representative of Grade (V) degeneration [88].
Figure 10
Figure 10
Sagittal computerized axial tomography (CT scan) image of the cervical spine showing large anterior osteophytes (indicted by the arrows) extending from C5 to C7, which affect the intervertebral disc space [95].
Figure 11
Figure 11
MRI image showing a slight bulge of the annulus into the spinal canal without severe impingement (a). MRI image showing a full lumbar disc herniation with substantial spinal stenosis and nerve-root compression (b) [97].
Figure 12
Figure 12
Example image of spinal fusion surgery using titanium cages loaded with hydroxyapatites and pedicle screws and rods to keep stability and anatomic alignment in spinal segment [114].

References

    1. Britannica T.E.o.E., editor. Encyclopaedia Britannica. Encyclopaedia Britannica, Inc.; Chicago, IL, USA: 2014. Vertebral Column.
    1. Kibler W.B., Press J., Sciascia A. The role of core stability in athletic function. Sports Med. 2006;36:189–198. doi: 10.2165/00007256-200636030-00001.
    1. Agur A.M.R., Dalley A.F. Grant’s Atlas of Anatomy. 12th ed. Lipincott Williams & Wilkins; Pennsylvania, PA, USA: 2009. p. 841.
    1. Vertebral Column. [(accessed on 14 April 2016)]; Available online: .
    1. Bogduk N., Mercer S. Biomechanics of the cervical spine. I: Normal kinematics. Clin. Biomech. 2000;15:633–648. doi: 10.1016/S0268-0033(00)00034-6.
    1. Swartz E.E., Floyd R.T., Cendoma M. Cervical spine functional anatomy and the biomechanics of injury due to compressive loading. J. Athl. Train. 2005;40:155–161.
    1. Panjabi M.M., Crisco J.J., Vasavada A., Oda T., Cholewicki J., Nibu K., Shin E. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves. Spine. 2001;26:2692–2700. doi: 10.1097/00007632-200112150-00012.
    1. Caridi J.M., Pumberger M., Hughes A.P. Cervical radiculopathy: A review. HSS J. 2011;7:265–272. doi: 10.1007/s11420-011-9218-z.
    1. Yeung J.T., Johnson J.I., Karim A.S. Cervical disc herniation presenting with neck pain and contralateral symptoms: A case report. J. Med. Case Rep. 2012;6:166. doi: 10.1186/1752-1947-6-166.
    1. Edmondston S.J., Singer K.P. Thoracic spine: Anatomical and biomechanical considerations for manual therapy. Man. Ther. 1997;2:132–143. doi: 10.1054/math.1997.0293.
    1. Son E.S., Lee S.H., Park S.Y., Kim K.T., Kang C.H., Cho S.W. Surgical treatment of t1-2 disc herniation with t1 radiculopathy: A case report with review of the literature. Asian Spine J. 2012;6:199–202. doi: 10.4184/asj.2012.6.3.199.
    1. Goh S., Tan C., Price R.I., Edmondston S.J., Song S., Davis S., Singer K.P. Influence of age and gender on thoracic vertebral body shape and disc degeneration: An MR investigation of 169 cases. Pt 4J. Anat. 2000;197:647–657. doi: 10.1046/j.1469-7580.2000.19740647.x.
    1. Cervero F., Tattersall J.E. Somatic and visceral sensory integration in the thoracic spinal cord. Prog. Brain Res. 1986;67:189–205.
    1. Boszczyk B.M., Boszczyk A.A., Putz R. Comparative and functional anatomy of the mammalian lumbar spine. Anat. Rec. 2001;264:157–168. doi: 10.1002/ar.1156.
    1. Troup J.D., Hood C.A., Chapman A.E. Measurements of the sagittal mobility of the lumbar spine and hips. Ann. Phys. Med. 1968;9:308–321. doi: 10.1093/rheumatology/9.8.308.
    1. Haughton V.M., Rogers B., Meyerand M.E., Resnick D.K. Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. Am. J. Neuroradiol. 2002;23:1110–1116.
    1. Granhed H., Jonson R., Hansson T. The loads on the lumbar spine during extreme weight lifting. Spine. 1987;12:146–149. doi: 10.1097/00007632-198703000-00010.
    1. Tan S.H., Teo E.C., Chua H.C. Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur. Spine J. 2004;13:137–146. doi: 10.1007/s00586-003-0586-z.
    1. Crawford R.P., Cann C.E., Keaveny T.M. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003;33:744–750. doi: 10.1016/S8756-3282(03)00210-2.
    1. Shah J.S., Hampson W.G., Jayson M.I. The distribution of surface strain in the cadaveric lumbar spine. J. Bone Jt. Surg. 1978;60:246–251. doi: 10.1302/0301-620X.60B2.659474.
    1. Bogduk N. The innervation of the lumbar spine. Spine. 1983;8:286–293. doi: 10.1097/00007632-198304000-00009.
    1. Luoma K., Riihimaki H., Luukkonen R., Raininko R., Viikari-Juntura E., Lamminen A. Low back pain in relation to lumbar disc degeneration. Spine. 2000;25:487–492. doi: 10.1097/00007632-200002150-00016.
    1. Nygaard O.P., Mellgren S.I. The function of sensory nerve fibers in lumbar radiculopathy—Use of quantitative sensory testing in the exploration of different populations of nerve fibers and dermatomes. Spine. 1998;23:348–352. doi: 10.1097/00007632-199802010-00012.
    1. Takahashi I., Kikuchi S., Sato K., Sato N. Mechanical load of the lumbar spine during forward bending motion of the trunk—A biomechanical study. Spine. 2006;31:18–23. doi: 10.1097/01.brs.0000192636.69129.fb.
    1. Bogduk N. Clinical and Radiological Anatomy of the Lumbar Spine. 5th ed. Elsevier Health Sciences; Philadelphia, PA, USA: 2012.
    1. Koes B.W., van Tulder M.W., Peul W.C. Diagnosis and treatment of sciatica. BMJ. 2007;334:1313–1317. doi: 10.1136/.
    1. Lirette L.S., Chaiban G., Tolba R., Eissa H. Coccydynia: An overview of the anatomy, etiology, and treatment of coccyx pain. Ochsner J. 2014;14:84–87.
    1. Humzah M.D., Soames R.W. Human intervertebral disc: Structure and function. Anat. Rec. 1988;220:337–356. doi: 10.1002/ar.1092200402.
    1. Pooni J.S., Hukins D.W., Harris P.F., Hilton R.C., Davies K.E. Comparison of the structure of human intervertebral discs in the cervical, thoracic and lumbar regions of the spine. Surg. Radiol. Anat. 1986;8:175–182. doi: 10.1007/BF02427846.
    1. Mahendra K.A., Rajani J.A., Shailendra J.S., Narsinh H.G. Morphometric study of the cervical intervertebral disc. Int. J. Anat. Phys. Biochem. 2015;2:22–26.
    1. Kunkel M.E., Herkommer A., Reinehr M., Bockers T.M., Wilke H.J. Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: An anatomical and radiographic study of the human thoracic spine. J. Anat. 2011;219:375–387. doi: 10.1111/j.1469-7580.2011.01397.x.
    1. Shao Z., Rompe G., Schiltenwolf M. Radiographic changes in the lumbar intervertebral discs and lumbar vertebrae with age. Spine. 2002;27:263–268. doi: 10.1097/00007632-200202010-00013.
    1. Twomey L., Taylor J. Age changes in lumbar intervertebral discs. Acta Orthop. Scand. 1985;56:496–499. doi: 10.3109/17453678508993043.
    1. Davis H. Increasing Rates of Cervical and Lumbar Spine Surgery in the United-States, 1979–1990. Spine. 1994;19:1117–1124. doi: 10.1097/00007632-199405001-00003.
    1. Williams M.P., Cherryman G.R., Husband J.E. Significance of thoracic disc herniation demonstrated by MR imaging. J. Comput. Assist. Tomogr. 1989;13:211–214. doi: 10.1097/00004728-198903000-00004.
    1. Adams M.A., Roughley P.J. What is intervertebral disc degeneration, and what causes it? Spine. 2006;31:2151–2161. doi: 10.1097/01.brs.0000231761.73859.2c.
    1. Raj P.P. Intervertebral disc: Anatomy-physiology-pathophysiology-treatment. Pain Pract. 2008;8:18–44. doi: 10.1111/j.1533-2500.2007.00171.x.
    1. Adams M.A. Intervertebral Disc Tissues. In: Derby B., Akhtar R., editors. Mechanical Properties of Aging Soft Tissues. Springer International Publishing; Cham, Switzerland: 2015. pp. 7–35.
    1. Galante J.O. Tensile properties of the human lumbar annulus fibrosus. Acta Orthop. Scand. 1967;38(Suppl. 100):1–91. doi: 10.3109/ort.1967.38.suppl-100.01.
    1. Guerin H.L., Elliott D.M. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model. J. Orthop. Res. 2007;25:508–516. doi: 10.1002/jor.20324.
    1. Smith L.J., Fazzalari N.L. The elastic fibre network of the human lumbar anulus fibrosus: Architecture, mechanical function and potential role in the progression of intervertebral disc degeneration. Eur. Spine J. 2009;18:439–448. doi: 10.1007/s00586-009-0918-8.
    1. Ricard-Blum S. The Collagen Family. CSH Perspect. Biol. 2011;3:a004978. doi: 10.1101/cshperspect.a004978.
    1. Eyre D.R., Muir H. Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem. J. 1976;157:267–270. doi: 10.1042/bj1570267.
    1. Kielty C.M., Grant M.E. The Collagen Family: Structure, Assembly, and Organization in the Extracellular Matrix. In: Royce P.M., Steinmann B., editors. Connective Tissue and Its Heritable Disorders: Molecular, Genetic, and Medical Aspects. 2nd ed. Wiley-Liss; Hoboken, NJ, USA: 2003. pp. 159–221.
    1. Mouw J.K., Ou G., Weaver V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 2014;15:771–785. doi: 10.1038/nrm3902.
    1. Yanagishita M. Function of proteoglycans in the extracellular matrix. Pathol. Int. 1993;43:283–293. doi: 10.1111/j.1440-1827.1993.tb02569.x.
    1. Marchand F., Ahmed A.M. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine. 1990;15:402–410. doi: 10.1097/00007632-199005000-00011.
    1. Melrose J., Smith S.M., Appleyard R.C., Little C.B. Aggrecan, versican and type VI collagen are components of annular translamellar crossbridges in the intervertebral disc. Eur. Spine J. 2008;17:314–324. doi: 10.1007/s00586-007-0538-0.
    1. Hickey D.S., Hukins D.W.L. Relation between the Structure of the Annulus Fibrosus and the Function and Failure of the Intervertebral-Disk. Spine. 1980;5:106–116. doi: 10.1097/00007632-198003000-00004.
    1. Green T.P., Adams M.A., Dolan P. Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life. Eur. Spine J. 1993;2:209–214. doi: 10.1007/BF00299448.
    1. Yu J., Tirlapur U., Fairbank J., Handford P., Roberts S., Winlove C.P., Cui Z., Urban J. Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. J. Anat. 2007;210:460–471. doi: 10.1111/j.1469-7580.2007.00707.x.
    1. Nerurkar N.L., Elliott D.M., Mauck R.L. Mechanical design criteria for intervertebral disc tissue engineering. J. Biomech. 2010;43:1017–1030. doi: 10.1016/j.jbiomech.2009.12.001.
    1. O’Connell G.D., Sen S., Elliott D.M. Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration. Biomech. Model. Mechan. 2012;11:493–503. doi: 10.1007/s10237-011-0328-9.
    1. Ambard D., Cherblanc F. Mechanical behavior of annulus fibrosus: A microstructural model of fibers reorientation. Ann. Biomed. Eng. 2009;37:2256–2265. doi: 10.1007/s10439-009-9761-7.
    1. Best B.A., Guilak F., Setton L.A., Zhu W.B., Saednejad F., Ratcliffe A., Weidenbaum M., Mow V.C. Compressive Mechanical-Properties of the Human Anulus Fibrosus and Their Relationship to Biochemical-Composition. Spine. 1994;19:212–221. doi: 10.1097/00007632-199401001-00017.
    1. Perie D.S., MacLean J.J., Owen J.P., Iatridis J.C. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Ann. Biomed. Eng. 2006;34:769–777. doi: 10.1007/s10439-006-9091-y.
    1. Iatridis J.C., Setton L.A., Weidenbaum M., Mow V.C. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J. Orthop. Res. 1997;15:318–322. doi: 10.1002/jor.1100150224.
    1. Trout J.J., Buckwalter J.A., Moore K.C. Ultrastructure of the human intervertebral disc: II. Cells of the nucleus pulposus. Anat. Rec. 1982;204:307–314. doi: 10.1002/ar.1092040403.
    1. Bonetti M.I. Microfibrils: A cornerstone of extracellular matrix and a key to understand Marfan syndrome. Ital. J. Anat. Embryol. 2009;114:201–224.
    1. Akkiraju H., Nohe A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. J. Dev. Biol. 2015;3:177–192. doi: 10.3390/jdb3040177.
    1. Muir H. The chondrocyte, architect of cartilage. Biomechanics, structure, function and molecular biology of cartilage matrix macromolecules. Bioessays. 1995;17:1039–1048. doi: 10.1002/bies.950171208.
    1. Calve J., Galland M. The intervertebral nucleus pulposus—Its anatomy, its physiology, its pathology. J. Bone Jt. Surg. 1930;12:555–578.
    1. Keyes D.C., Compere E.L. The normal and pathological physiology of the nucleus pulposus of the intervertebral disc—An anatomical, clinical, and experimental study. J. Bone Jt. Surg. 1932;14:897–938.
    1. Lotz J.C., Fields A.J., Liebenberg E.C. The Role of the Vertebral End Plate in Low Back Pain. Glob. Spine J. 2013;3:153–163. doi: 10.1055/s-0033-1347298.
    1. Moore R.J. The vertebral endplate: Disc degeneration, disc regeneration. Eur. Spine J. 2006;15:S333–S337. doi: 10.1007/s00586-006-0170-4.
    1. Mwale F., Roughley P., Antoniou J. Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: A requisite for tissue engineering of intervertebral disc. Eur. Cell Mater. 2004;8:58–63. doi: 10.22203/eCM.v008a06.
    1. Sophia Fox A.J., Bedi A., Rodeo S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health. 2009;1:461–468. doi: 10.1177/1941738109350438.
    1. Miller E.J., Rhodes R.K. Preparation and characterization of the different types of collagen. Pt AMethods Enzym. 1982;82:33–64.
    1. Kuhn K., Schmid T.M., Linsenmayer T.F., Rest M., Mayne R. In: Structure and Function of Collagen Types. 1st ed. Mayne R., Burgeson R.E., editors. Academic Press; New York, NY, USA: 1987. pp. 1–281.
    1. Grant J.P., Oxland T.R., Dvorak M.F. Mapping the structural properties of the lumbosacral vertebral endplates. Spine. 2001;26:889–896. doi: 10.1097/00007632-200104150-00012.
    1. Rodriguez A.G., Rodriguez-Soto A.E., Burghardt A.J., Berven S., Majumdar S., Lotz J.C. Morphology of the human vertebral endplate. J. Orthop. Res. 2012;30:280–287. doi: 10.1002/jor.21513.
    1. Herkowitz H.N., Spine I.S.S.L. The Lumbar Spine. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2004. pp. 1–943.
    1. Nekkanty S., Yerramshetty J., Kim D.G., Zauel R., Johnson E., Cody D.D., Yeni Y.N. Stiffness of the endplate boundary layer and endplate surface topography are associated with brittleness of human whole vertebral bodies. Bone. 2010;47:783–789. doi: 10.1016/j.bone.2010.07.001.
    1. Rudert M., Tillmann B. Lymph and Blood-Supply of the Human Intervertebral Disc—Cadaver Study of Correlations to Discitis. Acta Orthop. Scand. 1993;64:37–40. doi: 10.3109/17453679308994524.
    1. Nerlich A.G., Schaaf R., Walchli B., Boos N. Temporo-spatial distribution of blood vessels in human lumbar intervertebral discs. Eur. Spine J. 2007;16:547–555. doi: 10.1007/s00586-006-0213-x.
    1. Bogduk N., Tynan W., Wilson A.S. The Nerve Supply to the Human Lumbar Intervertebral Disks. J. Anat. 1981;132:39–56.
    1. Edgar M.A. The nerve supply of the lumbar intervertebral disc. J. Bone Jt. Surg. Br. 2007;89:1135–1139. doi: 10.1302/0301-620X.89B9.18939.
    1. Freemont A.J., Peacock T.E., Goupille P., Hoyland J.A., OBrien J., Jayson M.I.V. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet. 1997;350:178–181. doi: 10.1016/S0140-6736(97)02135-1.
    1. Urban J.P.G., Roberts S. Degeneration of the intervertebral disc. Arthritis Res. 2003;5:120–130. doi: 10.1186/ar629.
    1. Gaskin D.J., Richard P. Relieving Pain in America: A Blueprint for Transforming Prevention, Care, Education, and Research. National Academies Press; Washington, DC, USA: 2011.
    1. Crow W.T., Willis D.R. Estimating cost of care for patients with acute low back pain: A retrospective review of patient records. J. Am. Osteopath. Assoc. 2009;109:229–233.
    1. Roberts S., Evans H., Trivedi J., Menage J. Histology and pathology of the human intervertebral disc. J. Bone Jt. Surg. Am. 2006;88(Suppl. 2):10–14.
    1. Battie M.C., Videman T., Levalahti E., Gill K., Kaprio J. Genetic and environmental effects on disc degeneration by phenotype and spinal level: A multivariate twin study. Spine. 2008;33:2801–2808. doi: 10.1097/BRS.0b013e31818043b7.
    1. Buckwalter J.A. Aging and degeneration of the human intervertebral disc. Spine. 1995;20:1307–1314. doi: 10.1097/00007632-199506000-00022.
    1. Chan D., Song Y., Sham P., Cheung K.M. Genetics of disc degeneration. Eur. Spine J. 2006;15(Suppl. 3):S317–S325. doi: 10.1007/s00586-006-0171-3.
    1. Inoue N., Espinoza Orias A.A. Biomechanics of intervertebral disk degeneration. Orthop. Clin. North. Am. 2011;42:487–499. doi: 10.1016/j.ocl.2011.07.001.
    1. Pfirrmann C.W.A., Metzdorf A., Zanetti M., Hodler J., Boos N. Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration. Spine. 2001;26:1873–1878. doi: 10.1097/00007632-200109010-00011.
    1. Radek M., Pacholczyk-Sienicka B., Jankowski S., Albrecht L., Grodzka M., Depta A., Radek A. Assessing the correlation between the degree of disc degeneration on the Pfirrmann scale and the metabolites identified in HR-MAS NMR spectroscopy. Magn. Reson. Imaging. 2016;34:376–380. doi: 10.1016/j.mri.2015.12.005.
    1. Sinusas K. Osteoarthritis: Diagnosis and treatment. Am. Fam. Physician. 2012;85:49–56.
    1. Maetzel A., Li L.C., Pencharz J., Tomlinson G., Bombardier C., The Community Hypertension and Arthritis Project Study Team The economic burden associated with osteoarthritis, rheumatoid arthritis, and hypertension: A comparative study. Ann. Rheum. Dis. 2004;63:395–401. doi: 10.1136/ard.2003.006031.
    1. Goode A.P., Carey T.S., Jordan J.M. Low Back Pain and Lumbar Spine Osteoarthritis: How Are They Related? Curr. Rheumatol. Rep. 2013;15:305. doi: 10.1007/s11926-012-0305-z.
    1. Dunlop R.B., Adams M.A., Hutton W.C. Disc space narrowing and the lumbar facet joints. J. Bone Jt. Surg. Br. 1984;66:706–710. doi: 10.1302/0301-620X.66B5.6501365.
    1. Fujiwara A., Tamai K., An H.S., Kurihashi A., Lim T.H., Yoshida H., Saotome K. The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine. J. Spinal Disord. 2000;13:444–450. doi: 10.1097/00002517-200010000-00013.
    1. Fujiwara A., Lim T.H., An H.S., Tanaka N., Jeon C.H., Andersson G.B.J., Haughton V.M. The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine. 2000;25:3036–3044. doi: 10.1097/00007632-200012010-00011.
    1. Horkoff M., Maloon S. Dysphagia secondary to esophageal compression by cervical osteophytes: A case report. BCMJ. 2014;56:442–444.
    1. Milette P.C., Fontaine S., Lepanto L., Cardinal E., Breton G. Differentiating lumbar disc protrusions, disc bulges, and discs with normal contour but abnormal signal intensity. Magnetic resonance imaging with discographic correlations. Spine. 1999;24:44–53. doi: 10.1097/00007632-199901010-00011.
    1. Rim D.C. Quantitative Pfirrmann Disc Degeneration Grading System to Overcome the Limitation of Pfirrmann Disc Degeneration Grade. Korean J. Spine. 2016;13:1–8. doi: 10.14245/kjs.2016.13.1.1.
    1. Adams M.A., Hutton W.C. Gradual disc prolapse. Spine. 1985;10:524–531. doi: 10.1097/00007632-198507000-00006.
    1. Kortelainen P., Puranen J., Koivisto E., Lahde S. Symptoms and Signs of Sciatica and Their Relation to the Localization of the Lumbar-Disk Herniation. Spine. 1985;10:88–92. doi: 10.1097/00007632-198501000-00014.
    1. Frymoyer J.W. Back Pain and Sciatica. N. Engl. J. Med. 1988;318:291–300. doi: 10.1056/NEJM198802043180506.
    1. Taher F., Essig D., Lebl D.R., Hughes A.P., Sama A.A., Cammisa F.P., Girardi F.P. Lumbar Degenerative Disc Disease: Current and Future Concepts of Diagnosis and Management. Adv. Orthop. 2012;2012:970752. doi: 10.1155/2012/970752.
    1. Physical Therapist’s Guide to Degenerative Disc Disease. [(accessed on 8 March 2017)]; Available online: .
    1. Nwuga V.C. Ultrasound in treatment of back pain resulting from prolapsed intervertebral disc. Arch. Phys. Med. Rehabil. 1983;64:88–89.
    1. Adams M.A., Stefanakis M., Dolan P. Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: Implications for physical therapies for discogenic back pain. Clin. Biomech. 2010;25:961–971. doi: 10.1016/j.clinbiomech.2010.07.016.
    1. Will Steroid Injections Help My Degenerative Disc Disease? [(accessed on 8 March 2017)]; Available online:
    1. Buttermann G.R. The effect of spinal steroid injections for degenerative disc disease. Spine J. 2004;4:495–505. doi: 10.1016/j.spinee.2004.03.024.
    1. Chou R., Huffman L.H. Medications for acute and chronic low back pain: A review of the evidence for an American Pain Society/American College of Physicians clinical practice guideline. Ann. Int. Med. 2007;147:505–514. doi: 10.7326/0003-4819-147-7-200710020-00008.
    1. Drugs, Medications, and Spinal Injections for Degenerative Disc Disease. [(accessed on 8 March 2017)]; Available online: .
    1. Sluijter M.E., Cosman E.R. Method and Apparatus for Heating an Intervertebral Disc for Relief of Back Pain. 5433739A. U.S. Patent. 1995 Jul 18;
    1. Sluijter M.E., Cosman E.R. Thermal Denervation of an Intervertebral Disc for Relief of Back Pain. 5571147A. U.S. Patent. 1996 Nov 5;
    1. Sulaiman S.B., Keong T.K., Cheng C.H., Saim A.B., Idrus R.B. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J. Med. Res. 2013;137:1093–1101.
    1. Spivak J.M., Hasharoni A. Use of hydroxyapatite in spine surgery. Eur. Spine J. 2001;10(Suppl. 2):S197–S204. doi: 10.1007/s005860100286.
    1. Nouh M.R. Spinal fusion-hardware construct: Basic concepts and imaging review. World J. Radiol. 2012;4:193–207. doi: 10.4329/wjr.v4.i5.193.
    1. Confusion about Spinal Fusion. [(accessed on 22 March 2017)]; Available online: .
    1. Multilevel Spinal Fusion for Low Back Pain. [(accessed on 21 March 2017)]; Available online: .
    1. Quirno M., Goldstein J.A., Bendo J.A., Kim Y., Spivak J.M. The Incidence of Potential Candidates for Total Disc Replacement among Lumbar and Cervical Fusion Patient Populations. Asian Spine J. 2011;5:213–219. doi: 10.4184/asj.2011.5.4.213.
    1. Deyo R.A., Nachemson A., Mirza S.K. Spinal-fusion surgery—The case for restraint. N. Engl. J. Med. 2004;350:722–726. doi: 10.1056/NEJMsb031771.
    1. Reeks J., Liang H. Materials and Their Failure Mechanisms in Total Disc Replacement. Lubricants. 2015;3:346–364. doi: 10.3390/lubricants3020346.
    1. Serhan H., Mhatre D., Defossez H., Bono C.M. Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons. Int. J. Spine Surg. 2011;5:75–89. doi: 10.1016/j.esas.2011.05.001.
    1. Guterl C.C., See E.Y., Blanquer S.B., Pandit A., Ferguson S.J., Benneker L.M., Grijpma D.W., Sakai D., Eglin D., Alini M., et al. Challenges and strategies in the repair of ruptured annulus fibrosus. Eur. Cell Mater. 2013;25:1–21. doi: 10.22203/eCM.v025a01.
    1. Bron J.L., Helder M.N., Meisel H.J., Van Royen B.J., Smit T.H. Repair, regenerative and supportive therapies of the annulus fibrosus: Achievements and challenges. Eur. Spine J. 2009;18:301–313. doi: 10.1007/s00586-008-0856-x.
    1. Vadala G., Mozetic P., Rainer A., Centola M., Loppini M., Trombetta M., Denaro V. Bioactive electrospun scaffold for annulus fibrosus repair and regeneration. Eur. Spine J. 2012;21(Suppl. 1):S20–S26. doi: 10.1007/s00586-012-2235-x.
    1. Cruz M.A., Hom W.W., DiStefano T.J., Merrill R., Torre O.M., Lin H.A., Hecht A.C., Illien-Junger S., Iatridis J.C. Cell-Seeded Adhesive Biomaterial for Repair of Annulus Fibrosus Defects in Intervertebral Discs. Tissue Eng. Part A. 2018;24:187–198. doi: 10.1089/ten.tea.2017.0334.
    1. Alini M., Roughley P.J., Antoniou J., Stoll T., Aebi M. A biological approach to treating disc degeneration: Not for today, but maybe for tomorrow. Eur. Spine J. 2002;11(Suppl. 2):S215–S220.
    1. Sudo H., Minami A. Caspase 3 as a therapeutic target for regulation of intervertebral disc degeneration in rabbits. Arthritis Rheum. 2011;63:1648–1657. doi: 10.1002/art.30251.
    1. Sakai D., Mochida J., Iwashina T., Hiyama A., Omi H., Imai M., Nakai T., Ando K., Hotta T. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc. Biomaterials. 2006;27:335–345. doi: 10.1016/j.biomaterials.2005.06.038.
    1. D’Este M., Eglin D., Alini M. Lessons to be learned and future directions for intervertebral disc biomaterials. Acta Biomater. 2018;78:13–22. doi: 10.1016/j.actbio.2018.08.004.
    1. Bowles R.D., Setton L.A. Biomaterials for intervertebral disc regeneration and repair. Biomaterials. 2017;129:54–67. doi: 10.1016/j.biomaterials.2017.03.013.
    1. Iu J., Massicotte E., Li S.Q., Hurtig M.B., Toyserkani E., Santerre J.P., Kandel R.A. In Vitro Generated Intervertebral Discs: Toward Engineering Tissue Integration. Tissue Eng. Part A. 2017;23:1001–1010. doi: 10.1089/ten.tea.2016.0433.
    1. Yang J.C., Yang X.L., Wang L., Zhang W., Yu W.B., Wang N.X., Peng B.A., Zheng W.F., Yang G., Jiang X.Y. Biomimetic nanofibers can construct effective tissue-engineered intervertebral discs for therapeutic implantation. Nanoscale. 2017;9:13095–13103. doi: 10.1039/C7NR03944A.
    1. Bhunia B.K., Kaplan D.L., Mandal B.B. Silk-based multilayered angle-ply annulus fibrosus construct to recapitulate form and function of the intervertebral disc. Proc. Natl. Acad. Sci. USA. 2018;115:477–482. doi: 10.1073/pnas.1715912115.
    1. Ghorbani M., Ai J., Nourani M.R., Azami M., Beni B.H., Asadpour S., Bordbar S. Injectable natural polymer compound for tissue engineering of intervertebral disc: In vitro study. Mater. Sci. Eng. C Mater. 2017;80:502–508. doi: 10.1016/j.msec.2017.06.007.
    1. Gan Y., Li P., Wang L., Mo X., Song L., Xu Y., Zhao C., Ouyang B., Tu B., Luo L., et al. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration. Biomaterials. 2017;136:12–28. doi: 10.1016/j.biomaterials.2017.05.017.
    1. Halloran D.O., Grad S., Stoddart M., Dockery P., Alini M., Pandit A.S. An injectable cross-linked scaffold for nucleus pulposus regeneration. Biomaterials. 2008;29:438–447. doi: 10.1016/j.biomaterials.2007.10.009.
    1. Park S.-H., Cho H., Gil E.S., Mandal B.B., Min B.-H., Kaplan D.L. Silk-Fibrin/Hyaluronic Acid Composite Gels for Nucleus Pulposus Tissue Regeneration. Tissue Eng. Part A. 2011;17:2999–3009. doi: 10.1089/ten.tea.2010.0747.
    1. Pereira D.R., Silva-Correia J., Oliveira J.M., Reis R.L., Pandit A., Biggs M.J. Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration. Nanomed. Nanotechol. 2018;14:897–908. doi: 10.1016/j.nano.2017.11.011.
    1. Liu C., Zhu C., Li J., Zhou P., Chen M., Yang H., Li B. The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res. 2015;3:15012. doi: 10.1038/boneres.2015.12.
    1. Pirvu T., Blanquer S.B.G., Benneker L.M., Grijpma D.W., Richards R.G., Alini M., Eglin D., Grad S., Li Z. A combined biomaterial and cellular approach for annulus fibrosus rupture repair. Biomaterials. 2015;42:11–19. doi: 10.1016/j.biomaterials.2014.11.049.
    1. Hu D., Wu D., Huang L., Jiao Y., Li L., Lu L., Zhou C. 3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration. Mater. Lett. 2018;223:219–222. doi: 10.1016/j.matlet.2018.03.204.
    1. Yang F., Xiao D., Zhao Q., Chen Z., Liu K., Chen S., Sun X., Yue Q., Zhang R., Feng G. Fabrication of a novel whole tissue-engineered intervertebral disc for intervertebral disc regeneration in the porcine lumbar spine. RSC Adv. 2018;8:39013–39021. doi: 10.1039/C8RA06943C.
    1. Choy A.T.H., Chan B.P. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering. PLoS One. 2015;10:e0131827. doi: 10.1371/journal.pone.0131827.
    1. Hudson K.D., Bonassar L.J. Hypoxic Expansion of Human Mesenchymal Stem Cells Enhances Three-Dimensional Maturation of Tissue-Engineered Intervertebral Discs. Tissue Eng. Part A. 2017;23:293–300. doi: 10.1089/ten.tea.2016.0270.
    1. Hudson K.D., Mozia R.I., Bonassar L.J. Dose-Dependent Response of Tissue-Engineered Intervertebral Discs to Dynamic Unconfined Compressive Loading. Tissue Eng. Part A. 2015;21:564–572. doi: 10.1089/ten.tea.2014.0174.
    1. Buckley C.T., Hoyland J.A., Fujii K., Pandit A., Iatridis J.C., Grad S. Critical aspects and challenges for intervertebral disc repair and regeneration—Harnessing advances in tissue engineering. JOR Spine. 2018;1:e1029. doi: 10.1002/jsp2.1029.

Source: PubMed

3
Předplatit